2019-2020学年北京人大附中九年级(上)限时练习数学试卷(4)(解析版)
- 格式:doc
- 大小:803.05 KB
- 文档页数:21
北京市人大附中 2019 年初三上学期期中数学试题及参考答案2019.11一、选择题(本题共 30 分,每小题 3 分) 1.一元二次方程 2 2 0 的解为(). B . 0 , 2 x x D .1, 2x x xxx1 21 2【解析】根据提取公因式法解一元二次方程得: ( 2) 0 ,x x所以 0 , 2. 故答案为B .2.抛物线 y (x 1) 2 的顶点坐标是().2 A .(1,2) 【答案】A【解析】根据二次函数的顶点式 y a(x h) k(a 0) 顶点坐标为( , ) , D .(1,2)2 所以 y (x 1)2 2 的顶点坐标为(1,2). 故答案为A .3.下列图形是中心对称图形的是().A .B .D .C . 【答案】C【解析】根据轴对称图形的定义和中心对称图形的定义可知:A 、 D 为轴对称图形,C 为中心对称图形,B 既不是轴对称图形,也不是中心对称图形. 故答案为C .4.如图,四边形 内接于⊙ , 为 O E C D延长线上一点,如果ADE 120 ,那么 等于( ).AB C D B ABOEDCA .130B .120C .80D .60【答案】B【解析】根据圆内接四边形对角互补,可得:AD C 180,B B故答案为B .5.如图, , , 是⊙ 上的三个点,若35 ,则AOB 的度数为( ).O C COABA .35 【答案】DC .65【解析】根据圆周角定理:同弧所对的圆周角是它所对圆心角的一半,C 故答案为D .6.在数轴上,点 所表示的实数为2 ,点 所表示的实数为 ,⊙ 的半径为1,下列说法中不正确 A B a A ...).A .当 3时,点 在⊙ 内a B A aB ABA【答案】A【解析】由于圆心 A 在数轴上表示的实数为2 ,圆的半径为1,所以当时,⊙ 与数轴交于两点:1和3,故当 1,3时,点 在⊙ 上; d r A a B A 当 d r ,即当1 a 3时,点 B 在⊙ A 内; 当,即当 1或 3时,点 在⊙ 外, d r a a B A 由以上结论可知:B 、C 、 D 正确答案为A .).O PPO D .不能确定P PP 【解析】4 5 ,故OP r ,所以点 P 在⊙O 内部, 故答案为A .11 0 有实数根,那么m 的取值范围是( ).x2 x m 41【解析】由一元二次方程 1 0 有实数根,可知≥0,x2x m 41则 12 41 m 1 ≥0 ,所以m ≤5 ,4故答案为D .9.2022 年将在北京——张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰 壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:队员1 队员 2 队员3 队员4 甲组 乙组176 178设两队队员身高的平均数依次为x ,x ,方程依次为s ,s ,下列关系中完全正确的是()..2甲2 甲甲 乙 甲 乙 甲乙甲乙【解析】 x (177176 175 176) 4 176 ,. 甲 x(178175 177 174) 4 176 ,. 乙 1 1 2甲2 2 2 22 2 2 24 2所以 x x , s s ..甲 乙 故答案为A .10.如图,点C 是以点O 为圆心, AB 为直径的半圆上的动点(点C 不与点 A ,B 重合), AB 4 ,设 弦 AC 的长为 x ,△AB C 的面积为 y ,则下列图象中,能表示 y 与 x 的函数关系的图象大致是().CABO y y 44O 1 24 xO 1 2 4 xA .B .y y44O 124x【解析】∵AB 4,AC x,2222211∴S 222∵此函数不是二次函数,也不是一次函数,∴排除A、C选项,∵AB 为定值,当O C⊥AB时,△AB C 面积最大,此时A C 22,即x22时,y最大,故排除D,故答案为B.11.关于x的一元二次方程(m 2)x2x m 40的一个根是0,则m 的值是__________.22【解析】方程的一个根为0,则x0代入得:m240,所以m 2,因为m 20,所以m 2,故答案为m 2.12.请写出与抛物线y x形状相同,且经过(0,5)点的二次函数的解析式__________.2【答案】y x25【解析】根据形状相同,故a1与y轴交点为(0,5),答案不唯一,2故答案为y x5.213.已知扇形的半径为3,圆心角为120,则这个扇形的面积为__________.【答案】3πnπr2360360扇扇故答案为:扇形面积为3π .14.北京市2011~2016年高考报名人数统计如图所示,根据统计图中提供的信息,预计2017年北京市高考报名人数约为__________万人,你的预估理由是__________.报名人数/万人8.027.67.357.277.05年份【答案】(1)6.53;(2)见解析【解析】由折线统计图可知:20112012年报名人数减少:8.027.600.42(万人),20122013年报名人数减少:7.607.350.25(万人),20132014年报名人数减少:7.357.270.08(万人),20142015年报名人数减少:7.277.050.22(万人),20152016年报名人数减少:7.056.780.27(万人).由以上可预估2017年北京市高考报名人数约为6.53万人,理由:最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.故答案为:6.53;最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.、AB A C 与⊙相切于点、,50,为⊙上异于、的一个动点,则B C B C BP CO A P O的度数为__________.BA OC,为⊙的两条切线,AB A C O1当P在优弧BC上时,BPC B O C2当P在劣弧BC上时,BPC18065115.故答案为:65和115.16.如图,小明想做⊙O中圆弧AB的中点E、F,他作图的步骤:(1)以A O为直径作⊙C交AB于点D.交⊙于点、小明作图的依据是O E FFOCA BDE【答案】①直径所对的圆周角为直角②垂直于弦的直径,平分弦且平分弦所对的两条弧【解析】∵A O为⊙C的直径,∴AD O90,∵故作图依据为:直径所对的圆周角为直角,垂直于弦的直径,平分弦且平分弦所对的两条弧.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解方程:432.x2x【答案】此方程没有实数根【解析】4x3x2,22ca4b,3,2,b4ac3442932230,22∴此方程没有实数根.18.已知m5m140,求(m1)(2m1)(m1)21的值.2【答案】14【解析】原式2m3m1m2m1122m5m1.2∵m5m140,22将m5m14代入,2原式14.故答案为14.19.如图,已知AB C90,分别以AB和BC为边向外作等边△ABD和等边△BCE,连接AE,C D.求证:AE C D.CEBD【答案】见解析【解析】∵△ABD ,△B CE 均为等边三角形, ,AB DCBE 60 , ∴,∵DB C DBA,AB C ABE EBC ABC , ∴DB C ABE , 在△ABE 和△DBC 中,ABE DB C , E B CB∴△ABE ≌△D B C (S AS), ∴ AE C D.20.已知函数 y ax bx c ,它的顶点坐标为 (3,2) , 与 2 交于点 (1,6),求 , 的2 yx m y 122yx1【解析】将(1,6)代入 2中,x my 26 2 m , m 4 ,2将顶点(3,2) 代入一次函数 y a(x h) k 中,2 1∴ y a(x 3) 2 ,2 1将(1,6)代入得:6 a(1 3)2 2 , 1 a ,2 1 y x 2 2 1 1 5 2 2 21 2 5 故答案为: 3 , y 2x 4 .y x x 21 221.如图,在平面直角坐标系xOy 中,以点A(2,3)为圆心的⊙A 交轴于点B ,C ,BC 8,求⊙Ax的半径.yAB【解析】连接AC ,过A 作A D⊥BC 于D ,∵A 为圆心,且A D⊥B C ,∴B D DC ,∴B D DC 4,在Rt△A D C 中,A D DC AC ,222∴A C AD DC 345,2222则⊙A 的半径为5.22.现有一块长20c m,宽10c m的长方形铁皮,在它的四个角分别减去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【解析】设剪去的小正方形边长为xcm,由题意列方程:(202x)(102x)56,(10x)(5x)14,x3,x12,12∴x3.答:小正方形边长为3c m.k x k (3 1) 2 1 0 .xkx 2(1)求证:该方程必有两个实数根.k【答案】(1)证明见解析k 【解析】(1)根据题意得 0 ,k 22 22(k 1) .2 ∵ (k 1) ≥ 0 ,2 ∴此方程必有两个实数根.,x 2k3k 1 k 1 x12k1 x, 22kk∵方程的根为整数,且 为整数值,k∴ 1.k 24.已知:如图, Rt △AB C 中,ACB 90 ,以 求证:直线 EF 是半圆O 的切线.为直径的半圆 交 于 , 是 的中点,O AB F E BCA C BEFACO【答案】证明见解析【解析】证明:连接OE ,CE , ∵ AC 为⊙O 的直径, ∴AFC 90 , ∴CFB 90 ,∵ E 为 BC 中点, ∴ EF CE , ∴CFE FCE , ∵OF OC ,, 90 ,∴EF OOF C 90 , 即,∵OF 为⊙ 半径, O ∴ 为半圆 的切线.OEF 25.如图,点 , 在⊙ 上, A B是切线,O C ⊥O B ,求证: A C O .2 ,.BDC【答案】(1)证明见解析 ( 2 )O D 1【解析】(1)∵ AC 为⊙O 的切线, ∴OA C 90 ,∴ O D B B 90, ∵,,∴AD C BAC , ∴ AC D C .( 2 )∵ AC 为⊙O 的切线, ∴OA C 90 ,∴O C OAAC , 2 2 2 A C ( 5) 2 3,O A 2 22 2∵ AC D C , ∴ D C 2 , ∵O D OC DC , ∴O D 1.27.在平面直角坐标系 xOy 中,抛物线 y mx 2 2mx m 1(m 0) 与 x 轴的交点为 A , B . (1)求抛物线的顶点坐标. ( 2 )若 AB 2 ,①求抛物线的解析式.②已知C 点的坐标为(2,1),D 点在抛物线在对称轴上,将抛物线在0x3的部分记为图象G ,若直线C D 与图象G 只有1个公共点,结合函数图象,求D 点的纵坐标t的取值范围.y543211234x5【答案】(1)(1,1)212【解析】(1)y m x 2mx m 12m(x 22x1)1m(x1)1,2当x1时,y1,∴顶点坐标为(1,1).(2)①∵A 、B 为抛物线与x轴的交点,且x1,AB 2,∴与x轴交点坐标为(0,0),(2,0),将(0,0)代入y m x 2mx m 1中,22∵C D 与图象G 有一个公共点,∴t1,设过C 的直线解析式y k(x2)1(k0),11∴k,∴t,22将(3,3)代入35k 1,47∴k,∴t,55172517综上所述:D 点的纵坐标t的取值范围是t1或≤t.25yx=143211234xC1234528.