电流互感器接线方式.ppt
- 格式:ppt
- 大小:440.00 KB
- 文档页数:8
电流互感器二次回路常用接线电流互感器(Current Transformer,CT)是一种用于测量和保护电流的装置,常用于电力系统中。
在电流互感器的应用中,二次回路的接线方式非常重要,本文将介绍电流互感器二次回路常用的接线方式。
1. 直接接线方式直接接线方式是最常见也是最简单的一种接线方式。
在这种方式下,电流互感器的二次绕组直接与测量仪表或保护装置相连。
这种接线方式适用于二次回路较短的情况,可以提供相对准确的测量和保护功能。
2. 间接接线方式间接接线方式是将电流互感器的二次绕组与测量仪表或保护装置之间通过一段导线相连。
这种接线方式适用于二次回路较长的情况,可以降低因线路电阻和电感对测量结果的影响。
3. 双绕组接线方式双绕组接线方式是将电流互感器的二次绕组分成两个独立的回路,分别与测量仪表和保护装置相连。
这种接线方式可以同时满足测量和保护的需求,且能够提供更好的抗干扰性能。
4. 串联接线方式串联接线方式是将多个电流互感器的二次回路串联在一起,再接入测量仪表或保护装置。
这种接线方式适用于需要测量或保护大电流的情况,可以将大电流分成若干个小电流进行测量或保护。
5. 并联接线方式并联接线方式是将多个电流互感器的二次回路并联在一起,再接入测量仪表或保护装置。
这种接线方式适用于需要测量或保护小电流的情况,可以将小电流叠加成一个大电流进行测量或保护。
需要注意的是,在进行电流互感器二次回路接线时,应根据实际情况选择合适的接线方式。
同时,还需要注意接线的可靠性和安全性,确保接线正确无误。
总结起来,电流互感器二次回路常用的接线方式包括直接接线方式、间接接线方式、双绕组接线方式、串联接线方式和并联接线方式。
根据实际需求和具体情况,选择合适的接线方式可以确保电流测量和保护的准确性和可靠性。
电流互感器的主要接线方式电流互感器在工厂供电系统中,广泛应用于测量、继电保护。
而电流互感器的接线有多种方式,分别应用于不同供电系统的继电保护。
电流互感器的接线方式所谓电流互感器的接线方式是指电流互感器与电流继电器之间的联接方式。
电流互感器在三相电路中有以下四种接线方式。
1.一相式接线方式:一相式接线方式如图所示,电流线圈通过的电流,反映一次电路相应相的相电流,通常用于负荷平衡的三相电路如低压动力线路中,供测量电流或接过负荷保护装置之用。
2.三相式完全星形接线:三相式完全星形接线方式如图所示,这种方式对各种故障都起作用。
当故障电流相同时,对所有故障都同样灵敏,对相同短路动作可靠,至少有两个继电器动作,因此主要用于高压大电流接地系统以及大型变压器、电动机的差动保护、相间短路保护和单相接地短路保护和负荷一般不平衡的三相四线制系统,也用在负荷可能不平衡的三相三线制系统中,作三相电流、电能测量3.两相不完全星形接线:两相不完全星形接线如图所示,在正常运行及三相短路时,中线通过电流为I0=I a+I c=-I b,反映的是未接电流互感器那一相的相电流。
如两只互感器接于A相和C相,AC相短路时,两只继电器均动作;当AB相或BC相短路时,只有一个继电器动作。
而在中性点直接接地系统中,当B相发生接地故障时,保护装置不动作。
所以这种接线保护不了所有单相接地故障和某些两相短路,但刚好满足中性点不直接接地系统允许一相接地继续运行一段时间的要求。
因此,这种接线广泛应用在中性点不接地系统。
4.两相电流差式接线:两相电流差式接线如图所示,这种接线方式的特点是流过电流继电器的电流是两只电流互感器的二次电流的相量差I R=I a-I b,因此对于不同形式的故障,流过继电器的电流不同。
在正常运行及三相短路时,流经电流继电器的电流是电流互感器二次绕组电流的 3 倍。
当装有电流互感器的A、C两相短路时,流经电流继电器的电流为电流互感器二次绕组的两倍。
电流互感器的接线方法
1、三相完全星形接线可以准确反映三相中每一相的真实电流。
该方式应用在大电流接地系统中,保护线路的三相短路、两相短路和单相接地短路。
2、两相两继电器不完全星形接线可以准确反映两相的真实电流。
该方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路和两相短路。
完全星形接线两相两继电器不完全星形接线
3、两相差接反映两相差电流。
该接线方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路、两相短路、小容量电动机保护、小容量变压器保护。
4、单相接线在三相电流平衡时,可以用单相电流反映三相电流值,主要用于测量回路。
5、两相三继电器完全星形接线,流入第三个继电器的电流是Ij=Iu+Iw=-Iv。
该接线方式应用在大电流接地系统中,保护线路的三相短路和两相短路。
