二项式定理4
- 格式:ppt
- 大小:250.50 KB
- 文档页数:7
二项式定理课上讲解: 1.二项式定理(1)定义:(a +b )n=C 0n a n+C 1n an -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n的二项展开式; (2)二项式系数:其中的系数C rn (r =0,1,…,n ); (3)通项:T r +1=C r n an -r b r.2.二项式系数的性质 (1)对称性: C rn =C n -rn . (2)增减性: ①当k <n +12时,二项式系数C kn 逐渐增大;②当k >n +12时,二项式系数C kn 逐渐减小;(3)最大值:①当n 是偶数时,中间一项C n2n 取得最大值; ②当n 是奇数时,中间两项Cn -12n,Cn +12n 取得最大值.(4)各二项式系数和:C 0n +C 1n +C 2n +…+C rn +…+C nn =2n;C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.问题:怎么证的?3.二项式定理中的赋值法:二项式定理给出的是一个恒等式,对a ,b 赋予一些特定的值,是解决二项式问题的一种重要思想方法.赋值法是从函数的角度来应用二项式定理,即函数f (a ,b )=(a +b )n =C 0n a n+C 1n an -1b +…+C r n a n -r b r +…+C n n b n.对a ,b 赋予一定的值,就能得到一个等式.注意:(1)展开时一定要注意顺序问题;(2)区分二项展开式的二项式系数与该项的(字母)系数的区别;题型一:二项式定理的直接运用 例1.6)12(xx +的展开式中第三项的二项式系数为________;第三项的系数为_______; 常数项为_______;含4x 的项为______。
变式练习1:(2x +)4的展开式中x 3的系数是 ( )A.6B.12C.24D.48 变式练习2:(-)6的展开式中的常数项为( )A.15B.-15C.20D.-20 变式练习3:(2x3-)7的展开式中常数项是( )A.14B.-14C.42D.-42题型二:二项式的和与积 例2.(1+2x )3(1-x )4展开式中x 项的系数为________.变式练习1: (2011·广东)x ⎝⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________(用数字作答).变式练习2:42)1)(21(x x -+的展开式中2x 的系数为______。
二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。
在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。
本文将介绍二项式定理的概念、基本公式以及一些常见的应用。
一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。
简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。
基本公式:根据二项式定理,我们可以得到二项式的展开式。
对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。
C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。
二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。
通过展开式,我们可以计算出结果,以及每一项的系数。
例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。
对于排列组合问题,可以使用组合数来解决。
而组合数又可以使用二项式定理来计算。
例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。
由于组合数可以用二项式定理来计算,我们可以直接得到结果。
二项式定理及其应用1. 引言二项式定理是数学中的一个重要定理,它描述了如何展开二项式的幂。
该定理在代数、组合数学、数论以及其他数学领域有着广泛的应用。
本文将介绍二项式定理的数学表达式、证明过程以及一些常见的应用。
2. 二项式定理的表达式二项式定理可以用以下的数学表达式来描述:$$(a + b)^n = C(n,0) \\cdot a^n \\cdot b^0 + C(n,1) \\cdot a^{n-1} \\cdot b^1+ ... + C(n,k) \\cdot a^{n-k} \\cdot b^k + ... + C(n,n) \\cdot a^0 \\cdot b^n$$ 其中,C(n,k)表示组合数,即从n个元素中选取k个元素的不同组合数量。
3. 二项式定理的证明为了证明二项式定理,我们可以使用数学归纳法。
首先,考虑当n=1时的情况:(a+b)1=a+b显然,上述等式成立。
假设当n=m时,二项式定理成立,即:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 我们需要证明当n=m+1时,二项式定理也成立。
