变电站防雷保护与防雷范围计算2017.6.22
- 格式:ppt
- 大小:1.99 MB
- 文档页数:47
浅谈变电站的防雷电保护设计摘要:变电站是电力系统重要组成部分,是对电能的电压和电流进行变换、集中以及分配的场所, 担负着电压变换和电能分配的重要任务。
一旦变电站遭受雷击,将会造成城市大面积停电,会给国家和人民造成巨大的损失。
因此,对变电站必须进行安全可靠的防雷保护设计。
关键字:变电站;防雷保护;设计abstract: the substation is an important part of power system, the power voltage and current transform, concentration and distribution of the place, is shouldering the important task of voltage and power distribution. if the substation lightning, will result in large area city blackouts, caused a great loss to the country and the people. therefore, the lightning protection design of safety and reliability for substation must.key words: substation lightning protection; design;中图分类号:tu856 文献标识码:a文章编号:引言:变电站内有各种高、低压变、配电设备,而这些设备是直接与供电系统的线路相连的。
直击雷是对变电站造成危害的最主要元素这一,同时,线路上发生雷电过电压的机会较多,因此,入侵波通常也是对变电站造成危害的最主要元素之一。
因此,对变电站的防雷设计,我们主要从防直击雷以及防入侵波两个方面进行防护设计。
一般防护装置的保护范围防雷保护装置包括避雷针、避雷线以及避雷器等,它们的合理设置与组合,可使输电线路、变电站的电气设备与建筑物免遭直接积累与入侵波的伤害。
1、计算目的:
为保证所内构架,电气设备不受直击雷袭击,在要求的保护高度下,校验该变电所全部避雷针的保护范围,并根据计算结果绘制全所避雷针保护范围图。
为保证运行人员和设备的安全,根据当地土壤电阻率计算出接地导体截面,接地电阻,跨步电势,接触电势,校验是否满足要求,不满足应采取相应措施。
2、设计依据:
DL/T620-1997 《交流电气装置的过电压保护和绝缘配合》
DL/T 621 1997 《交流电气装置的接地》
《电力工程电气设计手册》一次部分
3、原始数据的来源:
勘测专业提供的水文气象资料、土壤电阻率;
电气初设短路电流计算结果。
4、计算方法:程序手工√
程序名称:软件版本号
(或手算时引用的公式)
新疆电力设计院220kV瑶池变电站工程计算书。
1.6雷电的防护GB50057-94中对雷防提出的总则(第1.0.1条)规定:“为使建筑物(含构筑物,下同)放雷设计因地制宜地采取放雷措施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,做到安全可靠、技术先进、经济合理,制定本规范。
”————注意,这里提的是“防止或减少”而不是一概要求“防止”,同时也提出考虑安全可靠、技术先进和经济的合理要同时考虑。
在标准的条文说明中指出:“有人认为,建筑物安装防雷装置后就万无一失了。
从经济的观点出发,要达到这点是太浪费了,因此特指出“或减少”,以示不是万无一失,因为按照本规范设计的防雷装置的安全度不是100% 。
1.6.1直击雷的防护防直击雷的外部装置包括接闪器(避雷针、避雷带、避雷线、避雷网)、引下线、接地装置,另外也包括屏蔽措施,通过这些装置迅速地将把雷电流泄放放入地。
1.6.2 电涌的防护为保护设备安全和抑制各种雷电感应引起的浪涌过电压,必须采取系统有效的保护措施,即在电源线信号线上加装浪涌抑制器。
1.6.3等电位连接为防护雷电流引起电磁感应和地电位反击的破坏作用,所有允许连接的设备金属外壳,接地的金属管线和导体间应进行的等电位连接。
是防雷电引起的电磁感应、地电位反击的重要措施(但不允许连接的导体之间防反击是以保持足够的距离实现——防闪络)。
从实质上讲电涌保护也是一种瞬间的等电位连接,是用SPD器件把不能连续与地连接的通电导体(电源线、信号线)与地连接起来。
1.6.4屏蔽用于防护雷电引起的电磁脉冲辐射的破坏作用。
1.6.5防闪络措施对于不能采取等电位连接和使用点涌保护器防护时,通过保持距离抑制雷电引起的地点位反击和电磁感应等的破坏作用。
