高中数学教学设计说明
- 格式:doc
- 大小:643.00 KB
- 文档页数:7
高中数学教学设计原则与方法数学作为一门基础学科,在高中阶段的教学中具有十分重要的地位。
高中数学教学虽然难度较大,但是只要按照一定的原则与方法进行设计,就能够取得良好的效果。
本文将对高中数学教学设计的原则与方法进行探究,为广大数学教师提供一些有益的参考意见。
一、原则1.学生中心原则高中数学教学必须以学生为中心,充分考虑学生的实际情况和需求。
在教学中,应该根据学生的认知能力和学习特点,因材施教,注重启发式教学和问题解决能力的培养。
2.因材施教原则学生的认知能力和学习特点存在差异,因此,高中数学教学必须注重因材施教,根据不同的学生特点和学习需求,采取不同的教学方法和手段,提高教学效果。
3.综合性原则高中数学教学不仅要注重知识点的传授,还要注重基本概念的讲解,方法技能的精讲,以及将知识点应用于实际问题中的能力培养。
只有综合性教学,才能充分发挥数学教学的作用。
4.启发式教学原则高中数学教学应该注重启发式教学,要求教师运用使用巧妙的教学方法和手段,激发学生的学习兴趣,启发学生自主学习和自主发现。
二、方法1.问题解决法高中数学教学中,常常采用问题解决法。
教师可以出一些典型的问题,引导学生思考,通过讨论、互动等方式进行问题解决。
通过问题解决,能够提高学生的实际操作能力和团队协作能力。
2.故事讲解法高中数学教学中,故事讲解法也是一种比较实用的教学方法。
教师可以通过讲述一些鲜活的事例故事,将学生的注意力引导到学习对象上,进而启发学生思考,达到知识点的深度理解。
3.情景模拟法情景模拟法也是高中数学教学的一种常用方法。
教师可以将学生置身于一个具体的实际环境中,让学生身临其境,感受和理解所学的知识点。
这种方法能够提高学生的实践操作能力。
4.实验教学法实验教学法是高中数学教学的重要组成部分之一。
实验教学能够让学生亲身体验科学实验的过程,提高学生实验操作能力和科学素养。
总之,以上是高中数学教学设计的原则与方法,通过认真地贯彻这些原则和方法,相信能够有效地提高教学质量,培养学生的数学能力和素养,让每个学生都能感受到数学的魅力并取得好成绩。
高中数学单元教学设计一、单元名称:函数与导数二、设计意图:本单元主要是让学生了解什么是函数,掌握函数的定义、性质和常见函数的图像及其变换,以及导数的概念、求法和应用。
同时,重点培养学生的解题思维能力和数学建模能力,使学生能够将函数和导数理论应用到实际生活中。
三、知识目标:1、能够正确理解函数的概念、函数的性质及不同函数的图像和变换。
2、能够掌握导数的概念和求法,并在实际问题中应用导数解决问题。
3、能够运用函数和导数理论处理实际问题,并具备适应多样化问题、创新解决问题的能力。
四、能力目标:1、能够应用函数和导数解决实际问题,识别问题所涉及的数学模型,具备分析和解决问题的能力。
2、能够灵活运用数学工具进行证明和推理,并能清晰、准确地表达数学思想。
3、能够进行团队协作,展示创新思维。
五、教学内容:1、函数的基本概念。
函数的定义、值域、定义域、图像、奇偶性、周期性和单调性的讲解。
2、函数的图像和变换。
讲解三角函数、指数函数、对数函数、幂函数、分式函数等函数的图像及其变换。
3、导数的基本概念。
导数的概念、导数的几何意义和物理意义及其计算方法。
4、导数相关概念和应用。
极值、最值问题、函数与图像、应用题等内容。
六、教学策略:1、知识点的讲解:注重知识点的讲解,逐渐深入,细致明确地让学生了解每个概念和方法,使学生能正确理解和掌握相关知识点。
2、讲解与练习相结合:讲解后将大量的例题呈现给学生,让学生通过贴近实际的练习来掌握知识点,让知识点在练习中得到加固和深入。
3、鼓励创新和团队合作:设置创新性的综合性学习活动,让学生在团队中通过合作和交流达到自我提高和知识进步的目的。
七、教学内容和进度:时间教学内容1周序列和极限基础概念2周函数的基本概念和图像及其变换3周导数的基本概念和求法4周定积分5周函数的极值和最值问题,反函数和指数、对数函数6周微分中值定理和导数应用7周几何和物理问题中的应用8周复习和考试八、教材和参考资料:1、教材:高中数学必修32、参考资料:高中数学重点难点突破及解题方法分析、高中数学思维导图与图解速记。
高二数学《平面向量的坐标表示》说课稿1各位老师好:我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。
而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。
这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。
考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标1.会用坐标表示平面向量的加法、减法与数乘运算.2.理解用坐标表示的`平面向量共线的条件.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.教学重难点的确定与突破:根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。
难点为:平面向量坐标运算与表示的理解。
我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。
《对数的运算》教学设计 1.理解对数的运算性质,体会对数对简化运算的作用; 2.知道用换底公式能将一般对数转化为自然对数或常用对数;
3.能够利用对数的运算性质、换底公式解决问题,提升数学运算核心素养.
教学重点:对数的运算性质,换底公式.
教学难点:对数运算性质的得出,对数换底公式的推导.
PPT 课件,计算器.
(一)新知探究
1.对数的运算性质 问题1:因为运算,数的威力无限;没有运算,数就只是一个符号.在引入对数之后,自然应研究对数的运算性质.你认为可以怎样研究?
师生活动:学生分组讨论交流,教师引导学生从对数与指数间的关系思考.
预设的答案:通过上节课的学习,我们知道了对数是通过指数幂的形式定义出来的,因此对数运算是由指数幂运算衍生出来的.对数运算与指数幂运算是两类重要的运算,正像加法与减法、乘法与除法之间的关系一样,我们通过加法运算学习减法运算,通过乘法运算学习除法运算.对于对数运算,我们也可以通过指数幂运算推导对数运算的性质. 设计意图:明确研究的内容,新旧知识产生联系,激发学生的探究欲望. 追问1:请回忆指数幂的运算性质.