电流互感器的接线方式按其所接负载的运行要求确定。
最常用的接线方式为单相、三相星形和不完全星形三种。
额定变比和误差:电流互感器的额定变比KN指电流互感器的额定电流比。
即:KN=I1N/I2N
电流互感器原边电流在一定范围内变动时,一般规定为10~120%I1N,副边电流应按比例变化,而且原、副边电压(或电流)应该同相位。
但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。
比差为经折算后的二次电流与一次电流量值大小之差对后者之比,即fI 为电流互感器的比差。
当KNI2》I1时,比差为正,反之为负。
对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的绝对值和角差均随电流增大而减小。
采用补偿的办法可以减小互感器的误差。
一般通过在互感器上加绕附加绕组或增添附加铁心,以及接入相应的电阻、电感、电容元件来补偿。
常用的补偿法有匝数补偿、分数匝补偿、小铁心补偿、并联电容补偿等。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
三相四线电能表有10个接线端子,1、2、3、4、5、6、7、8、9、10、
电流互感器有:P1面、P2面。
互感器与电表接线不当是会逆转的。
电源线从互感器P1穿过时,S1接电表进线端,S2接出线端,称正接式;
按顺序接
1、4、7端子接电流互感器的S1出线,
2、5、8端子从电源线引一根电线出来接
3、6、9端子接电流互感器的S2出线
10接零线,
:
若从P2穿过时,S1接电表出线端,S2接进线端,称反接式。
按顺序接
3、6、9端子接电流互感器的S1出线,
2、5、8端子从电源线引一根电线出来接
1、4、7端子接电流互感器的S2出线
10接零线,
两种接线方式的电表均正转,违反上述接线时电表则逆转。
要注意的是,
【
一、一般情况选择正接,电流互感器的表面上有一面上标有P1标志,安装时,这一面要面向电源侧。
二、电流线(互感器的出线S1和S2)必须和电压线(从电源线引出来的线)相序要对应。
三、注意互感器的变比和穿心匝数。
两种接线方式的电表均正转,违反上述接线时电表则逆转。
零序电流互感器原理及接线方式在电力系统中,'零序'这个名词出现在三相交流电不对称短路分析中.如果三相交流电的ABC三相的大小相等,矢量相位差彼此差120度,方向是A到B到C到A,此为'正序',如果方向是A到C到B到A的话,称为'负序'.如果ABC大小相等,方向相同,称为零序.如果A,B,C,的矢量和为0,则称分量中不包括零序分量.在三相系统中三相线电压之和恒为0,故线电压中没有零序分量.在没有中性线的星形接线中,Ia+Ib+Ic=0,因而不存在电流的零序分量.在三角形接法中,线电流是相电流之差,相电流中的零序分量在闭合的三角形中自成环流,线电流中没有零序分量.零序电流必须以中性线(或地线)作为通路,且中性线中的零序电流为一相零序电流的3倍.零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即∑I=0,它是用零序C.T作为取样元件。
在线路与电气设备正常的情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序电流互感器的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。
当发生接地故障时的各相电流的矢量和不为零,故障电流使零序C.T的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。
零序电流互感器保护一般适合使用于TN接地系统。
因为当发生一相接地时,对TN-S系统Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE和接触阻抗Zf,即Zs=Z1+ZPE+Zf;对于TN-C系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN和接触电阻Zf,即ZS=Z1+ZPEN+Zf;对于TN-C-S系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN,PE线阻抗ZPE和接触电阻Zf,即ZS=Z1+ZPEN+ZPE+Zf,产生的单相接地故障电流Id=220/ZS,明显大于无故障时的三相不平衡电流,只要整定合适,就可检测出发生接地故障时的零序电流,以切断故障回路。
电力变压器差动保护误动的原因及处理方法变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。
但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。