(下图为基站防雷系统图)1.7 雷电流的特性● 每次雷击的电流波形是随机的,差别很大。
● 雷电流波形一般都是前沿陡而后沿时间相对较长的波形,一般前沿时间在几个微秒到几十个微秒,后沿的半值值时间一般在几十到几百微秒。
发电厂、变电站防雷保护
变电站是电力系统的枢纽,担负着电网供电的重要任务。
在变电站内的主要设备,如变压器、断路器、互感器等价格昂贵,一旦变电站遭受雷击,发生设备损坏,就有可能造成大面积停电。
因此,对变电站的防雷保护要求更可靠。
变电站遭受雷害可来自两个方面:一是雷直击于变电站;二是雷击线路,沿线路向变电站入侵的雷电波。
对直击雷的防护一般采用避雷针或避雷线。
对入侵波防护的主要措施是:在变电站内装设阀式避雷器以限制入侵雷电波的幅值,使设备上的过电压不超过其冲击耐压值;在变电站的进线上设置进线保护段以限制流过阀式避雷器的雷电流和降低入侵波的陡度;对直接与架空线相连的旋转电机(称直配电机),还在电机母线上装设电容器来限制入侵波陡度,以保护电机匝间和中性点绝缘。
1、发电厂、变电站直击雷保护
发电厂、变电站内的设备和建筑物应有可靠的直击雷保护装置如避雷针、避雷线,使所有设备均处于避雷针(线)的保护范围之内。
又由于雷击于避雷针(线)后,其地电位可能提高,如果它们与被保护设备的距离不够大,则有可能在避雷针(线)与被保护设备之间发生放电,这种现象称为避雷针(线)对设备的反击或逆闪络,因此避雷针与被保护设备之间的距离应进行计算。
对于110kV及以上的配电装置,由于绝缘水平较高不易造成。
变电所怎么防雷变电所防雷保护措施有关变电所防雷的保护措施,认真介绍了变电所受到雷击的重要原因,变电所防雷的原则,外部防雷和内部防雷,防雷等电位连接,变电所防雷的实在措施等。
变电所防雷保护措施一、变电所受到雷击的重要原因供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值。
通常情况下变电所雷击有两种情况:一是雷直击于变电所的设备上;二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所。
表现形式:1、直击雷过电压。
雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。
2、感应过电压。
当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。
因此,架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所,是导致变电所雷害的重要原因,若不实行防护措施,势必造成变电所电气设备绝缘损坏,引发事故。
二、变电所防雷的原则针对变电所的特点,其总的防雷原则是将绝大部分雷电流直接接闪引入地下泄散(外部保护);堵塞沿电源线或数据、信号线引入的过电压波(内部保护及过电压保护);限制被保护设备上浪涌过压幅值(过电压保护)。
这三道防线,相互搭配,各行其责,缺一不可。
应从单纯一维防护(避雷针引雷入地无源保护),工变电器为三维防护(有源和无源防护),包括:防直击雷,防感应雷电波侵入,防雷电电磁感应等多方面系统加以分析。
1、外部防雷和内部防雷避雷针或避雷带、避雷网引下线和接地系统构成外部防雷系统,重要是为了保护建筑物免受雷击引起火灾事故及人身安全事故;而内部防雷系统则是防止雷电和其它形式的过电压侵入设备中造成损坏,这是外部防雷系统无法保证的。
变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。
条件许可时,Sk与Sd应尽量大。
一般情况下,Sk>5m,Sd>3m。
避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。
一般土壤工频接地电阻不大于10Ω。
35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。
60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。
所有被保护的设备均应在避雷针保护范围内。
一、电气装置接地要求1.接地要求(1)一般要求①接地。
为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。
②接地电阻。
设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。
③接地距离。
不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。
④中性线。
中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。