师生活动:个别提问回答.
预设的答案:对于任意实数r ,s ,均有下面的指数幂运算性质.
(1)()0,,r s r s a a a a r s +=>∈R ;
(2)()()0,,s r rs a a a r s =>∈R ;
◆教学目标 ◆教学重难点
◆ ◆课前准备
◆教学过程。
对数的概念教学设计一、内容与内容解析1.内容:对数的定义、表示法、性质,以及指、对数之间的关系.2.内容解析:16、17世纪之交,苏格兰数学家纳皮尔在研究天文学的过程中发明了对数,为数学家们在运算中赢得了时间与精力.对数发明20多年后法国数学家笛卡尔开始使用指数符号,数学家们开始关注指、对数之间的关系.直到18世纪,瑞士数学家欧拉才发现了指数与对数的互逆关系,他首先使用y= 来定义.至此,人们彻底揭示了对数本质,完善了指、对数的知识体系和数学运算体系.对数的发明先于指数,也成为数学史上的珍闻.事实上,对数的本质是一种运算.随着人们对指数的认识的不断深入,总会遇到诸如“在方程=2中求解x”的问题,即“已知底数和幂的值,求指数”.在数学运算体系的建立过程中,人们也经历了多次类似的情况,例如在加法运算中已知一个加数与和,求另一个加数时引入了“差”的概念;在乘法运算中已知一个因数与积,求另一个因数时引入了“商”的概念;在乘方运算中已知指数与幂,求底数时引入了“数的n次方根”的概念.在计算机发明以前,以10为底的对数在复杂的数值计算中是常用的工具,故有“常用对数”之名,常用对数是纳皮尔和他的朋友布里格斯一起商定得出的.另外,在科技、经济以及社会生活中经常使用以无理数e=2.71828…为底的对数,以e为底数,许多式子都能得到简化,用它是最“自然”的,所以称之为“自然对数”.欧拉指出:“对数源出于指数”,也就是说对数与指数之间存在必然的联系:当a>0,且a≠1时,.利用这一关系,我们可以实现对数式与指数式之间的互化.代数学的根源在于运算,“运算中的不变性、规律性”是发现“代数性质”的引路人,通过这种互化运算,我们可以得出对数的下列性质:(1)负数和0没有对数.当对数中的真数N为负数或者0时,对数没有意义.这是由于在实数范围内,正数的任何次幂都是正数.因而=N中的N总是正数.(2)(a>0,a≠1).指数式中存在着诸如及的性质,将这两个指数式化为对数式即可得到对数的上述性质.从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力.建立对数与指数之间联系的过程表明,使用较好的符号体系和运算规则不仅对数学的发展至关重要,而且可以大大减轻人们的思维负担.因此,本节课的教学重点是:以“指数与对数的关系”为指引,发现和应用对数的概念.二、目标与目标解析1.目标:(1)了解对数产生的历史及背景,体会对数概念提出的必要性,发展数学人文素养;(2)经历概念的形成过程,理解对数的概念,发展数学抽象核心素养;(3)理解指、对数的关系,掌握指、对数式的互化,发展数学运算核心素养.2.目标解析(1)学生知道对数发明的历史,能在求解诸如=2的方程中体会到对数概念提出的必要性;(2)学生能将所求方程中的x准确表示出来,能认识和表示常用对数和自然对数;(3)学生能清楚指出指、对数之间所具有的关系,在指、对数式中指明各个字母的意义,能熟练地进行指、对数的互化.通过两式的互化,能够得出和证明对数的性质.三、教学问题诊断分析本节课第一个学习难点是对数概念,虽然学生可以根据以往经验提出新概念建立的必要性,但是就像差、商、数的n次方根等概念的提出一样,每一次新概念的提出都与学生以前的认知产生矛盾,因此需要适应和熟悉,而这样的过程在对数这一概念上显得尤为漫长.在以往的学习过程中,涉及“差”的概念的减法是加法的逆运算,涉及“商”的概念的除法是乘法的逆运算,涉及“数的n 次方根”的概念的开方运算是乘方的逆运算,对于对数这一概念,可以类比以往的互逆运算的关系进行认识.即使这样,减法、除法、开方等运算还是比较直观、容易理解的,但是由于对数所处运算级别较高,因此在教学中需要反复训练,使得学生尽快熟悉.第二个学习难点是在对指、对数的关系的认识上,学生往往只在表面上认识了对数概念,没有紧扣定义,充分发掘定义中指、对数之间的关系.为此可以借助图表、式中连线等简单直观的方式对指、对数式进行对照,在此过程中学生可以进一步理解对数概念,揭示指、对数之间的关系,特别是在对字母x的认识中可以明确“对数即指数”这一本质;也可以借助已有知识进行突破,例如借助指数函数中的变量对应关系揭示指、对数之间的关系.四、教学支持条件本节课的教学用到了Geogebra数学软件,可以帮助学生对相关问题形成直观感受.五、教学过程设计(一)概念的引入问题1:在4.2.1的问题中,通过指数运算,我们能从y=中求出经过x年后B地景区的游客人次为2001年的倍数y.反之,如果要求经过多少年游客人次是2001年的2倍,3倍,4倍,…,那么该如何解决?师生活动:学生利用指数函数写出2=、3=、4=的方程,但是不会求解方程.追问1:若=2,这里的x存在吗?唯一吗?能否借助已有知识解释?你能表示它吗?师生活动:学生借助指数函数图象可以感受到x的存在,但不会对其表示.由指数函数图象可知x唯一存在,但利用已有知识不能解释.技术支持:利用Geogebra数学软件画出函数图象,通过对点的标记感受对数的真实存在.追问2:回顾为什么要学习减法、除法、开方运算?并类比思考如何解决上面这个问题?师生活动:学生回顾运算学习轨迹,得出答案.回顾一下同学们对于运算的学习轨迹:在加法运算a+x=N中求解x时定义了减法及它的运算结果“差”的概念;在乘法运算ax=N中求解x时定义了除法及它的运算结果“商”的概念;在乘方运算=N中求解x时定义了开方及它的运算结果“数的n次方根”的概念。