首先,考虑展开(a+b)m+1:$$(a + b)^{m+1} = (a + b) \\cdot (a + b)^m$$根据归纳假设,我们可以将(a+b)m展开为:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 将上述展开式代入$(a + b) \\cdot (a + b)^m$中,我们可以得到:$$(a + b) \\cdot (a + b)^m = (C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdota^{m-1} \\cdot b^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdota^0 \\cdot b^m) \\cdot (a + b)$$将上式展开并合并同类项,我们可以得到:$$(a + b) \\cdot (a + b)^m = C(m,0) \\cdot a^{m+1} \\cdot b^0 + (C(m,1)\\cdot a^m \\cdot b^1 + C(m,0) \\cdot a^m \\cdot b^1) + ... + (C(m,k) \\cdota^{m-k+1} \\cdot b^k + C(m,k-1) \\cdot a^{m-k} \\cdot b^{k+1}) + ... + a^0 \\cdot C(m,m) \\cdot b^{m+1}$$我们可以通过重新排列项来证明上式等于展开式(a+b)m+1的每一项。
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn nn nn n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==- 0122(1)(1)()n r r n n nn nn n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=, 变形式1221r n n nn n n C C C C +++++=-。
二项式定理知识点总结一、二项式定理1.二项式定理定义:()()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. 2.二项式系数、二项式的通项定义:011222...n n n n n n n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r nC a b -叫做二项展开式的通项.用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=.3.二项式展开式的各项幂指数:二项式()n a b +的展开式项数为1n +项各项的幂指数状况是:1)各项的次数都等于二项式的幂指数n .2)字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .4.二项式系数的性质1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等.2)单调性:二项式系数(数列)在前半部分逐渐增大,在后半部分逐渐减小,在中间(项)取得最大值.其中:当n 为偶数时,二项展开式中间一项的二项式系数2n n C 最大;当n 为奇数时,二项展开式中间两项的二项式系数12n n C -, 12n n C +相等,且最大.3)组合总数公式:012n 2n n n n n C C C C ++++=L 即二项展开式中各项的二项式系数之和等于n 2.4)“一分为二”的考察:二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即024135-1n n 2n n n n n C C C C C C +++=+++=L L .备注:①通项1r n r r r n T C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =.②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.⑤设1,a b x ==,则得公式:()12211......n r r n n n n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r r nC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素,只要知道其中四个即可求第五个元素.习 题1.(1+x )7的展开式中x 2的系数是( )A .42B .35C .28D .212.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .203.(x +1)(x +1x +2)4的展开式中x 2项的系数为( )A .84B .96C .126D .256 4.已知:x(x −2)8=a 0+a 1(x −1)+a 2(x −1)2+⋯+a 9(x −1)9,则a 6=( )A .﹣28B .﹣448C .112D .4485.(x +2y )(2x ﹣y )5的展开式中x 3y 3的系数为( )A .40B .80C .120D .1606.(1+x 2)(2x −1)6的展开式中1x 项的系数为( )A .﹣12B .12C .﹣172D .1727.(1+√x )6的展开式中有理项系数之和为( )A .64B .32C .24D .168.2020被7除的余数为( )A .1B .3C .5D .69.