变压器差动保护误动作的原因及处理方法如下:一、差动保护电流互感器二次接线错误(一)常用的电流互感器二次接线图1-101 常用的电流互感器二次接线图1-101是工程上常用的一种接线方式。
图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。
对图l-101进行相量分析如下:现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。
T2流出。
在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得:I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。
由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。
由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。
在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。
如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。
那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-102(c)中的相应相量反相。
如图1--102(d)所示。
一相式结线方式电流线圈中通过的电流反应一次电路相应的电流。
通常用于负荷平衡的三相电路如低压动力线路中,供测量电流和结过负荷保护装置之用。
两相V 形结线方式此种结线又称为两相不完全星型结线,在继电保护装置中这中结线称为两相继电器结线或两相的相电流结线。
在中性点不接地的三相三线制电路中(如6~10KV 高压线路中),广泛应用于测量三相电流,电能及过电流继电保护之用。
由电流相量图可知,两相V 形结线的公共线上电流为cb aI I I -=+,反应的是未接电流互感器那一相的相电流。
两相电流差结线方式 此种结线又称为两相交叉结线,由电流相量图可知,二次公共线上电流为ca I I -其量值为相电流的3倍。
这种结线适用于中性点不接地的三相三线制电路中(如6~10KV 高压线路中),供作过电流继电保护之用,也称作两相一继电器结线。
三相星形结线方式此结线方式中的三个电流线圈,正好是反应各相的电流,广泛应用在负荷一般不平衡的三相四线制系统如TN 系统,也用在负荷可能不平衡的三相三线制系统中,做三相电流,电能测量及过电流继电保护之用。
一个单相电压互感器供仪表,继电器接于三相电路的一个线电压。
两个单相电压互感器接成V/V形供仪表,继电器接于三相三线制电路的各个线电压,广泛应用在企业配电所的6~10KV高压配电装置中。
三个单相电压互感器接成Y0/Y0形供电给要求线电压的仪表,继电器,并供电给接相电压的绝缘监视电压表。
由于西欧电流接地系统在发生单相接地故障时,另两相对地电压要升高到线电压,因此绝缘监视电压不能接入按相电压选择的电压表,而要按接线电压选择其量程,否则在一次系统发生单相接地时,电压表可能烧坏。
三个单相三绕组电压互感器或一个三相五芯柱三绕组电压互感器接成Y0/Y0/△(开口三角)形接成Y0的二次绕组,供电给需线电压的仪表,继电器及接相电压的绝缘监视用电压表。
其接成△(开口三角)形的辅助二次绕组,接电压继电器。
常用的电流电压互感器接线法
电流、电压互感器的规格、品种分超高压、高压、低压,各种变比的互感器的数量和接线方法,主要是由供电电压及供电方式来决定的。
1电流互感器
在单相回路中仅有一个回路,这样可用一台电流互感器来测量回路中的电流,如图1所示。
我们实际使用的电灯的回路中就是采用这种方式。
在三相三线的电气回路中,因为没有相线和中性线间负荷,便可以用两台电流互感器,接成V型接线的方式,接二只电流表测量电流,接线方式如图2所示。
这种接线方法:是将两只电流表,接在二次线图的公用导线上。
为了节约器材和简化接线,在三相负荷基本平衡时,也可以用一台电流互感器接一只电流表参考使用。
同时在三相三线式的回路里,有时也采用三台电流互感器接成角型接线,如图3所示,分别测量三相电流。
在三相四线制供电系统中,应安装三台电流互感器分别供电流表使用,接线方式可采用星形接线,如图4所示。
2电压互感器
在单相回路中仅有一个回路,只须一台单相电压互感器将一次线圈接到高压电源线上,低压线圈(二次线圈)接到电压表端子上,如图5所示。
在三相回路中,为了安装电能表,电力表,电流表等,以观察三相电压,可以采用三相电压互感器或采用三台单相的电压互感器组配在一起接成星形或角型接线。
如图6、7所示。
有时也用两台电压互感器接成V型接线来测量三相电压,如图8所示。