《弧度制》教学设计1.根据函数概念中强调函数必须是实数集到实数集的对应,体会弧度制引入的背景及必要性,明白同一个量可以用不同的单位制来度量.2.在半径不同但圆心角相同的的扇形中,利用初中所学的扇形的弧长公式能够发现弧长与半径之比不变,从而体会用该比值作为弧度制定义的合理性,加深弧度制概念的理解.在此过程中,学生可以感悟数学抽象的层次性及逻辑推理的严谨性.3.体会弧度制是度量角的一种方式,并能利用180°=π rad进行弧度制与角度制的互化,利用单位圆中弧长等于半径的圆心角,直观感受用长度度量1弧度的大小,能证明并灵活运用一些关于扇形的公式,同时能理解角与实数之间的一一对应关系.教学重点:在了解弧度制引入的背景下,理解弧度制的概念,能进行角度制与弧度制的互化.教学难点:弧度制概念的理解.Geogebra、计算器、PPT课件.用Geogebra作动画来反映扇形的弧长、半径、圆心角之间的关系;在角度制与弧度制换算时,计算器可以解决近似值问题.(一)创设情境问题1:我们知道:篮球明星姚明的身高是2.26米,但在NBA官方数据中却是7.5英尺,为什么?你还知道哪些量有不同的度量制?举例说明.预设的师生活动:学生针对老师提出的问题进行思考与回答.预设答案:因为用了不同的单位.再如,度量重量可以用千克、斤、磅等不同的单位制,度量体积可以用立方米、升等不同的单位制.设计意图:通过生活中的发现,度量长度可以用米、尺、码等不同的单位制,让学生体会度量一样东西可以有多种度量制.(二)新知探究1.弧度制问题2:度量角除了角度制,还有什么单位制呢? 追问1:如图1,射线OA 绕端点O 旋转到OB 形成角α.在旋转过程中,射线OA 上的点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n °,OP =r ,点P 所形成的圆弧1PP 的长为l .回忆初中所学知识,弧长l 如何用圆心角α来表示?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180πrn l =. 追问2:如图2,在射线OA 上任取一点Q (不同于点O 和P ),OQ =r 1.在旋转过程中,点Q 所形成的的圆弧1QQ 的长为l 1,那么l 1与r 1的比值是多少?你能得出什么结论?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180π11nr l =;圆心角α所对的弧长与半径的比值,与半径的大小无关,只与α的大小有关,也就是说,这个比值随α的确定而唯一确定.因此可以用弧长和半径的比值表示圆心角.设计意图:通过复习初中所学知识可知,使学生得到弧长与半径的比只与角的大小有关,推广到一般也成立,因此我们可以利用这个比值来度量角,引出新概念,使学生明白新概念的由来和定义的合理性.追问3:结合上面的探索过程,你能试着说一说什么是1弧度角吗?预设的师生活动:学生用自己的语言表述清楚即可,教师在学生表述的基础上进行完善. 预设答案:我们规定:长度等于半径的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度.设计意图:引导学生得出定义,体会定义产生的背景、原由及过程.追问4:(1)我们把半径为1的圆叫做单位圆.既然角的大小与半径无关,那么在单位圆中如何确定1 rad 的角呢?(2)在半径为r 的圆中,弧长为l 的弧所对的圆心角α的弧度数是多少? (3)角有正、负、零角之分,它的弧度数呢?图1图2预设的师生活动:学生思考后回答.预设答案:得出单位圆中长度为1的弧所对的圆心角就是1 rad (如图3);在半径为r 的圆中rl=α;类比角度制,α的正负由角α的终边的旋转方向决定.设计意图:深化理解弧度的定义.在单位圆中,直观感受1 rad 的角的大小,体会1 rad 角的几何表示;进一步能在一般圆中求得角的弧度数,使学生通过图形获取对新概念的直观印象,培养学生数形结合的能力.追问5:请你说说弧度制与角度制有哪些不同? 预设的师生活动:学生展开讨论之后总结提炼.预设答案:第一,弧度制以线段长度来度量角,角度制是“以角量角”; 第二,弧度制是十进制,角度制是六十进制;第三,1弧度是等于半径长的弧所对的圆心角的大小,而1°的角是周角的3601; 第四,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值,等等.设计意图:概念辨析,深化理解. 2.角度制与弧度制的换算问题3 既然角度制、弧度制都是角的度量制,那么,它们之间如何换算?你认为在换算的过程中最为关键的是什么?预设的师生活动:学生思考后回答,得出答案.预设答案:这两种角度度量制之间的关系是:360°=2π rad .其中,最为基础也是最为关键的是180°=π rad ,即1°=180π rad ,1 rad =°180π⎪⎭⎫ ⎝⎛≈57.30°. 设计意图:通过思考,让学生掌握弧度和角度换算的方法.体会同一个数学对象用不同方式表示时,它们之间的内在联系.认识这种联系性是数学研究的重要内容之一.例1 按照下列要求,把67°30′化成弧度: (1)精确值; (2)精确到0.001的近似值. 预设的师生活动:学生自行完成并回答问题.预设答案:(1)因为67°30′=°2135⎪⎭⎫ ⎝⎛,所以67°30′=2135×⎪⎭⎫ ⎝⎛180π rad =83π rad .(2)利用计算器有图31.178097245.因此,67°30′≈1.178rad.设计意图:在换算中学会根据要求的精度不同,选择不同的计算方式.例2将3.14 rad换算成角度(用度数表示,精确到0.001).预设的师生活动:使用计算器完成.预设答案:利用计算器有179.9087477.因此,3.14rad≈179.909°.设计意图:学会利用计算器完成这种繁杂的计算问题.追问:(1)67°30′能直接化成弧度吗?你是怎么做的?应该注意什么问题?(2)相互交流一下,如何使用计算机完成弧度制与角度制的换算?预设的师生活动:学生独立完成角度制与弧度制的换算的精确值,之后交流展示用计算机完成弧度制与角度制换算的近似值.设计意图:通过简单应用,熟悉弧度制、熟悉弧度制与角度制的换算.学生可能出现的问题:第一,进行角度制与弧度制的换算不够熟练;第二,角度转化弧度时需要把含分或秒的角度统一为度的单位;第三,计算机完成弧度制与角度制换算的近似值时,操作需要一个熟悉的过程.练习填写特殊角的角度数与弧度数的对应表(课本174页).预设的师生活动:快问快答,进行训练.预设答案:设计意图:这些角是今后常用的特殊角,不仅要求学生会换算,而且要让学生记住这些特殊角的度数与弧度数的对应值.另外,熟练角度和弧度的换算,进一步加深对180°=π rad 的理解和掌握.同时进一步体会角的概念推广后,无论用角度制还是弧度制,都能在角的集合与实数集R 之间建立一一对应关系.例3 利用弧度制证明下列关于扇形的公式: (1)l =αR ;(2)S =21αR 2;(3)S =21lR . 其中R 是圆的半径,α(0<α<π)为圆心角,l 是扇形的弧长,S 是扇形的面积. 预设的师生活动:学生学生利用弧度制证明关于扇形的公式,教师进行点评及板书. 预设答案:(1)由公式|α|=rl可得l =αR . 下面证明(2)(3).由于半径为R ,圆心角为n °的扇形的弧长公式和面积公式分别是l =180πRn ,S =360π2R n ,将n °转换为弧度,得α=180πn ,于是S =21αR 2.将l =αR 代入上式,即得S =21lR .设计意图:体会弧度制下的扇形弧长、面积公式的简洁美,这是引入弧度制的一个理由. (三)归纳小结问题4 通过本节课的学习,你学会用弧度制度量角了吗?