二项式(x 3-12x 2)n 的展开式中含有非零常数项,则正整数n 的最小值为( )A .10B .7C .5D .310已知⎝ ⎛⎭⎪⎫33x 2-1x n的展开式中各项系数之和为256,则展开式中第7项的系数是( )A .-24B .24C .-252D .25211.已知(ax +1)n 的展开式中,二项式系数和为32,各项系数和为243,则a 等于( )A .-2B .2C .-3D .312.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为() A .-2 B .-1C .1D .213.若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=________.(用数字作答)14.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.15. 二项式⎝⎛⎭⎫ax 2+1x 5的展开式中的常数项为5,则实数a =________.a16.若(x-x2)6展开式的常数项为60,则常数a的值为________.。
§9.3 二项式定理(二十九)一、知识导学1.二项式定理:上列公式所表示的定理叫做二项式定理.右边的多项式叫做的二项展开式,它一共有n+1项.其中各项的系数叫做二项式系数.式中的叫做二项展开式的通项,用表示,即=.2.二项式系数的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式得到.(2)增减性与最大值.二项式系数,当r<时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n是偶数时,中间的一项取得最大值;当n是奇数时,中间的两项相等,且同时取得最大值.(3)各二项式系数的和.的展开式的各个二项式系数的和等于.二、疑难知识导析1.二项式定理是代数公式和的概括和推广,它是以乘法公式为基础,以组合知识为工具,用不完全归纳法得到的.同学们可对定理的证明不作要求,但定理的内容必须充分理解.2.对二项式定理的理解和掌握,要从项数、系数、指数、通项等方面的特征去熟悉它的展开式.通项公式=在解题时应用较多,因而显得尤其重要,但必须注意,它是的二项展开式的第r+1项,而不是第r项.3.二项式定理的特殊表示形式(1).这时通项是=.(2).这时通项是=.(3).即各二项式系数的和为.4.二项式奇数项系数的和等于二项式偶数项系数的和.即三、经典例题导讲[例1]已知,求的值.错解:由二项展开式的系数的性质可知:的展开式的各个二项式系数的和等于,显然,就是展开式中的,因此的值为-1.错因:上述解答忽略了是项的系数,而不是二项式系数.正解:由二项展开式的结构特征,是项的系数,而不是二项式系数.观察式子特征,如果=1,则等式右边为,出现所求式子的形式,而就是展开式中的,因此,即1=1+,所以,=0评注这是二项式定理的一个典型应用—赋值法,在使用赋值法时,令、b等于多少,应就具体问题而定,有时取“1”,有时取“-1”,或其他值.[例2]在多项式的展开式中,含项的系数为.错解:原式==∴项的系数为0.错因:忽视了n的范围,上述解法得出的结果是在n不等于6的前提下得到的,而这个条件并没有提供.正解:原式==∴当n≠6时,项的系数为0.当n=6时,项的系数为1说明:本解法体现了逆向运用二项式定理的灵活性,应注意原式中对照二项式定理缺少这一项.[例3]的末尾连续零的个数是( )A.7 B.5 C.3 D.2解:上述展开式中,最后一项为1;倒数第二项为1000;倒数第三项为495000,末尾有三个0;倒数第四项为16170000,末尾有四个0;依次前面各项末尾至少有四个0.所以的末尾连续零的个数是3.故选C.[例4]已知的展开式前三项中的的系数成等差数列.(1)求展开式中所有的的有理项;(2)求展开式中系数最大的项.解:(1)展开式前三项的系数分别为.由题设可知:解得:n=8或n=1(舍去).当n=8时,=.据题意,4-必为整数,从而可知必为4的倍数,而0≤≤8,∴=0,4,8.故的有理项为:,,.(2)设第+1项的系数最大,显然>0,故有≥1且≤1.∵=,由≥1,得≤3.∵=,由≤1,得≥2.∴=2或=3,所求项分别为和.评注:1.把握住二项展开式的通项公式,是掌握二项式定理的关键,除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质.2.运用通项公式求二项展开的特定项,如求某一项,含某次幂的项,常数项,有理项,系数最大的项等,一般是运用通项公式根据题意列方程,在求得n或r后,再求所需的项(要注意n和r的数值范围及大小关系).3.注意区分展开式“第+1项的二项式系数”与“第+1项的系数”.[例5]已知的展开式中含项的系数为24,求展开式中含项的系数的最小值.解:解法一由中含项的系数为24,可得.从而,.设中含项的系数为t,则t=.把代入上式,得t=.∴当n=6时,t的最小值为120,此时m=n=6.解法二由已知,设中含项的系数为t,则t=≥2=2(72-12)=120.当且仅当m=n=6时,t有最小值120.∴展开式中含项的系数的最小值为120.评注:构造函数法是一种常用的方法,尤其在求最值问题中应用非常广泛.四、典型习题导练1.化简:2.设,则的值为3.(1+x)(2+x)(3+x)…(20+x)的展开式中x19的系数是.4.式子的展开式中的常数项是()A、-15B、20C、-20D、155.已知二项式中,>0,b>0,2m+n=0但mn≠0,若展开式中的最大系数项是常数项,求的取值范围.6.用二项式定理证明:能被整除(n∈,n≥2).。