(2)防静电接地要求①可靠连接。
车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。
②接地连接。
车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。
③气体场所接地。
气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。
(3)特殊设备接地要求①接地体。
如何计算避雷针的保护范围一.避雷针与避雷网、避雷带一样,属于防止雷击的防雷装置。
在防雷方面在针的一定高度以下有一个安全区域。
这个区域的物体通常是无害的对于雷击,这个区域被称为避雷针保护区。
二.避雷针保护范围图符号(m)小时----避雷针高度(距地);换热器---受保护建筑物的高度;--避雷针有效高度,ha=h-hx;避雷针进入HX高度水平面上的保护半径;地面避雷针保护半径;H0型两个避雷针保护范围的中间最小高度;避雷针间距;B两根避雷针HX水平面中线两侧防护宽度;地平面中心线两侧两根避雷针的保护宽度;保护范围受高度影响的系数,p=5.5/小时。
三.单避雷针保护范围。
单根避雷针的保护范围是以避雷针为轴线、形状和帐篷的折线锥相似。
具体计算方法如下:如果避雷针的高度R=1.5小时避雷针HX高学位XX平面保护半径四.计算如下:换热器>小时/2当时,接收=h-hxhx<小时/2当时,接收=1.5小时-2小时三十<小时<一百二十米,结果乘以系数P,保护范围具体绘制方法:什么时候?换热器<小时/2保护范围比四十五正锥角放大了一点。
即四十五度角线条只绘制到小时/2至地面R=1.5小时另一条斜线画在。
从这条线组合锥体是避雷针的保护范围(包括上部正锥体和下截锥的两部分)。
五.双等高避雷针保护范围双等高避雷针外侧的保护范围由单个避雷针确定,两个避雷针内侧的保护范围最大低防护高度小时。
然后根据以下公式什么时候?H0型=H-D/7型什么时候?小时>三十米希,H0型=H-D/7p型两针之间HX高度平面中线两侧保护宽度BX公司计算如下:什么时候?小时<三十米饭时间,bx=1.5(高0-换热器)什么时候?小时>三十米希,bx=1.5(高0-换热器)P作为丁<2.5小时那么BX公司> RX双倍等高避雷针保护范围大样说明:穿过两个针尖顶点一个以及两个销之间的最小保护高度H0办公室的C类点,弧ACB,C以上垂直于弧的点ACB公司平面在这一段找到地面上的中心线两侧防护宽度b(b=1.5小时)以及受保护的建筑物中心两侧HX保护宽度BX公司.然后根据单针的保护范围在两针外画出保护范围右和接收。
输电线路防雷保护计算01class1. 雷电参数1.1 雷电活动频度雷暴日雷暴日T d是一年中发生雷电的天数,以听到雷声为准,在一天内只要听到过雷声,无论次数多少,均计为一个雷暴日。
雷暴小时雷暴小时T h是一年中发生雷电放电的小时数,在一个小时内只要有一次雷电,即计为一个雷电小时。
一个雷暴日折合三个雷暴小时。
少雷区年均雷暴日数不超过15d或地面落雷密度不超过0.78次/(km2·a)的地区。
注:《建筑物电子信息系统防雷技术规范》(GB 50343-2012)规定少雷区年平均雷暴日在25d及以下的地区。
中雷区年平均雷暴日数超过15d 但不超过40d 或地面落雷密度超过0.78次/(km2·a)但不超过2.78次/(km2·a)的地区。
注:《建筑物电子信息系统防雷技术规范》(GB 50343-2012)规定中雷区年平均雷暴日大于25d ,不超过40d 的地区。
多雷区年平均雷暴日数超过40d 但不超过90d 或地面落雷密度超过2.78次/(km2·a)但不超过7.98次/(km2·a)的地区。
强雷区年平均雷暴日数超过90d 或地面落雷密度超过7.98次/(km2·a)以及根据运行经验雷害特殊严重的地区。
1.2 地面落雷密度地面落雷密度表示每平方公里地面在一个雷暴日受到的平均雷击次数。
用γ表示(次/km2·雷暴日)。
我国标准对T d=40的地区,取=0.07 。
1.3 雷电流幅值雷电流是指雷击于接地良好的目标时泄入大地的电流。
雷电流的幅值(I)一般都是在塔上或避雷针上用磁钢棒测出的。
一般地区,雷电流幅值超过I的概率可按下式计算:lg P=-I/8802class2. 防雷保护计算2.1 线路落雷次数每100km线路的年落雷次数N L按下式计算:式中:N L——线路落雷次数[次/(100km·a)];Ng——地闪密度[次/(km2·a)],对年平均雷暴日数为40d的地区暂取2.78次/(km2·a);h T——杆塔高度(m);b——两根底下之间的距离(m)。