追问:你觉得这样定义弧度制合理吗?在度量角的时候你觉得需要注意哪些问题?你现在觉得用弧度制度量角有什么好处?为什么会出现这种情况?你能画一个知识结构图来反映本节课的研究内容与路径吗?预设的师生活动:学生自主总结,并作出回答.预设答案:圆心角α所对的弧长与半径的比值随α的确定而唯一确定,因此,利用圆的弧长与半径的关系度量圆心角的是合理的;在度量角的时候需要注意:联系两种度量制的桥梁是360°=2 rad ;要注意防止出现角的两种度量制混用的现象,等等;用弧度制度量角的好处:弧度制下的扇形弧长、面积公式非常简单,这是引入弧度制带来的一个便利.实际上,角度制下角的度量制是六十进制,与长度、面积的度量进位制不一样,于是在公式中要有“换算因子”180π.而弧度制下角度与长度、面积一样,都是十进制,就可以去掉这个“换算因子”了.设计意图:帮助学生梳理所学知识,并让学生清楚引入弧度制的必要性,以及这样定义的合理性,逐步提升学生逻辑推理的核心素养.(四)布置作业: 教科书习题. (五)目标检测设计 1.把下列角度化成弧度:(1)22°30′; (2)-210°; (3)1 200°. 2.把下列弧度化成角度: (1)12π; (2)-3π4; (3)10π3. 3.已知半径为120 mm 的圆上,有一条弧的长是144 mm ,求该弧所对的圆心角(正角)的弧度数.预设答案: 1.(1)8π;(2)―6π7;(3)3π20.2.(1)15°;(2)-240°;(3)54°. 3.弧度数为1.2. 设计意图:巩固所学知识.。
高中数学_等差数列教学设计学情分析教材分析课后反思引言:等差数列是高中数学中的重要概念之一,对于学生的数学建模能力和逻辑思维能力的培养具有重要作用。
本文将结合学情分析、教材分析以及课后反思,设计一节关于等差数列的数学教学,以提高学生的学习效果。
一、学情分析学生年级:高一学生人数:40人学生背景:学生对等差数列的概念有一定了解,但在应用题上存在理解不到位的问题。
根据学情分析的结果,我们可以得出学生在等差数列方面的薄弱点,进而合理设计教学环节,帮助学生克服困难,提高学习效果。
二、教材分析本节课的教材主要是教材《高中数学》,根据教材内容,我们可以将本节课的教学内容分为以下几个部分:1. 等差数列的定义和性质2. 等差数列的通项公式3. 等差数列的前n项和公式4. 等差数列的应用:算术平均数的应用等三、教学设计1. 导入部分在导入部分,可以考虑通过一个生活中的实际例子引入等差数列的概念,如汽车进行匀速行驶,每过1分钟记录行驶的距离,并与学生一起探讨变化规律,引发学生对等差数列的认识。
2. 知识讲解与探究在这个部分,需要通过简洁明了的例子和概念讲解,引导学生理解等差数列的定义和性质。
可以为学生展示等差数列的图像,并引导学生总结出等差数列的特点。
3. 公式的引入与推导接下来,引入等差数列的通项公式和前n项和公式,通过简单的推导和实例的演示,让学生理解这两个公式的由来与应用情景。
4. 练习与巩固在这一环节,给学生提供一些练习题,让学生通过练习巩固所学内容。
可以设计一些基础习题和拓展习题,巩固学生的基本知识,并提供一些挑战性题目,激发学生的学习兴趣。
5. 拓展与应用在此部分,可以通过应用题目来引导学生将所学知识应用到实际生活中。
例如,让学生通过设计等差数列的问题,来解决实际生活中的一些计算问题。
四、课后反思本节教学中的一些问题和值得改进的地方如下:1. 教学内容的安排和教学环节的设计需要更加合理,使学生的学习过程更加连贯;2. 练习题的难易程度可以适当调整,以满足不同学生的学习需求;3. 在教学过程中,应该注重学生思维的引导和培养,激发学生的学习兴趣和动力。
高一数学教案精选13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。
本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
高二选择性必修一数学教学一、教学任务及对象1、教学任务本教学设计针对的是高二年级选择性必修一数学课程的教学。
教学内容涵盖《普通高中数学课程标准》中规定的复数、立体几何、解析几何等核心模块,旨在帮助学生建立扎实的数学基础,提高数学思维能力,为高考以及未来的学术发展打下坚实的基础。
此外,教学任务还包括通过数学问题的解决,培养学生的逻辑推理、数据分析、空间想象等能力,以及运用数学知识解决实际问题的能力。
2、教学对象教学对象为高二年级的学生,他们已经完成了必修数学课程的学习,具备一定的数学基础和逻辑思维能力。
在此基础上,学生可根据个人兴趣和专业发展需求选择性地深入学习数学相关领域。
考虑到学生的差异性,教学过程中需兼顾不同层次学生的学习需求,激发学生的学习兴趣,提高他们的自主学习能力和团队合作能力。
同时,针对学生在数学学习中可能存在的困难,教师需提供个性化的辅导和指导,帮助他们克服学习中的障碍。
二、教学目标1、知识与技能(1)掌握复数的概念、运算性质及几何意义,能够运用复数解决相关问题;(2)理解立体几何的基本概念,掌握立体图形的判定、计算方法,能够运用空间向量解决立体几何问题;(3)掌握解析几何中坐标系、点、直线、圆的基本性质和方程,能够运用解析方法解决几何问题;(4)通过数学问题的探讨,提高学生的逻辑推理、数据分析、空间想象等能力;(5)培养学生运用数学知识解决实际问题的能力,提高数学建模和数学应用的水平。
2、过程与方法(1)采用问题驱动的教学方法,引导学生主动探究、发现和解决问题,培养学生的自主学习能力;(2)通过小组合作、讨论、交流等教学活动,提高学生的团队合作能力和沟通能力;(3)运用比较、归纳、演绎等思维方法,训练学生分析和解决问题的能力;(4)结合实际案例,引导学生将数学知识应用于现实生活,提高学生运用数学知识解决实际问题的能力;(5)鼓励学生进行反思和总结,培养他们自我评价和调整学习策略的能力。
高中数学《排列组合》教案设计【教案目标】1.知识目标(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;(4)进一步增强分析、解决排列、组合应用题的能力。
2.能力目标认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。
3.德育目标(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。
【教案重点】:排列数与组合数公式的应用【教案难点】:解题思路的分析【教案策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。
