结构与非结构网格之间的转换及应用

  • 格式:pdf
  • 大小:335.38 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Applications Of Transformation Of Structured To

Unstructured Meshes

Liu Jing1, 2,Zhang Min1,John C. Chai2,Xu Bin1

1School of Power Eng.,Nanjing University of Science & Technology,Nanjing (210094)

2School of Mechanical and Aero spacing Eng.,Nanyang Tech. University,Singapore (639798)

E-mail:mz2455@

Abstract

The transformation of structured meshes to unstructured meshes is a branch of mesh generation technology. We can obtain the advantages of both grids that structure grids have the characteristics of convergence quickly and unstructured grids have the characteristics of matching sophisticated calculating domains well from this conversion. Meanwhile, it is expanding the widespread useful application of unstructured mesh codes. This paper gave the models of the transformations of the orthogonal meshes and body-fitted meshes. And, the heat conduction equation was solved using the based cell finite volume method and the secondary order accuracy. Finally, a couple of three dimension examples of heat transfer that included different geometries and boundary conditions were given. Therefore, the procedure was validated exactly and actually.

Keywords:structured grids/meshes,unstructured grids/meshes,heat conduction

1.Introduction

The first step of numerical simulation is mesh generation that is cutting the continuous computational space into subdomains and identifying each node. The accuracy and efficiency of engineering numerical simulation mainly defend on the meshes and algorisms. In generally, all kind of mesh has its advantages and disadvantages; also the every numerical method has its constraints. Therefore, successful numerical simulation can only be done on the conditions that meshes and algorisms match perfectly [1].

Two commonly kinds of mesh are structured and unstructured mesh/grid. The former characteristic is that the relationship between nodes is fixed and implied in the mesh. Thus, no special action is needed to ensure the relationship. But there don’t exists the property in unstructured mesh, so we must store the information about nodes such as volume nodes number, interfaces nodes number, and neighbor volume number[2-4] .

It is stubborn to compare structured grid and unstructured grid exactly, besides considering the numerical algorism. In the brief, structured mesh has the good feature, simplex in generating, converging fast, and steady etc, while unstructured mesh can be more applicable for irregular domain, decomposing and encrypting in whole or part domain and used widely in later computation[4] . The paper takes advantage of two kinds of mesh to get fine results by the transformation between them.

2.Transformation Between Both Meshes

Regular structured mesh in orthogonal coordination is the oldest, most basic and simplex generation technique, including rectangle mesh of Cartesian coordinates and curve mesh in cylindrical coordinates or spherical coordinates. No detail about this kind of mesh, but the paper based on orthogonal mesh and body-fitted grid.

First, we have to get the grid nodes of coordination in three dimensions, and then transform them to unstructured grid nodes number. Finally, numerical simulation will be done based on the unstructured mesh. For the transformation, at first, select cells shape and nodes NCTYPE(I) and NCNODE(J,I), here they are vertex number and coordination value (X(I),Y(J),Z(K)) of cell, respectively. Secondly, get the surface information NFTYPE (I) and NFNODE (J, I) of the cells. Where, the node order conform right hand rule, which is, ensuring the direction of surface normal is outside the cells.

At the end, storing all neighbor cells information and their boundary property by KBCC (I).