如图1,已知DAC 90,△AB C 是等边三角形,点P 为射线AD 上任意一点(点P 与点A 不重合),连结CP ,将线段CP 绕点C 顺时针旋转60,得到线段C Q ,连结QB 并延长交直线A D 于点E .(1)如图1,猜想QEP __________.(2)如图2,3,若当DA C 是锐角或钝角时,其他条件不变,猜想QEP 的度数,选取一种情况加(3)如图3,若DAC 135,A C P 15,且AC 2,求B Q 的长.QQ DP DBB BPEQA CAC C E图1图2图3【答案】(1)60【解析】(1)∵△AB C 为等边三角形,∴BAC 60,A C BC ,∵PC Q 60,∴PCA QCB,在△PCA和△Q C B中,PCA QCB,∴△PCA≌△Q C B(SAS),∴CQB CPA,∵12,QEAC图1(2)①证明图2,,∴ACP BC Q,在△ACP和△B C Q中,ACP BC Q,∴△ACP≌△B C Q(S AS),∴CQB CPA,∵12,B2E1QAC∵△AB C为等边三角形,A CBC ,∴PCA QCB,在△PCA和△Q C B中,PCA QCB,∴△PCA≌△Q C B(SAS),∴CQB CPA∵12,,QD BP12A CE图3设∴△BCF为等腰直角三角形,∵∴2,2,A CB C∴BF CF 2,∴F Q 6,∴B Q 62.∴PCA QCB,在△PCA和△Q C B中,PCA QCB,∴△PCA≌△Q C B(SAS),∴CQB CPA,∵12,QEAC图1(2)①证明图2,,∴ACP BC Q,在△ACP和△B C Q中,ACP BC Q,∴△ACP≌△B C Q(S AS),∴CQB CPA,∵12,B2E1QAC∵△AB C为等边三角形,A CBC ,∴PCA QCB,在△PCA和△Q C B中,PCA QCB,∴△PCA≌△Q C B(SAS),∴CQB CPA∵12,,QD BP12A CE图3设∴△BCF为等腰直角三角形,∵∴2,2,A CB C∴BF CF 2,∴F Q 6,∴B Q 62.。
2019-2020学年北京人大附中朝阳学校九年级(上)开学数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的1.(2分)实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤12.(2分)一次函数y=x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是()A.32B.31C.30D.294.(2分)彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案,以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A.饕餮纹B.三兔纹C.凤鸟纹D.花卉纹5.(2分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=31°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△ABC,使得点A'恰好落在AB边上,则α等于()A.149°B.69°C.62°D.31°6.(2分)如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=30°,那么∠AOB的度数是()A.30°B.45°C.60°D.120°7.(2分)罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③8.(2分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2C.1或D.或﹣二、填空题(本题共16分,每小题2分)9.(2分)写出一组直角三角形的三边长.(要求是勾股数但3、4、5和6、8、10除外)10.(2分)已知a是方程2x2+4x﹣3=0的一个根,则代数式a2+2a=.11.(2分)如果把代数式x2﹣2x+3化成(x﹣h)2+k的形式,其中h,k为常数,那么h+k的值是.12.(2分)如图所示的网格是正方形网格,∠APB=°.13.(2分)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=.14.(2分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.15.(2分)某林场要考察一种幼树在一定条件下的移植成活率,在移植过程中的统计结果如下表所示:成活的频率在此条件下,估计该种幼树移植成活的概率为(精确到0.01);若该林场欲使成活的幼树达到4.3万棵,则估计需要移植该种幼树万棵.16.(2分)小宇计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐总费用最低可为元.三、解答题(17-22每题5分,23-26每题6分,27-28每题7分,共68分)17.(5分)计算:+|﹣2|+﹣(﹣).18.(5分)小李拿到四张大小、质地均相同的卡片,上面分别标有数字1,2,3,4,他将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出小李这两次抽得的卡片上所标数字的所有可能情况;(2)计算小李抽得的两张卡片上的数字之积为奇数的概率是多少?19.(5分)已知函数y=x2﹣2x﹣3:(1)用描点法画出此函数图象:列表描点连线(2)结合图象回答:①顶点坐标为.②当时,y随x的增大而增大.20.(5分)下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).21.(5分)关于x的方程mx2﹣2mx+m+n=0有两个实数根.(1)求实数m,n需满足的条件;(2)写出一组满足条件的m,n的值,并求此时方程的根.22.(5分)如图,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若AD=2,则当四边形ABCD的形状是时,四边形AOBE的面积取得最大值是.23.(6分)一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,﹣2),(1)求一次函数的表达式;(2)若点C在y轴上,且S△ABC=2S△AOB,直接写出点C的坐标.24.(6分)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm.E,F分别是AB,BC 的中点,点P是对角线AC上的一个动点设AP=xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随白变的变化而变化的情况进行了探究,下面小明探究过程,请补充完整(1)函数y1的图象①按照如表所示的值进行取点、画图、测量,得到了y1与x的几组对应值:m的值为.②在所给坐标系中(见图2)描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y的图象,在同一坐标系中,画出函数y2的图象:(3)根据画出的函数y1的图象、函数y2的图象,解决问题若PE=PC,AP的长约为cm.25.(6分)为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲、乙两校40名学生成绩的频数分布统计表如下:(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)b.甲校成绩在70≤x<80这一组的是:70 70 70 71 72 73 73 73 74 75 76 77 78c.甲、乙两校成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.(6分)如图,在平面直角坐标系xOy中,已知直线l1:y=kx+3(k<0)与直线l2:y=x﹣2交于点A,l1与y 轴交于点B,l2与y轴交于点C.(1)当点A在x轴上时,求k的值及A的坐标;(2)横纵标都是整数的点叫做整点,记线段BC、AC、AB轴围成的区域(不含边界)为W.记区域W内整点个数记为n,结合函数图象回答:①在(1)的条件下,n=.②若2≤n≤4.直接写出k的取值范围.27.(7分)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.2019-2020学年北京人大附中朝阳学校九年级(上)开学数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:∵实数范围内有意义,∴1﹣x≥0,解得x≤1.故选:D.2.【解答】解:由题意,得:k>0,b>0,故直线经过第一、二、三象限.即不经过第四象限.故选:D.3.【解答】解:这10个区县该日最高气温分别为:29、30、30、30、32、32、32、32、32、32,则这10个区县该日最高气温的中位数是=32,故选:A.4.【解答】解:A、图中利用的是对称,错误;B、图中利用的是旋转,正确;C、图中利用的位似,错误;D、图中利用的是平移,错误;故选:B.5.【解答】解:∵∠ACB=90°,∴∠A=90°﹣∠B=59°,∵CA=CA′,∴∠A=∠CA′A=59°,∴α=∠ACA′=180°﹣2×59°=62°,故选:C.6.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OD=BD,AC=BD∴OA=OB∴∠OAD=∠ODA=30°,∵∠AOB=∠OAD+∠ODA=60°.故选:C.7.【解答】解:当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812.故②正确;虽然该球员“罚球命中”的频率的平均值是0.809,但是“罚球命中”的概率不是0.809,故③错误.故选:B.8.【解答】解:当1≤x<2时,x2=1,解得x1=,x2=﹣(舍去);当0≤x<1时,x2=0,解得x=0;当﹣1≤x<0时,x2=﹣1,方程没有实数解;当﹣2≤x<﹣1时,x2=﹣2,方程没有实数解;所以方程[x]=x2的解为0或.故选:A.二、填空题(本题共16分,每小题2分)9.【解答】解:52+122=132,因此5,12,13可以构成直角三角形,又都是正整数,因此5,12,13是勾股数,故答案为:5,12,13.10.【解答】解:∵a是方程2x2+4x+1=0的一个根,∴2a2+4a﹣3=0,∴a2+2a=.故答案为:.11.【解答】解:∵x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,∴h=1,k=2,∴h+k=3.故答案为:3.12.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=45°,∴∠APB=135°.故答案为:135.13.【解答】解:设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5﹣x)2,解得:x=2,则AE是2,故答案为:214.【解答】解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.15.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.86.