【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究.【教案过程】一、知识要点精析(一)基本原理1.分类计数原理2。
分步计数原理3。
两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点:①“斥”——互斥独立事件;②模式:“做事”——“分类”——“加法”③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。
(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”—-“分步”——“乘法"③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立.(二)排列1.排列定义2.排列数定义3.排列数公式(三)组合1.组合定义2.组合数定义3.组合数公式4.组合数的两个性质(四)排列与组合的应用1。
排列的应用问题(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法"求解。
2.组合的应用问题(1)无限制条件的简单组合应用问题,可直接用公式求解.(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法"求解.3.排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
组合的综合应用教学设计本节课的授课对象是高二年级普通班学生,他们起点低,基础差,缺乏自信,但课堂活跃。
在认知基础方面,学生在前面已经学习了排列组合的基础知识,对简单的排列组合的问题已经有所掌握,但本节课需要学生梳理已学过的知识,形成完整的知识体系,并能根据所给实例,判断该问题为排列组合的什么问题,并且运用相应的知识加以解决,需要学生具备全面的思考问题的能力,这对一部分学生来说是一个挑战。
组合的综合应用效果分析首先这节课能有意识地保护和调动好学生愿意学习数学的心情,营造学生喜欢学习数学的情绪氛围,使其产生热爱数学学习的积极心理;其次3个例题通过联系实际生活,使学生产生理论联系实际的价值取向和理论来源于实践、服务于实践的认识观念;最后利用课件帮助学生巩固所学知识,进一步促进认知结构的内化,并且可使学生对自己的学习进行自我评价,也让教师及时了解学生的掌握情况,以便进一步调整自己的教学。
《组合的综合应用》是《选修》2——3第一章第二节内容。
本节内容有组合问题,排列与组合综合问题。
大约需要1课时。
排列与组合的思想方法应用的很广泛,是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透这一数学思想方法时就做了一些探索,把它通过学生日常生活中最简单的事例呈现出来。
在设计本节课时,我根据学生的年龄特点对教材进行了处理,整堂课坚持从学生的实际与认知出发,以“感受生活化的数学”和“体验数学的生活化”这一教学理念,让学生结合生活实际学习数学,体验数学。
组合的综合应用评测练习1.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为()A.720B.360C.240D.1202.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为()A.120B.84C.52 D.483.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有()A.60种B.20种C.10种D.8种4.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这2个球同色的不同取法有()A.27种B.24种C.21种D.18种5.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种6.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________7.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有________种.8.从一组学生中选出4名学生当代表的选法种数为A,从这组学生中选出2人担任正、副组长的选法种数为B,若BA=213,则这组学生共有________人。
1.1.1 任意角(教学设计)内容:人教A版高中数学必修④第一章第一节第一课时.适合对象:高一学生【教材分析】三角函数是基本初等函数之一,也是中学数学的重要内容之一,它是研究度量几何的基础,又是研究自然界周期变化规律的最强有力的数学工具.因此,本节课作为高中三角函数的起始课,有着衔接初高中学习,承前启后的作用,也为今后学习任意角的三角函数奠定了基础.本节课主要介绍推广角的概念,引入正角、负角、零角的定义;介绍象限角的概念;终边相同的角的表示方法;帮助学生树立运动变化的观点,并由此深刻理解推广后角的概念.【教学目标分析】根据新课程标准和上述教材分析,本节课的教学目标设计如下:1.知识与技能目标:(1)使学生理解用“旋转”定义角;(2)理解“正角”、“负角”、“零角”、“象限角”、“终边相同的角”的含义;(3)掌握所有与角α终边相同的角(包括角α)的表示方法.2.过程与方法(1)通过问题情境,让学生自己完成角的概念的推广这一认知过程,培养学生观察、分析、运用所学知识解决问题的能力;(2)指导学生通过各种角表示法的训练,提高分析、抽象、概括的能力.3.情感态度价值观(1)通过对角的定义的推广过程的教学使学生感受到数学的应用性和知识的力量,增强学习数学的兴趣和信心,激发学生学习数学的热情;(2)重视知识的形成过程教学,让学生知其然并知其所以然,同时体会到创新的乐趣;(3)通过对角的集合表示的严密化,培养学生形成扎实严谨的科学作风.【教学重难点】1.教学重点:理解并掌握正角、负角、零角及象限角的定义,会表示终边相同的角的集合;2.教学难点:把终边相同的角用集合的符号语言表示出来.【教学问题诊断分析】学生在初中已学过0360范围内的角,这可能对角的概念的推广在认识上有一定的困难,因此,在教学中可结合生活中的具体例子,以学生熟悉的背景,引起学生的认知冲突,让学生体会角的概念有推广的必要.接着给出有关角的概念,在已有的认知条件下,学生是可以接受的.值得注意的是,终边相同的角的概念并不难理解,但用集合表示终边相同的角时,部分学生还是会有一些障碍,针对这一问题,在教学时应多举实例将特殊问题推广到一般情况,最好能让学生自己总结.