多晶体的塑性变形

  • 格式:docx
  • 大小:43.70 KB
  • 文档页数:2

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多晶体的塑性变形

塑性变形过程

由于各晶粒间存在位相差,在外力作用下,位向最有利的少数晶粒开始发生塑形变形,随后这些已变形晶粒中的平面位错群在晶界塞积导致应力集中,这一应力集中和外力叠加,使相邻晶粒的位错源开动,驱动相邻晶粒进行协调的(多滑移)塑形变形。

多晶体塑性变形特点:

①各晶粒的变形不是同时进行的;

②为了协调先发生塑性变形的晶粒形状的改变,相邻各晶粒必须进行多滑移,其中包括取向并不有利的滑移系上同时进行滑移,这样才能保证其形状作各种相应地改变.根据理论计算,每个晶粒至少需要5个独立的滑移系启动;

③受晶界及各晶粒位向不同的影响,各晶粒间、晶粒内的变形是不均匀的。

细晶强化

①由于晶界的存在,使变形晶粒中的位错在晶界处受阻,滑移带终止于晶界;

②由于各晶粒间存在位相差,为了协调变形,要求每个晶粒必须进行多滑移,而滑移时必然要发生位错的相互交割.这两者均将大大提高金属材料的强度.显然,晶界越多,即晶粒越细小,则其强化效果越显著。这种用细化晶粒增加晶界提高金属强度的方法称为细晶强化。

多晶体的塑性变形与单晶体塑性变形的区别

单晶体产生塑性变形,只与其晶体内部位错滑移有关;

多晶体不仅需要考虑晶粒内部的位错滑移,还要考虑晶粒之间的变形协调,即要考虑晶间变形。晶界在塑性变形中的作用可分2个部分来说:协调作用,多晶体在塑性变形时,各晶粒都要通过滑移或孪生而变形,而个晶粒的变形不能是任意的,必须相互协调,以保证晶界处变形的连续;阻碍作用,晶界之间存在位相差,阻碍位错的运动;多晶体的塑性变形受到晶界的阻碍和不同位向晶粒的影响,使得其变形抗力比单晶体

高得多。但是归根到底,其塑性变形方式仍是滑移和孪生。

细化晶粒的方法

1、增加过冷度:过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。

2、变质处理:向金属液中添加少量活性物质,促进液体金属内部生核或改变晶体成长过程的一种方法,生产中常用的变质剂有形核变质剂和吸附变质剂。(加快形核)

3、振动与搅拌。(晶粒破碎)

4、对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒。

通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。

这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。通过细化晶粒,金属材料力学性得到了提高:细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小。(晶粒越大位相差越大,变形越不均匀)