若该林场欲使成活的幼树达到4.3万棵,则估计需要移植该种幼树4.3÷0.86=5(万棵),故答案为:0.86,5.16.【解答】解:小宇应采取的订单方式是60一份,30一份,所以点餐总费用最低可为60﹣30+3+30﹣12+3=54元,答:他点餐总费用最低可为54元.故答案为:54.三、解答题(17-22每题5分,23-26每题6分,27-28每题7分,共68分)17.【解答】解:原式=﹣2+2﹣+3+=3.18.【解答】解:(1)如图所示:(2)由(1)得共有12种,积为奇数有2种,∴概率P(积为奇数)=.19.【解答】解:(1)∵y=x2﹣2x﹣3,∴当x=﹣1时,y=0,当x=0时,y=﹣3,当x=1时,y=﹣4,当x=2时,y=﹣3,当x=3时,y=0,故答案为:0,﹣3,﹣4,﹣3,0,函数图象如有所示;(2)①由函数图象可知,该函数的顶点坐标为(1,﹣4),故答案为:(1,﹣4);②由图象可得,当x>1时,y随x的增大而增大,故答案为:x>1.20.【解答】解:(1)如图所示:直线PE即为所求.(2)证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行).故答案为:∠PEA,∠CAD,内错角相等两直线平行.21.【解答】解:(1)∵关于x的方程mx2﹣2mx+m+n=0有两个实数根,∴m≠0,△=(﹣2m)2﹣4m(m+n)=﹣4mn≥0,∴mn≤0.∴实数m,n需满足的条件为mn≤0且m≠0.(2)答案不唯一,如:m=1,n=0.此时方程为x2﹣2x+1=0.解得x1=x2=1.22.【解答】(1)证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是平行四边形,∴DC=AB.∵OE=CD,∴OE=AB.∴平行四边形AEBO是矩形,∴∠BOA=90°.∴AC⊥BD.∴平行四边形ABCD是菱形;(2)当AD=2时,四边形ABCD的形状是正方形,AB=AD=2,OE=AB=2,即四边形AOBE的面积取得最大值是2.故答案为:正方形,223.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,﹣2),∴,得,即一次函数的表达式是y=x﹣2;(2)设点C的坐标为(0,c),∵点A(3,1),点B(0,﹣2),∴OB=2,∵S△ABC=2S△AOB,∴,解得,c1=2,c2=﹣6,∴C点坐标为(0,2)或(0,﹣6).24.【解答】解:(1)①由y1、y2的对称性知:m=0.71,故答案为:0.71;②描点画图如图1;(2)y1、y2关于x=2对称,故描点得到y2的图象,如下:(3)PE=PC,即:y1=PC=AC﹣x=4﹣x,在图上画出直线l:y=4﹣x,直线l与y1的交点坐标为:x=2.5,y=1.58,故答案为2.5.25.【解答】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==72.5;(2)甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.故答案为:甲,甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为.26.【解答】解:(1)直线l2:y=x﹣2交于点A,当点A在x轴上时,则点A(2,0),l1与y轴交于点B,则点B(0,3),将点A的坐标代入l1:y=kx+3并解得:k=﹣,故点A(2,0),k=﹣;(2)①如图,W区域的整点为点E、F,故答案为2;②当n=4时,如图所示,整点为点E、F和两个空心点,此时的临界点为直线l1过点G(2,2),将点G的坐标代入l1的表达式并解得:k=﹣,故答案为:﹣≤k≤﹣.27.【解答】证明:(1)①∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠BAD=∠BAC+∠CAD=150°,且AB=AC=AD ∴∠3=∠5=15°∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠1=∠2=45°,∠ABC=∠ACB=45°又∵AE=AE,∴△ABE≌△ACE(SAS)∴∠3=∠4=15°∴∠6=∠7=30°∴∠DEC=∠6+∠7=60°∵∠AED=∠3+∠1=60°∴∠AED=∠CED②BD=2CE+AE理由如下:过点A作AH⊥BD于点H,∵∠EBC=∠ECB∴BE=CE,∵∠AED=60°,AH⊥BD∴AE=2EH∵AB=AD,AH⊥BD∴BD=2BH=2(BE+EH)=2BE+AE=2EC+AE (2)补全图形如图,2CE﹣AE=BD理由如下:如图2,以A为顶点,AE为一边作∠EAF=60°,AF交DB延长线于点F.∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠BAE=∠CAE=45°,∠ABC=∠ACB=45°.∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠DAE=∠DAC﹣∠CAE=15°,AB=AD∴∠ABD=∠ADB,∠BAD=30°∴∠ABD=∠ADB=75°∴∠AED=∠ADB﹣∠DAE=60°∵∠EAF=60°又∵∠EAF=60°,∴∠F=60°∴△AEF是等边三角形.∴AE=AF=EF.∵AC=AD,∠CAE=∠DAF=45°,AE=AF,∴△CAE≌△DAF(SAS).∴CE=DF.∵AB=AC,∠BAE=∠CAE=45°,AE=AE,∴△BAE≌△CAE(SAS).∴BE=CE.∴BE=CE.∵DF+BE﹣EF=BD,∴2CE﹣AE=BD28.【解答】解:(1)①如图,不妨设满足条件的三角形为等腰△OAR,则OR=AR.过点R作RH⊥OA于点H,∴OH=HA,∵以线段OA为底的等腰△OAR恰好是点O,A的“生成三角形”,∴RH=OA=4.∴OR=,答:该三角形的腰长为.(2)②如图所示:若A为直角顶点时,点B的坐标为(1,0)或(7,0);若B为直角顶点时,点B的坐标为(1,0)或(3,0)综上,点B的坐标为(1,0),(3,0)或(7,0).(2)由图可得:若N为直角顶点:﹣1﹣≤x N≤0;若M为直角顶点:﹣6≤x N≤﹣2;综上,﹣6≤x N≤0.答:点N的横坐标x N的取值范围为:﹣6≤x N≤0.第21页(共21页)。
2019-2020学年北京人大附中九年级(上)月考数学试卷(12月份)一、选择题(本题共16分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个1.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A.B.C.D.2.方程x2﹣x=0的解是()A.x=0B.x=1C.x1=0,x2=﹣1D.x1=0,x2=13.有一个可以自由转动且质地均匀的转盘,被分成6 个大小相同的扇形.在转盘的适当地方涂上灰色,未涂色部分为白色.为了使转动的转盘停止时,指针指向灰色的概率为,则下列各图中涂色方案正确的是()A.B.C.D.4.下列关于二次函数y=2x2的说法正确的是()A.它的图象经过点(﹣1,﹣2)B.当x<0时,y随x的增大而减小C.它的图象的对称轴是直线x=2D.当x=0时,y有最大值为05.如图,△ABC∽△A'B'C',AD和A'D'分别是△ABC和△A′B′C′的高,若AD=2,A'D'=3,则△ABC与△A'B'C'的面积的比为()A.4:9B.9:4C.2:3D.3:26.如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB放大后得到线段CD.若点A(1,2),B (2,0),D(5,0),则点A的对应点C的坐标是()A.(2,5)B.(,5)C.(3,5)D.(3,6)7.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外,⊙O内,⊙O上,则原点O的位置应该在()A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点8.如图,AB是半圆O的直径,按以下步骤作图:(1)分别以A,B为圆心,大于AO长为半径作弧,两弧交于点P,连接OP与半圆交于点C;(2)分别以A,C为圆心,大于AC长为半径作弧,两弧交于点Q,连接OQ与半圆交于点D;(3)连接AD,BD,BC,BD与OC交于点E.根据以上作图过程及所作图形,下列结论:①BD平分∠ABC;②BC∥OD;③CE=OE;④AD2=OD•CE;所有正确结论的序号是()A .①②B .①④C .②③D .①②④二、填空题(本题共16分,每小题3分)9.如图,△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若AD =2,DB =3,DE =1,则BC 的长是 .10.如图,点A 、B 、C 、D 、O 都在方格纸上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为 .11.已知反比例函数y =,当x >0时,y 随x 增大而减小,则m的取值范围是 .12.若一个扇形的半径为3,圆心角是120°,则它的面积是 .13.小宇调查了初一年级三个班学生的身高,并进行了统计,列出如频数分布表:若要从每个班级中选取10名身高在160cm 和170cm 之间同学参加学校的广播操展示,不考虑其他因素的影响,则 (填“1班”,“2班”或“3班”)的可供挑选的空间最大.身高/厘米 频数 班级150≤x <155155≤x <160160≤x <165165≤x <170170≤x <175合计1班 1 8 12 14 5 40 2班 10 15 10 3 2 40 3班51010874014.如图,在平面直角坐标系xOy 中,函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,OB ,则△OAC 与△OBD 的面积之和为 .15.为测量附中国旗杆的高度,小宇的测量方法如下:如图,将直角三角形硬纸板△DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.6米,到旗杆的水平距离DC=18米,按此方法,可计算出旗杆的高度为米.16.如图,在Rt△ABC中,∠C=90°,记x=AC,y=BC﹣AC,在平面直角坐标系xOy中,定义(x,y)为这个直角三角形的坐标,Rt△ABC为点(x,y)对应的直角三角形.有下列结论:①在x轴正半轴上的任意点(x,y)对应的直角三角形均满足AB=BC;②在函数y=(x>0)的图象上存在两点边P,Q,使得它们对应的直角三角形相似;③对于函y=(x﹣2020)2﹣1(x>0)的图象上的任意一点P,都存在该函数图象上的另一点Q,使得这两个点对应的直角三角形相似;④在函数y=﹣2x+2020(x>0)的图象上存在无数对点P,Q(P与Q不重合),使得它们对应的直角三角形全等.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题0分,第23-26题,每小题0分,第27、28题,每小题0分)17.解方程:x2﹣2x=2(x+1).18.如图,已知∠B=∠C=90°,点E在BC上,且满足AB=4,BE=2,CE=6,CD=3,求证:AE⊥DE.19.