几例避雷针保护范围计算的常用公式在计算避雷针保护范围时,可以使用以下几个常用公式:1.球面避雷范围公式:球面避雷范围公式适用于圆形和球形物体(如建筑、塔等)。
该公式基于物体的高度和雷电的放电能量,计算出避雷范围的半径。
公式如下:R=k*(h^0.6)其中,R为避雷范围的半径(单位:米),k为设备常数,h为物体的高度(单位:米)。
2.锥面避雷范围公式:锥面避雷范围公式适用于尖顶形建筑物(如尖塔、尖顶房屋等)。
该公式基于物体的高度和雷电的放电能量,计算出避雷范围的释放角度和半径。
公式如下:θ = arctan(k / h)R = h / cos(θ)其中,θ为释放角度(单位:弧度),R为避雷范围的半径(单位:米),k为设备常数,h为物体的高度(单位:米)。
3.导向效应避雷范围公式:导向效应避雷范围公式适用于具有导体接地的建筑物。
该公式基于雷电放电电流和物体导体的导电性能,计算出避雷范围的半径。
公式如下:R=(I*k)/(2*π*σ)其中,R为避雷范围的半径(单位:米),I为雷电放电电流(单位:安培),k为设备常数,π为圆周率,σ为物体导体的导电性能(单位:西门子)。
4.地网、接地体的电位半径计算公式:地网或接地体的电位半径指的是电流通过接地系统时,接地系统中电位达到安全值的距离。
该公式基于接地体的电阻和雷电放电电流,计算出接地体的电位半径。
公式如下:r=k*(V/I)^(1/2)其中,r为接地体的电位半径(单位:米),k为设备常数,V为电位(单位:伏特),I为雷电放电电流(单位:安培)。
需要注意的是,不同的避雷针和保护措施可能会有不同的计算公式和影响因素。
这些公式只是一些常用的基本公式,实际应用中还需要根据具体情况进行详细的计算和评估。
避雷针保护范围的计算方法1“折线法”避雷保护计算“折线法”在电力系统又称“规程法”,即单支避雷针的保护范围是一个以避雷针为轴的折线圆锥体。
L/ 620—997《交流电气装置的过电压保护和绝缘配合》标准就规定了单支避雷针的保护范围,见图。
1.1避雷针在地面上保护半径的计算计算避雷针在地面上的保护半径可用公式式中:Rp——保护半径;h——避雷针的高度;P——高度影响因数。
其中,P的取值是:当h≤30 m,P=1;当30 m的h的纯数值;当h>20 m时,只能取h=120 m。
1.2被保护物高度hp水平面上保护半径的计算a)当hp ≥0.5h时,被保护物高度hp水平面上的保护半径式中:Rp ——避雷针在hp水平面上的保护半径;hp——被保护物的高度;ha——避雷针的有效高度。
b)当hp <0.5h时,被保护物高度hp水平面上的保护半径2“滚球法”避雷保护计算“滚球法”是国际电工委员会(IEC)推荐的接闪器保护范围计算方法之一。
我国建筑防雷规范G 50057—994(2000年版)也把“滚球法”强制作为计算避雷针保护范围的方法。
滚球法是以hR为半径的一个球体沿需要防止击雷的部位滚动,当球体只触及接闪器(包括被用作接闪器的金属物)或只触及接闪器和地面(包括与大地接触并能承受雷击的金属物),而不触及需要保护的部位时,则该部分就得到接闪器的保护。
滚球法确定接闪器保护范围应符合规范规定,见表。
应用滚球法,避雷针在地面上的保护半径的计算可见以下方法及图2。
a)避雷针高度h≤hR时的计算距地面hR 处作条平行于地面的平行线。
以针尖为圆心、hR为半径作弧线交于平行线A,两点。
以A,为圆心,hR为半径作弧线,该弧线与针尖相交并与地面相切,这样,从弧线起到地面就是保护范围。
保护范围是一个对称的锥体。
避雷针在hP高度的xx'平面上和在地面上的保护半径,按公式[2](4)计算确定式中:Rp——避雷针保护高度xx'平面上的保护半径;hR——滚球半径,按表确定;hp——被保护物的高度;R——避雷针在地面上的保护半径。
原始资料及要求毕业设计(论文)题目:220千伏变电站防雷保护设计及计算原始资料:某地新建220千伏变电站一座,其主平面图及电气主接线如图一所示,变电站内配电构架最高15米,距离围墙10米。
该变电站所在地土壤电阻率为ρ=2×102Ω/m。
110千伏有四路出线,有可能出现两路运行方式,220千伏有三路出线,有可能出现一路运行方式,2号主变压器有可能出现高低压绕组运行,中压侧开路或中低压绕组运行,高压侧开路的运行方式。
变电所中110千伏变压器中性点接地,且为分级绝缘变压器,其中性点绝缘为35千伏级。
110千伏出线全线装有避雷线,其线路杆塔如图二所示,线路绝缘子串由7片X-4.5组成,正极性U50%为700千伏,避雷线半径3.9毫米,弧垂2.8米,导线弧垂5.3米。
220千伏出线全线装有避雷线,其线路杆塔如图三所示,线路绝缘子串由13片X-4.5组成,正极性U50%为1200千伏,避雷线半径5.5毫米,弧垂7米,导线弧垂12米。
根据以上条件,做出该变电站的防雷保护方案及线路的防雷能力计算。