【教学方法分析】新课程要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课可采用问题引领的方式让学生思考、自主探究及教师启发的教学方法.教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,并以多媒体辅助教学为手段,构建学生自主探究的平台,激发学生的求知欲,促使学生解决问题.【信息技术分析】多媒体教室及PowerPoint2003.【教学过程】导入新课师:今天这节课,我想和大家共同探讨一个话题:角(教师板书)师:对于角,我们并不陌生,初中就学过角的概念.问题1:初中我们是如何定义一个角的?所学的角的范围是什么?师生活动:教师提问,学生思考、回答.设计意图:回忆初中所学角的概念,为接下来角的推广作准备.新课讲解内容一:角的定义问题2:体操名词“程菲跳”是“踺子后手翻转体180度接前直转体空翻540度”的动作命名.这里的540度是一个什么样的角,能描述它吗?设计意图:用体操情境引发学生思考,激发学生探究新知的欲望,调动学生参与教学的积极性,由此引出用“旋转”来定义角.师生活动:师:540度角初中学过吗?怎么描述呢?生:初中没学过,我认为540度实际上就是旋转了一周半.师:那540度角能画出来吗?生:我目前画不出来.师:现在540度角还画不出来,说明初中角的概念不能满足我们进一步学习的需要,所以本节课的首要任务就是将角推广到任意角.(教师板书:1.1.1任意角,同时PPT给出角的定义)角的定义:平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的的图形.(接着用PPT演示角的形成过程并给出角的表示方法以及角的顶点、始边和终边的概念)内容二:正角、负角和零角师:好,我们接着看下一个问题.问题3:跳水运动员向内、向外转体两周半,这是多大角度?设计意图:使学生认识到角的推广不仅考虑要用旋转量,还应考虑旋转方向,为接下来正角、负角和零角的概念做好准备.师生活动:生:这是900度的角(教师追问:你是怎么想到的?学生继续作答)师:那向内旋转和向外旋转完全一样吗?生:不完全一样,空中旋转过程不一样(因为方向不同)师:也就是说,我们不仅需要从数量的角度将角推广,还需要根据旋转方向不同将角加以区分.在新的定义下,我们继续探讨与角有关的概念.(教师板书,同时PPT给出概念)1.正角、负角和零角我们规定,按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成了一个零角.师:这样,我们就把角的概念推广到了任意角,包括正角、负角和零角.内容三:象限角师:前面我们讲了这么多,现在请大家动手画出120的角.设计意图:利用新概念重新认识角的问题,通过画120角发现位置可能不同,让学生感受没有统一标准时,角的表示不方便. 通过画图探究、交流,不难给出合理的规定,让学生感知把角放到平面直角坐标系中的好处.师生活动:教师让学生把所画的图形在黑板上展示,最好有位置不同的图形作对比.如果没有的话,教师自己画一个和学生所画位置不同的角.师:可以看出,由于选取始边的位置不同,可能同样大小的角画出来的位置不同,我们更好的管理任意角,我们要给任意角加以规定.为了后续学习的需要,我们常在平面直角坐标系中讨论角,那么怎么呢把角放到坐标系中比较合理?生:把角的顶点放在坐标原点,始边放在x 轴的正半轴.(教师纠正为x 轴非负半轴) 教师在总结分析角的始边和顶点规定的基础上,给出象限角的概念.(教师板书:象限角.同时PPT 上给出象限角的概念)2.象限角为了讨论问题的方便,我们使角的顶点与原点重合,角的始边与x 轴非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.内容四:终边相同的角师:学习了这些概念,我们再画几个角.问题4:在平面直角坐标系中作出32-,328,392-的角,观察这些角之间有什么内在联系?设计意图:从具体问题入手,了解终边相同的角的关系.师生活动:学生独立画图.教师巡视后,学生回答.生:这些角的终边相同.(教师追问:为什么?能解释一下吗?)师:与32-角终边相同的角有多少个?(学生回答:无数个)师:这些与32-角终边相同的角,包括32-的角在内,能用集合表示出来吗?教师给足时间让学生思考、作图,教师巡视后请学生(可找多个学生)在黑板上写出自己的答案,教师归纳总结,得出终边相同的角的集合.(教师板书,PPT 展示下面文字)3.终边相同的角一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{}=360,k k Z ββα+⋅∈即任一与角α终边相同的角,都可以表示成角α与整数 个周角的和.例题分析例 1 在0360(即0360α≤<)范围内,找出与95012'-角终边相同的角,并判定它是第几象限角.解:95012129483360''-=-⨯,所以在0360范围内,与95012'-角终边相同的角是12948',它是第二象限角.设计意图:通过例题,使学生进一步理解任意角的概念以及象限角和终边相同的角的概念. 师生活动:学生独立完成后回答,教师点评总结.学生练习1.下列说法正确的是( )参考答案:DA .第一象限的角小于第二象限的角B .若90180α≤≤,则α是第二象限的角C .小于90的角都是锐角D .有些角不是任何象限的角2.与460-角终边相同的角可以表示成( )参考答案:CA .460360,k k Z +⋅∈B .100360,k k Z +⋅∈C .260360,k k Z +⋅∈D .260360,k k Z -+⋅∈设计意图:通过练习,检验是否掌握的任意角的概念.师生活动:学生独立思考,教师巡视、个别辅导后请学生回答,教师再点评. 课堂小结通过本节课的学习,你有哪些收获?设计意图:让学生复习本节课的主要内容,完善学生的认知结构,体会数学思想方法. 师生活动:学生回答,教师补充.同时解决学生提出的疑惑布置作业必做题:课本第9页 习题1.1 A 组 1、2、3选做题:已知α是第一象限角,那么2α和2α是第几象限角? 板书设计。