已知二次函数y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中画出该函数的图象;(3)当0≤x≤3时,y的取值范围是.20.如图,四边形ABCD内接于⊙O,OC=2,AC=2(1)求点O到AC的距离;(2)求∠ADC的度数.21.某市计划建设一项水利工程,运输公司接到任务后,计划每天运输土方2000m3,共计50天运完,但由于受到各种因素的影响,实际平均每天运输土方vm3,共计t天运输完成.(1)请直接写出v关于t的函数关系式;(2)为了给后续工程节省出时间,这批土方需要在40天内运输完成,求实际平均每天至少需要比原计划增加多少土方运输量?22.已知关于x的一元二次方程x2+bx+c=0(1)c=2b﹣1时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程x2+bx+c =0两个相等的实数根的概率.23.如图,在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与函数y=(x>0)的图象交于点A(3,2).(1)求k,m的值;(2)将直线l沿y轴向上平移t(t>0)个单位后,所得直线与x轴,y轴分别交于点P,Q,与函数y=(x >0)的图象交于点C.①当t=2时,求线段QC的长.②若2<<3,结合函数图象,直接写出t的取值范围.24.如图,在弧AB和弦AB所组成的图形中,P是弦AB上一动点,过点P作弦AB的垂线,交弧AB于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小宇根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小宇的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cmx/cm0123456y1/cm0 2.24 2.83 3.00 2.83 2.240y2/cm0 2.45 3.46 4.24 5.486(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是60°时,AP的长度约为25.如图,⊙O是△ABC的外接圆,直径BD与AC交于点E,过点D作⊙O的切线,与BC的延长线交于点F.(1)求证:∠F=∠BAC;(2)若DF∥AC,若AB=8,CF=2,求AC的长.26.在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2﹣a+4的顶点为A,点B,C为直线y=3上的两个动点(点B 在点C的左侧),且BC=3.(1)求点A的坐标(用含a的代数式表示);(2)若△ABC是以BC为直角边的等腰直角三角形,求抛物线的解析式;(3)过点A作x轴的垂线,交直线y=3于点D,点D恰好是线段BC三等分点且满足BC=3BD,若抛物线与线段BC只有一个公共点,结合函数的图象,直接写出a的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,点C关于直线AB的对称点为D,连接BD,CD,过点B作BE∥AC交直线AD于点E.(1)依题意补全图形;(2)找出一个图中与△CDB相似的三角形,并证明;(3)延长BD交直线AC于点F,过点F作FH∥AE交直线BE于点H,请补全图形,猜想BC,CF,BH之间的数量关系并证明.28.新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G的叫⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图,∠M为⊙A的关联图形,直线l为⊙A 的关联直线.(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是(请直接写出正确的序号).(2)如图1,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.(3)如图2,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I 的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.2019-2020学年北京人大附中九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本题共16分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个1.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.2.【解答】解:x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1.故选:D.3.【解答】解:A、指针指向灰色的概率为2÷6=,故选项错误;B、指针指向灰色的概率为3÷6=,故选项错误;C、指针指向灰色的概率为4÷6=,故选项正确;D、指针指向灰色的概率为5÷6=,故选项错误.故选:C.4.【解答】解:二次函数y=2x2,当x=﹣1时,y=2,故它的图象不经过点(﹣1,﹣2),故A选项不合题意;当x<0时,y随x的增大而减小,故选项B正确;它的图象的对称轴是直线y轴,故C选项不合题意;当x=0时,y有最小值为0,故D选项不合题意;故选:B.5.【解答】解:∵△ABC∽△A'B'C',AD和A'D'分别是△ABC和△A′B′C′的高,AD=2,A'D'=3,∴==,∴△ABC与△A'B'C'的面积的比=()2=,故选:A.6.【解答】解:∵以原点O为位似中心,把线段AB放大后得到线段CD,且B(2,0),D(5,0),∴=,∵A(1,2),∴C(,5).故选:B.7.【解答】解:如图,观察图象可知,原点O的位置应该在点B与点C之间靠近B点,故选:C.8.【解答】解:由作图可知,OP垂直平分线段AB,OQ平分∠AOC,故①正确,∴OP⊥AB,∴∠AOC=∠BOC=90°,∴∠AOD=∠AOC=45°,∵OB=OC,∴∠OBC=45°,∴∠AOD=∠OBC=45°,∴OD∥BC,故②正确,∴=<1,∴OE<EC,故③错误,连接CD.∵∠DCE=∠DCO,∠CDE=∠COD=45°,∴△DCE∽△OCD,∴=,∴CD2=OD•CE,∵∠AOD=∠DOC,∴=,∴AD=CD,∴AD2=OD•CE,故④正确,故选:D.二、填空题(本题共16分,每小题3分)9.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=3,∴AB=AD+BD=5,∴1:BC=2:5,∴BC=2.5,故答案为:2.5.10.【解答】解:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴∠AOC为旋转角,∵∠AOB=45°,∴∠AOC=135°,即旋转角为135°.故答案为:135°.11.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为:m>2.12.【解答】解:扇形的面积==3π,故答案为3π.13.【解答】解:身高在160cm和170cm之间同学人数:一班26人,二班13人,三班18人,因此可挑选空间最大的是一班,故答案为:1班.14.【解答】解:∵函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,∴S△OAC=S△OBD=×2=1,∴S△OAC+S△OBD=1+1=2.故答案为2.15.【解答】解:∵CD⊥AB,△DEF为直角三角形,∴∠DEF=∠ACD,∵∠ADC=∠FDE,∴△ACD∽△FED,∴=,∵DE=0.5米,EF=0.25米,DC=18米,∴=,∴AC=9米,∵DG=1.6米,∴BC=1.6米,∴AB=10.6米,故答案为:10.6.16.【解答】解:①∵在x轴正半轴上的任意点(x,y),∴y=0,∴AC=BC,∴AB=BC;②设P({x 1,),Q(,),则对应的直角三角形的直角边分别为x 1,x1+;,+,若两个三角形相似,则有=,∴=,∵x>0,∴x 1=,∴不存在两点边P,Q,使得它们对应的直角三角形相似;③设P(x 1,(x1﹣2020)2﹣1),Q(,(﹣2020)2﹣1),则对应的直角三角形的直角边分别为x 1+(x1﹣2020)2﹣1,x1;,+(﹣2020)2﹣1,若两个三角形相似,则有=,∴(x 1﹣)(x1+1﹣20202)=0,∵x>0,∴x 1+1=20202,∴图象上的任意一点P,都存在该函数图象上的另一点Q,使得这两个点对应的直角三角形相似;④设P(x 1,﹣2x1+2020),Q(,﹣2+2020),则对应的直角三角形的直角边分别为x 1,﹣x1+2020;,﹣+2020,若两个三角形全等,则有x 1=﹣+2020,=﹣x1+2020,∴+x 1=2020,∵x>0,∴图象上存在无数对点P,Q,使得它们对应的直角三角形全等;故答案为①③④.三、解答题(本题共68分,第17-22题,每小题0分,第23-26题,每小题0分,第27、28题,每小题0分)17.【解答】解:整理得x2﹣4x=2,x2﹣4x+4=2+4,即(x﹣2)2=6,∴x﹣2=,∴x1=2+,x2=2﹣.18.【解答】证明:∵AB=4,BE=2,CE=6,CD=3,∴,∵∠B=∠C=90°,∴△ABE∽△ECD,∴∠A=∠CED,∵∠B=90°,∴∠A+∠AEB=90°,∴∠CED+∠AEB=90°,∴∠AED=180°﹣∠AEB﹣∠CED=90°,∴AE⊥DE.19.【解答】解:(1)y=x2﹣4x+3=(x﹣2)2﹣1;(2)这个二次函数的图象如图:(3)当0≤x≤3时,﹣1≤y≤3.故答案为﹣1≤y≤3.20.【解答】解:(1)连接OA,作OH⊥AC于H,OA2+OC2=8,AC2=8,∴OA2+OC2=AC2,∴△AOC为等腰直角三角形,∴OH=AC=,即点O到AC的距离为;(2)由圆周角定理得,∠B=∠AOC=45°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣45°=135°.21.【解答】解:(1)由题意得:v==;(2)当t=40时,v==2500,2500﹣2000=500(m3),答:实际平均每天至少需要比原计划增加500m3土方运输量.22.【解答】(1)证明:∵△=b2﹣4•c=b2﹣c=0,∴将c=2b﹣1代入得:△=b2﹣(2b﹣1)=b2﹣2b+1=(b﹣1)2≥0,∴方程一定有两个实数根.(2)解:画树状图得:∵共有12种等可能的结果,若方程有两个相等的实数根,△=b2﹣4•c=b2﹣c=0,∴b2=c,满足条件的结果有(1,1)和(2,4),共2种,∴P(b、c的值使方程x2+bx+c=0两个相等的实数根的概率)=.23.【解答】解:(1)将点A(3,2)的坐标分别代入y=kx﹣1(k≠0)与y=(x>0)中,得2=3k﹣1,2=,∴k=1,m=6;(2)①∵直线y=kx﹣1与y轴交于点(0,﹣1),∴当t=2时,Q(0,1).此时直线解析式为y=x+1,代入函数y=中,整理得,x(x+1)=6,解得x1=﹣3(舍去),x2=2,∴C(2,3),∴QC==2.