一、变电站直击雷防护方案拟采用独立避雷针进行直击雷防护,要求变电站的全部设施均置于避雷针的保护范围之内。
1、设计避雷针安装位置,计算其高度,画出保护范围图。
2、要求避雷针的接地电阻小于10欧,设计接地装置,画出设计图(设冲击系数等于0.57,利用系数等于0.75。
)二、入侵波的防护方案1、确定避雷器的数量、型号以及安装位置,画出安装位置图。
2、设计进线段,计算避雷器的保护范围。
三、输电线路防雷性能的计算110千伏线路及220千伏线路所通过的平原地区线路接地电阻为7欧,山区为15欧,分别计算平原和山区的线路雷击跳闸率。
80m120m图0-1 杨村220kV变电站平面图80m 120m图0-2 110kV线路杆塔图0-3 220kV线路杆塔220千伏变电站防雷保护设计及计算摘要雷电是大自然最宏伟壮观的气体放电现象。
防雷保护角计算防雷保护角是指在防雷设计中,为了保护建筑物、设备以及人员免受雷击侵害,需要选择合适的防雷装置安装位置,使其能够有效地引导雷电流进入地下,减少雷击的概率和危害。
下面将介绍防雷保护角的计算方法和相关参考内容。
1. 防雷保护角的计算方法:防雷保护角的计算是根据建筑物及其周围的地形、导电性结构、高度和形状等因素来确定的。
一般而言,可以采用下述方法进行计算:1)辐射半径法:根据建筑物的高度和材料的导电性,结合建筑物周围的雷电流密度来计算防雷保护角。
具体计算公式为:θ = 2arctan(H/D),其中θ为防雷保护角,H为建筑物的高度,D为建筑物底部与地面的水平距离。
2)防雷保护区域法:根据建筑物的形状和导电性结构,结合雷电流密度和地形等因素,确定建筑物周围的防雷保护区域,从而确定防雷保护角。
具体计算方法较为复杂,需要综合考虑各种因素,并参考相关的防雷设计规范。
2. 相关参考内容:在进行防雷保护角的计算时,可以参考以下相关内容:1)国家标准和规范:例如《建筑物防雷设计规范》(GB 50057-2010)、《电气装置的防雷设计规范》(GB 50058-2014)等。
这些规范对于防雷设计的基本要求、计算方法和技术参数等方面都进行了详细规定,可以作为进行防雷保护角计算时的参考依据。
2)专业书籍和技术资料:有关防雷设计和保护角计算的专业书籍和技术资料也是非常有价值的参考内容。
这些书籍和资料通常会介绍防雷设计的理论基础、实际案例、计算方法、工程应用等方面的内容,有助于设计人员深入了解防雷保护角的计算原理和方法。
3)经验和案例分析:有时候,防雷保护角的计算可能受到一些特殊因素的影响,无法完全依靠理论计算。
这时候,可以参考实际工程案例和经验,从类似的项目中借鉴经验和教训。
例如,可以结合雷击事件的统计数据,对具体的建筑物和设备进行分析,以确定合适的防雷保护角。
为了保证防雷设计的科学性和可靠性,进行防雷保护角的计算时,需要充分考虑建筑物的特点、周围环境的条件以及相关的建筑、电气和雷电技术规范。
变电站防雷变电站是电力系统防雷的重要保护设施,如果发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活。
因此要求变电站需要有相应的防雷措施。
下面是下面带来的关于变电站防雷的主要内容介绍以供参考。
变电站遭受雷击的主要原因供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电站雷击有两种情况:一是雷直击于变电站的设备上;二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站。
变电站防雷的原则针对变电站的特点,其总的防雷原则是将绝大部分雷电流直接接闪引入地下泄散(外部保护);阻塞沿电源线或数据、信号线引入的过电压波(内部保护及过电压保护);限制被保护设备上浪涌过压幅值(过电压保护)。
这三道防线,相互配合,各行其责,缺一不可。
应从单纯一维防护(避雷针引雷入地———无源保护)转为三维防护(有源和无源防护),包括:防直击雷,防感应雷电波侵入,防雷电电磁感应等多方面系统加以分析。
1、外部防雷和内部防雷避雷针或避雷带、避雷网引下线和接地系统构成外部防雷系统,主要是为了保护建筑物免受雷击引起火灾事故及人身安全事故;而内部防雷系统则是防止雷电和其它形式的过电压侵入设备中造成损坏,这是外部防雷系统无法保证的。
为了实现内部防雷,需要对进出保护区的电缆,,金属管道等都要连接防雷、及过压保护器,并实行等电位连接。
2、防雷等电位连接为了彻底消除雷电引起的毁坏性的电位差,就特别需要实行等电位连接,电源线、信号线、金属管道等都要通过过电压保护器进行等电位连接,各个内层保护区的界面处同样要依此进行局部等电位连接,各个局部等电位连接棒互相连接,并最后与主等电位连接棒相连。