职业高中高一数学教案3篇职业高中高一数学教案篇1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面向量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力 (2)功 (3)位移 (4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为 km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4职业高中高一数学教案篇2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数 ()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(教师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,教师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y 的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(教师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1°由y=f(x)反解出x=f(y).2°把x=f(y)中 x与y互换得.3°写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.(让学生谈一下本节课的学习体会,教师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。
《复数的几何意义》教案一、教学目标:1.能够类比实数的几何意义说出复数几何意义,2.会利用几何意义求复数的模3.能够说出共轭复数的概念二、教学重、难点:重点:复数的几何意义以及复数的模难点:复数的几何意义及模的综合应用三、教学方法:本节主要让学生类比实数的几何意义和实数的绝对值的几何意义,探究出复数的几何意义和复数的模公式。
四、教具准备:多媒体五、教学过程学情分析所授课的班级是一文科班,学生的理解能力不是很强,在处理时注意节奏。
学生已经学过实数的几何表示,实数的绝对值的意义,通过类比学生容易理解复数的几何意义;学生对于平面上点与坐标的对应关系及平面上的向量的知识,已经具备。
表示相等向量的有向线段可以自由移动,这一点可能对同学们理解复平面上复数与向量的一一对应关系产生影响,这一点要做好预案:复数与复平面上的向量一一对应,这个向量的始点必须是坐标原点;不是的,通过平移移至原点。
效果分析本堂课以“探究-合作-引领”为主题,充分发挥了学生的主观能动性,学生学得很投入,很快乐。
对于基础较好点的学生来说,这节课学的很轻松,加之他们能够给一些稍差点的学生讲解思路方法,所以学得更深,理解更好。
稍差点的学生能够积极听取别人的方法。
也能够学会,跟得上。
最后,老师根据整体存在问题进行引领,拓展,提升,使学生的理解达到了较高的水平。
教材分析本章是在学生所学知识的基础上,介绍复数的概念、复数代数形式的运算和数系的扩充等内容.本章分两大节。
第一节是“数系的扩充与复数的引入”,第二节是“复数的运算”.第一节,展示了数系的扩充过程,回顾了数的发展,并指出当数集扩充到实数集时,由于负数不能开平方,因而大量代数方程无法求解。
就产生了扩充实数集的需要。
从而自然引入虚数单位i,复数由此产生,接着介绍复数的有关概念及几何意义。
后面就是复数的加减乘除运算。
高中学习的复数的基础知识十分必要,它不仅使高中毕业生对于数的概念有一个较为完整的认识,而且也为他们运用数学知识解决问题增添了新的工具,同时,也为他们进一步学习高等数学、力学与电学打下一定的基础。
《指数函数的图象和性质》教学设计一、学习目标1.能画出具体指数函数的图象;2.观察指数函数图象,归纳出指数函数的性质,培养解决问题的能力3.通过观察图象、归纳总结指数函数性质的活动,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要。
二、数学学科素养1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.三、教学重难点教学重点:指数函数的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.四、教法与学法教学策略:小组合作讨论策略;讲练有效结合策略;自主探究式学习策略教学手段:多媒体化课件;几何画板3、借助几何画板画出xx x x x x y y y y y y )()(41,31,)21(,4,3,2====== 的图象,通过图象不同的变化趋势, 可以将底数分为哪两类? 底数分为a>1和0<a<14、观察图中的函数图象的位置,公共点,变化趋势,总结共同特征,小组分工分别讨论a>1和0<a<1的图象,汇报小组讨论结果,师生一起画出指数函数图象:)10(<<=a a y x )1(>=a a y x4、请同学们对照x a y =的图象,得出性质归纳:指数函数图象和性质图象,独立思考后回答。
观察图象,做出分类类比、探究,独立思考后由小组讨论,由小组派代表起来发言,说出发现的结果或规律。
由图象总结性质数两种不同的变化趋势,对指数函数分类研究做铺垫。
充分利用信息技术作图,学生对图象认识更加准确直观。
自然的将指数函数分为a>1和0<a<1两类。
让学生经历观察图象、发现规律的过程,目的是让学生通过对函数图象的观察与比较,归纳出指数函数中a 对图象的影响,同时培养学生数形结合地观察、思考5、课件出示:指数函数图象的性质6、完善学案上指数函数的图象与性质 10<<a1 a图象定义域 值域性质学生一起回答问题的意识与能力。
7.4.1 二项分布教学设计一、内容与内容解析1.内容:n重伯努利试验,二项分布及其数字特征。
2.内容解析:(1)n重伯努利试验:n重伯努利试验也称n次独立重复试验,其特征是独立性(各次试验之间相互独立)和重复性(在同一试验条件下重复进行试验),判断试验是否是n重伯努利试验是本节课的重点也是难点。
(2)二项分布是基于特殊试验(n重伯努利试验)的特殊概率模型,对于服从二项分布的随机变量A,运用二项分布的知识,能快速解决关于A的相应问题;另外,相较以往的概率计算方法,基于二项分布能将运算量减少,提高效率的同时能提高准确率。
在教学中,将利用二项分布解决问题的方法和其他方法比较,体会其优势。
3.教学重点:n重伯努利实验,二项分布及其数字特征。
二、目标与目标解析1.目标:(1)理解伯努利试验以及n重伯努利试验的概念,掌握随机变量服从二项分布的有关计算;(2)能够解决随机变量服从二项分布的实际应用问题,会求服从二项分布的随机变量的均值和方差;(3)在具体问题的解决过程中,领会二项分布需要满足的条件,培养运用概率模型解决实际问题的能力;(4)在利用二项分布解决一些简单的实际问题过程中,深化对某些随机现象的认识,进一步体会数学在日常生活中的广泛应用。