②如图,作CD⊥x轴于D,若=2时,则=2,=3,∵直线解析式系数k=1,∴OP=OQ,设OP=OQ=a,∴OD=2a,CD=3a,∴CD==,∴3a=,解得a=1,∴此时t=1+1=2,若=3时,则=3,=4,∵直线解析式系数k=1,∴OP=OQ,设OP=OQ=a,∴OD=3a,CD=4a,∴CD==,∴4a=,解得a=,∴此时t=1+,∴若2<<3,结合函数图象,得出t的取值范围是1+<t<2.24.【解答】解:(1)利用测量法可知:当x=4时,y2=4.90.故答案为4.90.(2)函数图象如图所示:(3)函数y1与直线y=x的交点的横坐标为1.50,函数y1与直线y=x的交点的横坐标为4.50,故当△APC有一个角是60°时,AP的长度约为1.50或4.50.故答案为1.50或4.50.25.【解答】(1)证明:∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°,∴∠F+∠DBC=90°,∵BD是⊙O的直径,∴∠BAD=90°,∴∠BAC+∠DAC=90°,∵∠DBC=∠DAC,∴∠BAC=∠F(2)解:连接CD,∵DF∥AC,∠ODF=90°,∴∠BEC=∠ODF=90°,∴直径BD⊥AC于E,∴AE=CE=AC,∴AB=BC,∵AB=8,∴BC=8,∵BD是⊙O的直径,∴∠BCD=90°,∴∠DBC+∠BDC=90°,∵∠DBC+∠F=90°,∴∠BDC=∠F,∵∠BCD=∠FCD=90°,∴△BCD∽△DCF,∴,∵BC=8,CF=2,∴DC=4,∴=4.∵在△BCD中,,∴,∴AC=2CE=.26.【解答】解:(1)y=x2﹣2ax+a2﹣a+4=(x﹣a)2+4﹣a,故点A(a,4﹣a);(2)点A所在的直线为:y=4﹣x,联立y=4﹣x与y=﹣x并解得:x=1,故两个直线的交点为(1,3);①当点C的坐标为:(1,3)时,则点B(﹣2,3),点A(﹣2,6),a=﹣2,故抛物线的表达式为:y=(x+2)2+6;②当点B的坐标为:(1,3)时,则点A(4,0),则a=4,故抛物线的表达式为:y=(x﹣4)2;综上,抛物线的表达式为:y=(x+2)2+6或y=(x﹣4)2;(3)点A(a,4﹣a),则点D(a,3),BC=3BD,则点B、C的坐标分别为:(a﹣1,3)、(a+2,3),将抛物线y=x2﹣2ax+a2﹣a+4与直线y=3联立并解得:x=a±,故点E、F的坐标分别为:(a﹣,3)、(a+,3),①当a=1时,点E、B、C、F的坐标分别为:(1,3)、(0,3)、(2,3)、(1,3),而点A(1,3),此时,抛物线于BC只有一个公共点;②当a>1时,当点C、F重合时,则a+=a+2,解得:a=5;当点B、E重合时,a﹣=a﹣1,解得:a=2,故2<a≤5;综上,a=1或2<a≤5.27.【解答】解:(1)如图1所示:(2)与△CDB相似的三角形是△ABE,理由如下:∵点C关于直线AB的对称点为D,∴CH=DH,AB⊥CD,∴AB是CD的垂直平分线,∴AD=AC,BC=BD,且AB⊥CD,∴∠ACD=∠ADC,∠CAB=∠DAB,∠BCD=∠BDC,∠DBA=∠CBA,∵∠ACB=90°,∴∠ABC+∠CAB=90°,且∠ABC+∠BCH=90°,∠BAC+∠ACD=90°,∴∠BCD=∠BAC,∠ACD=∠ABC,∴∠DAB=∠BCD=∠BAC=∠BDC,∵AC∥BE,∴∠CAB=∠ABE,∴∠CDB=∠ABE,且∠DAB=∠BCD,∴△BCD∽△EAB;(3)BH•FC=BC2+CF2,理由如下:如图2,∵∠ACB=90°,∴BC2+CF2=BF2,∵△BCD∽△EAB,∴∠AEB=∠CBD,∵AE∥FH,∴∠H=∠AEB=∠CBD,∵AC∥BE,∴∠CFB=∠FBH,∴△FCB∽△BFH,∴,∴BF2=BH•FC,∴BH•FC=BC2+CF2.28.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=﹣x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴△TMN是等腰直角三角形,∴TN=,OT=1,∴N(1+,0),把N(1+,0)代入y=﹣x+b中,得到b=1+,同法可得当直线l2是临界状态时,b=﹣+1,∴点N的横坐标的取值范围为﹣+1≤≤+1.(3)如图3﹣1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3﹣2中,当点P在点Q是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H(﹣6,0)得到h 的最小值为﹣6,综上所述,﹣6≤h<0,0<h≤2.。
北京人大附中2019届九年级上月考数学试卷(12月)含答案解析一、选择题(本题共32分,每小题4分)1.反比例函数y=的图象不一定经过点( )A.(﹣3,1) B.(﹣3,﹣1)C.(1,3)D.(,2)2.下列图形中,不是轴对称图形的是( )A.B.C.D.3.随机抛掷一枚质地均匀的硬币两枚,两次都是正面朝上的概率是( ) A.B.C.D.4.如图,⊙O的直径AB=8,弦DE经过OB的中点C且DE⊥OB,则弦DE的长为( )A.3B.2C.4D.65.如图,正△ABC的边长为3,以A为圆心,AB为半径作弧,则图中阴影部分的面积是( )A.B.C.﹣ D.36.如图,四边形ABCD中,AB=AC=AD,∠CBD=23°,则∠CAD为( )A.47° B.46°C.45°D.44°7.如图,AB为⊙O的一条固定直径,自左半圆上一点C,作弦CD⊥AB,∠OCD的平分线交⊙O于点E,当点C在左半圆(不包括A,B两点)上移动时,关于点E的说法:①到CD的距离始终不变;②位置始终不变;③始终平分;④位置随点C的移动而移动,正确的是( )A.①②B.②③C.②D.④8.如图,正△ABC的边长为3,点N在AC边上且AN:NC=1:2,三角形边上的动点M 从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,y=MN2,则y关于x的函数图象大致为( )A.B.C.D.二、填空题(本题共16分,每小题4分)9.如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是__________.10.在Rt△ABC中,∠C=90°,AC=5,AB=13,则tanA的值是__________.11.如图,用一个交叉卡钳(OA=OB,OC=OD)测量零件的内孔直径AB,若OC:OA=1:2,且量的CD=12mm,则零件的内孔直径AB是__________mm.12.如图,△ABC中,AB=AC=1,∠ABC=72°,BB1平分∠ABC交AC于B1,过B1做B1B2∥BC交AB于B2,作B2B3平分∠AB2B1交AC于B3,过B3作B3B4∥BC交AB于B4,…则线段B1B2的长度为__________,线段B2n﹣1B2n的长度为__________.三、解答题(本题共30分,每小题5分)13.用配方法解方程:.14.计算:3sin30°﹣cos245°+2tan60°cos30°.15.如图,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,请找出一条与线段CE相等的线段(以图中已知点的端点),画出这条线段并给出证明.16.已知m是方程x2﹣x﹣3=0的根,求代数式(1+)•(m﹣3)的值.17.如图,半径为5的⊙O中,AB是直径,弦BC=8,OD⊥AB交BC于D,求CD的长及△OCD的面积.18.列方程或方程组解应用题:某酒店有三人间、双人间的客房,三人间每天每间150元,双人间每天每间140元,为了吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满且一天共花去住宿费1510元,则该旅行团住了三人间和双人间客房各多少间?四、解答题(本题共20分,每小题5分)19.如图,直线y=﹣2x+1分别交x轴,y轴于点A,B,交反比例函数y=的图象于点C,CB:BA=2:1.(1)求反比例函数y=的解析式;(2)若点P在y轴上且以点B,C,P为顶点的三角形与△AOB相似,直接写出点P的坐标.20.如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.(1)求证:ED是⊙O的切线;(2)如果CF=1,CP=2,sinA=,求⊙O的直径BC.21.据报道,历经一年半的调查研究,PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0035千克污染物.以下是相关的统计图、表:(2)请你根据“年全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知年机动车保有量已突破520万辆,请你通过计算,估计年一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?22.如图1,给定锐角三角形ABC,小明希望画正方形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上,他发现直接画图比较困难,于是他先画了一个正方形HIJK,是的H,I,位于射线BC上,K位于射线BA上,而不需要求J必须位于AC 上.这是他发现可以将正方形HIJK通过放大或缩小得到满足要求的正方形DEFG.阅读以上材料,回答小明接下来研究的以下问题:(1)如图2,给定锐角三角形ABC,画出所有长宽比为2:1的长方形DEFG,使D,E 位于边BC上,F,G分别位于边AC,AB上.(2)已知三角形ABC的面积为36,BC=12,在第(1)问的条件下,求长方形DEFG的面积.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的二次函数y1=x2﹣(m+3)x+m+2,y2=﹣x2+bx+c.(1)求证:方程x2﹣(m+3)x+m+2=0必有实根;(2)若m为整数,y1的图象与x轴有一个交点的横坐标a满足5<a<7,求m的值;(3)在第(2)问的条件下,小明利用函数图象解关于x的不等式y1<y2,正确解得该不等式的解集为3<x<4,求y2的解析式.24.过正方形ABCD的顶点A任作一条直线l(l不过点B,C,D),过点B,C,D作l 的垂线段BF,CG,DH.(1)如图1,若直线l过线段BC的中点E,则BF:CG:DH=__________.(2)如图2,若直线l与线段BC相交于点E,则BF,CG,DH满足等量关系式__________,请证明你的猜想;(3)如果直线l与线段CB的延长线相交,直接写出BF,CG,DH满足的等量关系式__________,在直线l旋转一周的过程中(l不过点B,C,D),直接写出y=的取值范围__________.25.定义:在平面直角坐标系xOy中,给定两点M(x M,y M),N(x N,y N),对于给定的实数a,b,作a|x M﹣x N|+b|y M﹣y N|为M,N的权重为a,b的直角距离,记为d xy(M,N),例如:d2,3((1,0),(4,7))=2|1﹣4|+3|0﹣7|=27.特别地,权重为1、1的直角距离,又称为等权重距离,则记为d(M,N),例如:d ((1,0),(4,7))=|1﹣4|+|0﹣7|=10.根据以上定义,回答以下问题:(1)d((0,0),(﹣3,﹣2))=__________,d3,2((0,0),(﹣1,2))=__________.(2)P为直线y=2x+4上一动点,求OP的等权重距离的最小值及此时P点的坐标;(3)P为直线y=2x+4上一动点,Q为以O为圆心的单位圆上的动点,则d(P,Q)的最小值是__________,d3,2(P,Q)的最小值是__________.-学年人大附中九年级(上)月考数学试卷(12月份)一、选择题(本题共32分,每小题4分)1.反比例函数y=的图象不一定经过点( )A.(﹣3,1) B.(﹣3,﹣1)C.(1,3)D.(,2)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特点即可得出结论.【解答】解:A、∵(﹣3)×1=﹣3≠3,∴函数图象不过此点,故本选项正确;B、∵(﹣3)×(﹣1)=3,∴函数图象过此点,故本选项错误;C、∵3×1=3,∴函数图象过此点,故本选项错误;D、∵×2=3,∴函数图象不过此点,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.下列图形中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.随机抛掷一枚质地均匀的硬币两枚,两次都是正面朝上的概率是( ) A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【解答】解:共4种情况,正面都朝上的情况数有1种,所以概率是.故选B.【点评】本题考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.4.如图,⊙O的直径AB=8,弦DE经过OB的中点C且DE⊥OB,则弦DE的长为( )A.3B.2C.4D.6【考点】垂径定理;勾股定理.【分析】连接OD,先求出OD及OC的长,再由勾股定理求出DE的长即可.【解答】解:连接OD,∵⊙O的直径AB=8,弦DE经过OB的中点C且DE⊥OB,∴OD=4,OC=2,DE=2CD.∵CD===2,∴DE=2CD=4.故选:C.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分弦并且平分弦所对的弧是解题的关键.5.如图,正△ABC的边长为3,以A为圆心,AB为半径作弧,则图中阴影部分的面积是( )A.B.C.﹣ D.3【考点】扇形面积的计算.【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=求出扇形的面积,求差得到答案.【解答】解:∵正△ABC的边长为3,∴正△ABC的面积为×3×=,扇形ABC的面积为=,则图中阴影部分的面积是﹣.故选:C.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=是解题的关键.6.如图,四边形ABCD中,AB=AC=AD,∠CBD=23°,则∠CAD为( )A.47° B.46°C.45°D.44°【考点】圆周角定理.【分析】先根据四边形ABCD中,AB=AC=AD可知,B、C、D三点在以A为圆心,AD 为半径的圆上,再由圆周角定理即可得出结论.【解答】解:∵四边形ABCD中,AB=AC=AD,∴B、C、D三点在以A为圆心,AD为半径的圆上.∵∠CBD=23°,∴∠CAD=2∠CBD=46°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.如图,AB为⊙O的一条固定直径,自左半圆上一点C,作弦CD⊥AB,∠OCD的平分线交⊙O于点E,当点C在左半圆(不包括A,B两点)上移动时,关于点E的说法:①到CD的距离始终不变;②位置始终不变;③始终平分;④位置随点C的移动而移动,正确的是( )A.①②B.②③C.②D.④【考点】圆周角定理;垂径定理.【分析】连接OE,由CE平分∠OCD,得到∠1=∠2,而∠1=∠E,所以有OE∥CD,则OE⊥AB,即可得到OE平分半圆AEB.【解答】解:连OE,如图,∵CE平分∠OCD,∴∠1=∠2,而OC=OE,有∠1=∠E,∴∠2=∠E,∴OE∥CD,∵点O到CD的距离在变,∴点E到CD的距离发生变;故①错误;又∵弦CD⊥AB,∴OE⊥AB,∴OE平分半圆AEB,即点E是半圆的中点,∴点E位置始终不变;故②正确.故选C.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了垂径定理的推论.8.如图,正△ABC的边长为3,点N在AC边上且AN:NC=1:2,三角形边上的动点M 从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,y=MN2,则y关于x的函数图象大致为( )A.B.C.D.【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1.∴当点M位于点A处时,x=0,y=1.①当动点M从A点出发到AM=0.5的过程中,y随x的增大而减小,故排除D;②当动点M到达C点时,x=6,y=4,即此时y的值与点M在点A处时的值不相等.故排除A、C.故选:B.【点评】本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况.二、填空题(本题共16分,每小题4分)9.如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是4.【考点】平行线分线段成比例.【专题】计算题.【分析】根据平行线分线段成比例定理得到=,即=,然后利用比例性质求AE.【解答】解:∵DE∥BC,∴=,即=∴AE=4.故答案为4.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.10.在Rt△ABC中,∠C=90°,AC=5,AB=13,则tanA的值是.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得BC的长,根据正切函数的定义,可得答案.【解答】解:在Rt△ABC中,∠C=90°,AC=5,AB=13,由勾股定理,得BC===12,tanA==,故答案为:.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.11.如图,用一个交叉卡钳(OA=OB,OC=OD)测量零件的内孔直径AB,若OC:OA=1:2,且量的CD=12mm,则零件的内孔直径AB是24mm.【考点】相似三角形的应用.【专题】计算题.【分析】由于OC:OA=OD:OB=1:2,加上∠COD=∠AOB,则可判断△COD∽△AOB,然后利用相似比开始计算出AB.【解答】解:∵OC:OA=OD:OB=1:2,而∠COD=∠AOB,∴△COD∽△AOB,∴==,∴AB=2CD=2×12mm=24mm.故答案为24.【点评】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度或宽度.12.如图,△ABC中,AB=AC=1,∠ABC=72°,BB1平分∠ABC交AC于B1,过B1做B1B2∥BC交AB于B2,作B2B3平分∠AB2B1交AC于B3,过B3作B3B4∥BC交AB于B4,…则线段B1B2的长度为,线段B2n﹣1B2n的长度为()n﹣2.【考点】相似三角形的判定与性质.【分析】因为过B1作B1B2∥BC交AB于B2,于是得到△AB2B1∽△ABC,得到对应边对应成比例,因为AB=AC=m,∠ABC=72°,BB1平分∠ABC交AC于B1,所以△BCB1和△B2B1B是等腰三角形,根据余弦定理,可求出BC的长,根据相似三角形对应线段成比例,可求出B2B1的长,同理,可求得线段B2n﹣1B2n的长度.【解答】解:∵AB=AC=1,∠ABC=72°,BB1平分∠ABC交AC于B1,∴△BCB1和△B2B1B是等腰三角形,∵过B1作B1B2∥BC交AB于B2,∴=,∵BC2=AB2+AC2﹣2AB•ACcos36°,∴BC=,设B2B1是x,则B2B是x.∴=,∴x=即:B1B2=.同理可求出B2n﹣1B2n=()n﹣2.故答案为:,()n﹣2.【点评】本题考查相似三角形的判定和性质,关键是知道相似三角形的对应线段成比例,以及余弦定理求出BC的长,找出规律求出值.三、解答题(本题共30分,每小题5分)13.用配方法解方程:.【考点】解一元二次方程-配方法.【分析】先把常数项﹣3移项后;然后等上的两边同时乘以2把二次项的系数化为1;最后左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:由原方程,得x2﹣2x=3,等上的两边同时乘以2,得x2﹣4x=6,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=10,配方得(x﹣2)2=10.∴,∴,.【点评】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.14.计算:3sin30°﹣cos245°+2tan60°cos30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×﹣×()2+2××=﹣.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.15.如图,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,请找出一条与线段CE相等的线段(以图中已知点的端点),画出这条线段并给出证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】连接BD,则BD=CE,证明△AEC≌△ADB即可.【解答】解:连接BD,则BD=CE;理由:∵△ABC与△ADE都是等腰直角三角形,∴AB=AC,AE=AD,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS),∴BD=CE.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.16.已知m是方程x2﹣x﹣3=0的根,求代数式(1+)•(m﹣3)的值.【考点】分式的化简求值;一元二次方程的解.【分析】先根据分式混合运算的法则把原式进行化简,再根据m是方程x2﹣x﹣3=0的根得出m2=m+3,代入原式进行计算即可.【解答】解:原式=•(m﹣3)=,∵m是方程x2﹣x﹣3=0的根,∴m2﹣m﹣3=0,即m2=m+3,∴原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,半径为5的⊙O中,AB是直径,弦BC=8,OD⊥AB交BC于D,求CD的长及△OCD的面积.【考点】垂径定理;勾股定理.【分析】过点O作OE⊥CD于点E,根据相似三角形的判定定理可得出△ODE∽△BOE,再由相似三角形的对应边成比例可求出OD的长,由勾股定理得出DE的长,进而得出CD 的长,根据三角形的面积公式即可得出结论.【解答】解:过点O作OE⊥CD于点E,∵BC=8,∴CE=BE=4,OE=3.∵OD⊥AB,∴∠BEO=∠OED=90°,∵∠ODE+∠OBE=90°,∠ODE+∠DOE=90°,∴∠DOE=∠OBE,∴△ODE∽△BDO,∴=,即=,解得DE=,∴CD=CE﹣DE=4﹣=,∴S△OCD=CD•OE=××3=.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.