2.目标解析:达成上述目标的标志是:(1)能抓住n重伯努利试验的两大特征:独立性和重复性;(2)能准确识别伯努利试验中的成功事件及成功概率;(3)体会到二项分布事实上是特殊随机试验下的特殊概率模型,其本质是只关心在n重伯努利试验中成功的次数,而不在意哪一次成功,因此与组合问题相通,充分理解3的由来。
三、教学问题诊断解析1.问题诊断(1)让学生体会学习二项分布的必要性是本节课的一个教学难点。
在本节课前,学生所具备的知识已经足够解决n重伯努利试验中随机变量的分布列等相关问题,为何还要学习二项分布?为了让学生主动接受并乐于接受二项分布,需要将选择权还给学生。
因此,本节课将从探究1的问题出发,学生运用已有能力,解决问题,教师基于学生的解答进行深化,得出从二项分布的视角解决问题的方法,核心是对系数3的由来进行分析,让学生在思考4中体会这一思路在解决问题中的优越性,进而自然而然接受特殊随机试验用特殊概率模型解决的思想。
. . . . . . . . . 等比数列的前n项和
( 第一课时) 一. 教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。
二.学情分析。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此
基础上,并能初步应用公式解决与之有关的问题。 (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的 . . . . . . . . . 能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的 简洁美。
四.重点,难点分析。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话: 还课堂以生命力,还学生以活力。
六.课堂设计 (一)创设情境,提出问题。(时间设定:3分钟) [利用投影展示] 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢? [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事容紧扣本节课的主题与重点] . . . . . . . . . 提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
引导学生写出麦粒总数236312222 (二)师生互动,探究问题[5分钟] 提出问题2:?23631+2+2+2++2究竟等于多少呢 有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。) 提出问题3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,后一项都是前一项的2倍) 提出问题4:如果我们把每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到另一式: [[利用投影展示] 236364
2346464
...12222.........(1)222222.......(2)SS
比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项) 提出问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:646421S [这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇] 这时,老师向同学们介绍错位相减法,并 提出问题6:同学们反思一下我们错位相减法求此题的过程,为什 么(1)式两边要同乘以2呢? [这个问题的设计意图:让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫] (三)类比联想,解决问题。[时间设定:10分钟] 提出问题7:n1n设等比数列a的首项为a,公比为q,求它的前项和S
123naaaan即 S 学生开展合作学习,讨论交流,老师巡视课堂,发现有典型解法的,叫同学板书在黑板上。 [设计意图:从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高,让学生在探索过程 . . . . . . . . . 中,充分感受到成功的情感体验]
(四)分析比较,开拓思维。[时间设定:5分钟] 将不同的的方法进行分析评价。根据学生的认识状况,可能有如下几种方法: 错位相减法1:
错位相减法2 提出公比q
累加法
可能也有同学会想到由等比定理得
qaaSqnn11)(等比数列,公比为,它的前项和}{naqn
3anqS
2a
1aSn
1na
n
a
3a
1na
n
a
2a
qa
n
)(2131111nnqaqaqaaqa11212111nnnqaqaqaqaaS
qa1
nnqaaSq111)(
nnnaaaaaS1321等比数列,公比为,它的前项和}{naqn
)(11nnqaS
qaa12nnnaaaaaS1321等比数列,公比为,它的前项和
}{na
qn
qaa23qaa34qaann1
)(nnnaSqaS1
)(132132nnaaaaqaaa
qaaSqnn11)(
11nqa
21qa
nqSnnqaaSq111)(
等比数列,公比为,它的前项和}{naqn
qa11aSn
21n
qa
11n
qa
21qa
21n
qa
qa
1n
qa
1 . . . .
. . . . . 123321212312111(1)nnnnnnnnnnnSaaaaaaaqaaaaaaqaaaSaqSaqSaaq
即
【设计意图:共享学习成果,开拓了思维,感受数学的奇异美】 (五).归纳提炼,构建新知。[时间设定:3分钟]
提出问题8:由nn11(1-q)s=a-aq得n11na-aqs=1-q对不对?这里的q能不能等于1?等比数列中的公比能不能为1?1q时是什么数列?此时nS? 【设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,增强思维的严谨性】.
提出问题9:等比数列的前n项和公式怎样? 学生归纳出1111(1),1,111,1,1nnnnaaqaqqqqSSqnaqnaq 【设计意图:向学生渗透分类讨论数学思想,加深对公式特征的了解】 (六)层层深入,掌握新知。[时间设定:15分钟]
2,1,qn1n1n基础练习1已知a是等比数列,公比为q21(1)若a=,q=,则S33(2).则a则S 2382381(12)1(2)1(12)(2).1222212(1)(3).1nnnnaaaaaaa
练习2 判断是非(1).1-2+4-8+16-+-2