列方程或方程组解应用题:某酒店有三人间、双人间的客房,三人间每天每间150元,双人间每天每间140元,为了吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满且一天共花去住宿费1510元,则该旅行团住了三人间和双人间客房各多少间?【考点】二元一次方程组的应用.【分析】本题中的等量关系有两个:三人间所住人数+二人间所住人数=50人;三人间费用×0.5+二人间费用×0.5=1510,据此可列方程组求解.【解答】解:设三人间和双人间客房各x间、y间,根据题意,得,解得.答:该旅行团住了三人间和双人间客房各8间、13间.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.四、解答题(本题共20分,每小题5分)19.如图,直线y=﹣2x+1分别交x轴,y轴于点A,B,交反比例函数y=的图象于点C,CB:BA=2:1.(1)求反比例函数y=的解析式;(2)若点P在y轴上且以点B,C,P为顶点的三角形与△AOB相似,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由直线的解析式求得A、B的坐标,进而根据CB:BA=2:1求得C的纵坐标,将C坐标代入直线y=﹣2x+1中求出横坐标,代入反比例函数y=,确定出反比例解析式;(2)分两种情况分别讨论即可求得.【解答】解:(1)∵直线y=﹣2x+1分别交x轴,y轴于点A,B,∴A(,0),B(0,1),∵CB:BA=2:1,∴=,作CD⊥x轴于D,则CD∥OB,∴△ACD∽△ABO,∴=,∴=,∴CD=3,把y=3代入y=﹣2x+1,解得x=﹣1,∴C(﹣1,3),代入y=得,3=,∴k=﹣3,∴反比例函数y=的解析式为y=﹣;(2)当△CPB∽△AOB时,则=,即=,∴BP=2,∴OP=OB+BP=1+2=3,∴P(0,3);当△PCB∽△AOB时,则=,∵OA=,OB=1,∴AB==,∵CB:BA=2:1,∴CB=,∴=,∴PB=,∴OP=PB+0B=+1=,∴P(0,);故P的坐标为(0,3)或(0,).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,一次函数与坐标轴的交点,三角形相似的性质,熟练掌握待定系数法是解本题的关键.20.如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.(1)求证:ED是⊙O的切线;(2)如果CF=1,CP=2,sinA=,求⊙O的直径BC.【考点】切线的判定;相似三角形的判定与性质;解直角三角形.【专题】几何综合题.【分析】(1)连接OD,证OD⊥DE即可.易证∠ADB=90°,又点E为AB的中点,得DE=EB.根据等腰三角形性质可证∠ODE=∠OBE=90°,得证;(2)可证∠A=∠DBC,所以要求BC需先求DC.结合已知条件,证明△PDC与△FPC相似可求CD,得解.【解答】(1)证明:连接OD.∵BC为直径,∴△BDC为直角三角形.在Rt△ADB中,E为AB中点,∴BE=DE,∴∠EBD=∠EDB.又∵OB=OD,∴∠OBD=∠ODB,∵∠OBD+∠ABD=90°,∴∠ODB+∠EDB=90°.∴ED是⊙O的切线.(2)解:∵PF⊥BC,∴∠FPC=90°﹣∠BCP(直角三角形的两个锐角互余).∵∠PDC=90°﹣∠PDB(直径所对的圆周角是直角),∠PDB=∠BCP(同弧所对的圆周角相等),∴∠FPC=∠PDC(等量代换).又∵∠PCF是公共角,∴△PCF∽△DCP.∴=,则PC2=CF•CD(相似三角形的对应边成比例).∵CF=1,CP=2,∴CD=4.可知sin∠DBC=sinA=,∴=,即=,∴直径BC=5.【点评】此题考查了切线的判定、相似三角形的判定和性质、三角函数等知识点,综合性较强,难度偏上.21.据报道,历经一年半的调查研究,PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0035千克污染物.以下是相关的统计图、表:(2)请你根据“年全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知年机动车保有量已突破520万辆,请你通过计算,估计年一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体;统计表;列表法与树状图法.【分析】(1)用单位1减去其他原因所占的百分比即可确定答案;(2)用重度污染和严重污染的天数除以所有的天数即可确定出现的频率;(3)用样本估计总体即可.【解答】解:(1)31.1;(2)≈0.16.该年度重度污染和严重污染出现的频率共是0.16.(3)=7 280 0,估计年一天中出行超过20千米的机动车至少要向大气里排放72800千克污染物.【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是能够从统计图中整理出进一步解题的有关信息.22.如图1,给定锐角三角形ABC,小明希望画正方形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上,他发现直接画图比较困难,于是他先画了一个正方形HIJK,是的H,I,位于射线BC上,K位于射线BA上,而不需要求J必须位于AC 上.这是他发现可以将正方形HIJK通过放大或缩小得到满足要求的正方形DEFG.阅读以上材料,回答小明接下来研究的以下问题:(1)如图2,给定锐角三角形ABC,画出所有长宽比为2:1的长方形DEFG,使D,E 位于边BC上,F,G分别位于边AC,AB上.(2)已知三角形ABC的面积为36,BC=12,在第(1)问的条件下,求长方形DEFG的面积.【考点】位似变换.【分析】(1)如图2,先画长方形HIJK,使得HI=2HK,并且H,I位于射线BC上,K 位于射线BA上,连结BJ并延长交AC于点F,再将长方形HIJK通过放大可得到满足要求的长方形DEFG;如备用图,先画长方形HIJK,使得HK=2HI,并且H,I位于射线BC 上,K位于射线BA上,连结BJ并延长交AC于点F,再将长方形HIJK通过放大可得到满足要求的长方形DEFG;(2)作△ABC的高AM,交GF于N.由三角形ABC的面积为36,求出AM=6.再设AN=x,由GF∥BC,得出△AGF∽△ABC,根据相似三角形对应高的比等于相似比列出比例式=,由此求出x的值,进而求解即可.【解答】解:(1)如图2与备用图1,长方形DEFG即为所求作的图形;(2)在长方形DEFG中,如果DE=2DG,如备用图2,作△ABC的高AM,交GF于N.∵三角形ABC的面积=BC•AM=×12AM=36,∴AM=6.设AN=x,则MN=6﹣x,DG=MN=6﹣x,DE=GF=2(6﹣x)=12﹣2x.∵GF∥BC,∴△AGF∽△ABC,∴=,∴=,解得x=3,∴DG=6﹣x=3,DE=2DG=6,∴长方形DEFG的面积=6×3=18;在长方形DEFG中,如果DG=2DE,同理求出x=,∴DG=6﹣x=,DE=DG=,∴长方形DEFG的面积=×=.故长方形DEFG的面积为18或.【点评】本题考查了位似变换,相似三角形的判定与性质,根据题意作出符合要求的长方形DEFG是解题的关键.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的二次函数y1=x2﹣(m+3)x+m+2,y2=﹣x2+bx+c.(1)求证:方程x2﹣(m+3)x+m+2=0必有实根;(2)若m为整数,y1的图象与x轴有一个交点的横坐标a满足5<a<7,求m的值;(3)在第(2)问的条件下,小明利用函数图象解关于x的不等式y1<y2,正确解得该不等式的解集为3<x<4,求y2的解析式.【考点】二次函数与不等式(组);抛物线与x轴的交点.【分析】(1)利用根的判别式即可得出结论;(2)根据y1的图象与x轴有一个交点的横坐标a满足5<a<7可知当x=5时,y1<0,当x=7时,y1>0求出m的取值范围,再由m为整数即可求出m的值;(3)先求出当x=3,x=4时y1的值,再由y2也经过此点即可得出结论.【解答】解:(1)∵△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,∴方程x2﹣(m+3)x+m+2=0必有实根;(2)∵y1的图象与x轴有一个交点的横坐标a满足5<a<7,且抛物线开口向上,∴f(5)<0,f(7)>0,∴,解得3<m<5.∵m为整数,∴m=4;(3)∵由(2)知,m=4,∴关于x的二次函数y1=x2﹣(m+3)x+m+2可化为y1=x2﹣7x+6,∴当x=3时,y1=﹣6;当x=4时,y1=﹣6.∵二次函数y2=﹣x2+bx+c经过(3,﹣6),(4,﹣6),∴,解得,∴y2的解析式为y2=﹣x2+25x﹣72.【点评】本题考查的是二次函数与不等式组,能根据题意画出图形,利用数形结合求解是解答此题的关键.24.过正方形ABCD的顶点A任作一条直线l(l不过点B,C,D),过点B,C,D作l 的垂线段BF,CG,DH.(1)如图1,若直线l过线段BC的中点E,则BF:CG:DH=1:1:2.(2)如图2,若直线l与线段BC相交于点E,则BF,CG,DH满足等量关系式DH=BF+CG,请证明你的猜想;(3)如果直线l与线段CB的延长线相交,直接写出BF,CG,DH满足的等量关系式BF=DH+CG,在直线l旋转一周的过程中(l不过点B,C,D),直接写出y=的取值范围1<y≤2.【考点】四边形综合题.【分析】(1)如图1所示:设AB=2a,根据题意得:BE=a,由勾股定理可求得AE=a,由面积法可求得BF和HD的长度,然后再证明△BFE≌△CGE,得到BF=CG,从而可求得答案;(2)如图2所示:先根据同角的余角相等,证明∠ADH=∠FBE=∠GCE,由锐角三角函数的定义可得到,然后利用比例的性质对比例式进行变形可证得:,由AD=BC,于是可得到DH=BF+CG;(3)如图3所示:先证明∠ABF=∠HDE=∠GCE,由锐角三角函数的定义可得到,然后利用比例的性质对比例式进行变形可证得,由AB=DC于是得到BF=DH+CG;如图4、5所示可求得BF+CG+DH的最大值为2BD,最小值为BD,从而可求得y的范围.【解答】解:(1)如图1所示:连接ED.设AB=2a,根据题意得:BE=a.在Rt△ABE中,AE=,∵,即:,∴BF=.在△BFE和△CGE中,,∴△BFE≌△CGE.∴BF=CG.∵,即,∴HD=.∴BF:CG:DH=1:1:2.(2)DH=BF+CG.理由:如图2所示:∵∠ADH+∠DAH=90°,∠BAH+∠DAH=90°,∴∠ADH=∠BAH.同理∠FBE=∠BAH.∴∠ADH=∠FBE.∵BF⊥AE,GC⊥AE,∴BF∥GC.∴∠FBE=∠GCE.∴∠ADH=∠FBE=∠GCE.∴.由可知:,∴,即.∴.∴.∵AD=BC,∴DH=BF+CG.(3)BF=DH+CG.理由:如图3所示:根据题意可知:∠ABF=∠HDE=∠GCE.∴.∴.∴,即.∴.∴.∵AB=DC,∴BF=DH+CG.如图4所示:当直线经过点C时,BF+DH+CG有最小值,最小值=BD,∴y=1.如图5所示:BF+DH+CG有最大值,最小值=2AC=2BD,∴y=2.∵直线l不经过点B、C、D,∴y的取值范围是:1<y≤2.【点评】本题主要考查的是正方形的性质、锐角三角函数的定义、比例的性质、全等三角形的性质和判定,利用比例的性质对比例式进行适当的变形是解题的关键.25.定义:在平面直角坐标系xOy中,给定两点M(x M,y M),N(x N,y N),对于给定的实数a,b,作a|x M﹣x N|+b|y M﹣y N|为M,N的权重为a,b的直角距离,记为d xy(M,N),例如:d2,3((1,0),(4,7))=2|1﹣4|+3|0﹣7|=27.特别地,权重为1、1的直角距离,又称为等权重距离,则记为d(M,N),例如:d ((1,0),(4,7))=|1﹣4|+|0﹣7|=10.根据以上定义,回答以下问题:(1)d((0,0),(﹣3,﹣2))=5,d3,2((0,0),(﹣1,2))=7.(2)P为直线y=2x+4上一动点,求OP的等权重距离的最小值及此时P点的坐标;(3)P为直线y=2x+4上一动点,Q为以O为圆心的单位圆上的动点,则d(P,Q)的最小值是﹣,d3,2(P,Q)的最小值是﹣.【考点】一次函数综合题.【分析】(1)根据给定的实数a,b,作a|x M﹣x N|+b|y M﹣y N|为M,N的权重为a,b的直角距离,记为d xy(M,N),可得答案;(2)根据垂线段最短,可得OP与AB的关系,根据解方程组,可得P点坐标,根据权重为1、1的直角距离,又称为等权重距离,则记为d(M,N),可得答案;(3)根据解方程组,可得OP与等圆的交点Q,根据权重为1、1的直角距离,又称为等权重距离,则记为d(M,N),可得答案,根据a|x M﹣x N|+b|y M﹣y N|为M,N的权重为a,b的直角距离,记为d xy(M,N),可得答案.【解答】解:(1)d((0,0),(﹣3,﹣2))=|0+3|+|0+2|=5,d3,2((0,0),(﹣1,2))=3|0﹣(﹣1)|+2|0﹣2|=7,故答案为:5,7;。
2019-2020学年度第一学期初三年级数学练习 1一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1. 二次函数2(1)3y x =-+图象的顶点坐标是( ) A. (1,3)B. (1,3)-C. (1,3)-D. (1,3)--2. 一次函数y= -5x+3的图象不经过的象限是 ( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如图,正方形ABCD 的边长为2,E 是BC 的中点,DF AE ⊥,与AB 交于点F ,则DF 的长为( )A. 5B. 6C. 22D. 34. 下列方程中,有两个不相等的实数根的是 ( ) A. x 2+2=0B. (x ﹣1)2=0C. x 2+2x ﹣1=0D. x 2+x+5=05. 在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量己居于世界前列.2015 年和2017年我国能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x ,依题意,可列方程为 ( )A. ()45.112172.9x -=B. ()45.112172.9x +=C. ()245.11172.9x -=D. ()245.11172.9x +=6. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( ) A. 测量两组对边是否分别相等 B. 测量两条对角线是否互相垂直平分 C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等7. 已知二次函数()20y ax bx c a =++≠的图象如图所示,以下结论正确的是( )A. 0a >,函数值y 有最大值B. 该函数的图象关于直线1x =对称C. 当3x =-和1x =时函数值y 都等于0D. 当2y =-时,自变量x 的值等于08. 运算能力是一项重要的数学能力,王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中5位同学的测试成绩,(气泡圆的圆心横,纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高);以下说法中: ①甲同学的第一次测试成绩高于乙同学的第一次测试成绩; ②5位同学中,第一次测试成绩比第二次测试成绩高的有2人; ③五位同学的前两次测试成绩之和均超过了100 分; ④同学的第三次测试成绩高于乙同学. 其中合理的是 ( )A. ①③B. ③④C. ②③D. ①④二、填空题(本题共16分,每小题2分)9. 将二次函数y=2x 2向上平移1个单位,得到的抛物线的解析式是__________. 10. 如图,在ABCD 中,BC=7,CD=4,BE 平分∠ABC 交AD 于点E ,则DE 的长为__________.11. 若一元二次方程(k﹣1)x2+3x+k2﹣1=0有一个解为x=0,则k=_____.12. 如图,平面直角坐标系xOy中,已知点A(1,3),B(4,3),若一次函数y=x+b与线段AB有公共点,则b的取值范围是__________.13. 若m是方程x2 +x-3= 0的一个根,则代数式(m+1)2 +(m+1)(m-1)的值为__________.14. 如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=80°,则∠ECF的度数是________.15. 已知二次函数y=x2+ bx的最小值为-4,若关于x的方程x2+bx-2m=0有实数根,则m的取值范围__________.16. 如图,正方形ABCD的边长为2,点E是射线AC上一动点(不与A,C重合),点F在正方形ABCD的外角平分线CM上,且CF=AE,连接BE,EF,BF下列说法:①的值不隨点E的运动而改变②当B,E,F三点共线时,∠CBE=22.5°;③当△BEF是直角三角形时,∠CBE=67.5°;④点E在线段AC上运动时,点C到直线EF的距离的最大值为1;其中正确的是__________(填序号).三、解答题 (本题共60分,第17-19 越,每小题5分,第20-23 趣,每小题6分,第2426趣,每小题7分)17. 解方程:2410x x --=.18. 在平面直角坐标系xOy 中,二次函数y=-x 2 +bx +c 的对称轴为x=1,且它经过点A(3, 0). (1)求该二次函数的解析式;(2)在坐标系中画出该二次函数的图象(不用列表).19. 如图,四边形ABCD 中,∠ABC=90°,AC= AD , E , F 分别是AC , CD 的中点,连接BE , EF , BF .求证:∠1=∠2.20. 己知关于x 的一元二次方程mx 2-(m-3)x-3=0(m ≠0). (1)求证:不论m为何值,这个方程都有两个实数根.(2)若此方程的两根均为整数,求正整数m 的值,21. 如图,△ABC 中, AB=BC ,过A 点作BC 的平行线与∠ABC 的平分线交于点D ,连接CD . (1)求证:四边形ABCD 菱形;(2)连接AC 与BD 交于点O ,过点D 作DE ⊥BC 与BC 的延长线交于E 点,连接EO ,若CE=3, DE=4,求OE 的长.22. 平面直角坐标系xOy 中,直线y=x+4与直线y=kx 交于点A ,与y 轴交于点B . (1)求点B 的坐标;(2)横,纵坐标都是整数的点叫做整点,记△AOB 内部(不含边界)的区域为w . ①当12k =-时, 根据函数图象,求区域W 中的整点个数; ②若区域W 中恰好没有整点,结合图象,直接写出k 的取值范围.23. 某学校七,八两个年级各有学生300人,为了普及冬奥知识,学校在七,八年级举行了一次冬奧知识竞赛,为了解这两个年级学生的冬奥知识竞赛成绩(百分制),分别从两个年级各随机抽取20名学生的成绩,进行整理,描述和分析,下面给出了部分信息; a .七、八年级的样本成绩分布如下:b .七年级成绩在60-69 - - 组的是:61, 62,63, 6S , 66,68,69 .c .七,八年级成绩的平均数、中位数、优秀率,合格率如下:根据以上信息,回答下列问题: (1)写出表中m 的值;(2)小军成绩在此次抽样之中,与他所在年级的抽样相比,小军的成绩高于平均数,却排在了后十名,则小军是年级的学生(选填“七”或“八”);(3)可以推断出年级的竞赛成绩更好,理由是(至少从两个不同的角度说明);(4)根据样本数据,可以估计八年级全体学生的优秀人数为人.24. 在平面直角坐标系xOy中,抛物线y= ax2- 4ax+ 3a-3的顶点为点A.(1)求点A的坐标(用含a的代数式表示)(2)点B的坐标为(-1,2),将线OB沿x轴向右平移5个单位得到O'B'①直接写出点O'和B'的坐标②若抛物线y= ax2 -4ax+ 3a-3与四边形BOO'B'恰有4个公共点,结合函数图象,求a的取值范围.25. 如图1,点B,C分别是∠MAN的边AM,AN上的点,满足AB=BC,点P为射线AB上的动点,点D为点B关于直找AC的对称点,连接PD交AC于点E;交BC干点F.(1)图1中补全图形.(2)求证:∠ABE=∠EFC.(3)当点P运动到满足PD⊥BE的位置时,在射线AC上取点Q,使得AB=BQ,此时DECQ是否是一个定值,若是请求出该定值,者不是在请说明理由.26. 在平面直角坐标系xOy中,对于图形G和图形M,它们关于原点O的“中位形”定义如下,图形G上的任意一点P,图形M上的任意一点Q,作△OPQ平行于PQ的中位线,由所有这样的中位线构成的图形,叫图形G和图形M关于原点O的“中位形”.已知直线y=12x+b分别与x轴,y轴交于A、B,图形S是中心为坐标原点,且边长为2的正方形.(1)如图1,当b=2时,点A和点B关于原点O的“中位形”的长度是(请直接写出答案);(2)如图2,若点A和点B关于原点O的“中位形”与图形S有公共点,求b的取值范围;(3)如图3,当b=﹣6时,图形S沿直线y=x平移得到图形T,若图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,请直接写出图形T的中心的横坐标t的取值范围.。
2019-2020学年北京人大附中翠微分校九年级(上)开学数学试卷一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个1.(3分)一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,2,﹣3 2.(3分)如图,▱ABCD中,AE⊥CD于点E,若∠EAD=35°,则∠B的度数为()A.35°B.55C.65°D.125°3.(3分)用配方法解方程x2+4x+1=0时,原方程应变形为()A.(x+2)2=3B.(x﹣2)2=3C.(x+2)2=5D.(x﹣2)2=5 4.(3分)如图所示,△ABP是由△ACE绕A点旋转得到的,若∠BAP=40°,∠B=30°,则∠E的度数为()A.70°B.100°C.110°D.130°5.(3分)二次函数y=﹣(x+1)2﹣2的顶点坐标是()A.(1.﹣2)B.(﹣1.﹣2 )C.(1.2)D.(﹣1.2)6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(3分)近几年,手机支付用户规模增长迅速,据统计2015年手机支付用户约为3.58亿人,连续两年增长后,2017年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x,则根据题意可以列出方程为()A.3.58(1+x)=5.27B.3.58(1+2x)=5.27C.3.58(1+x)2=5.27D.3.58(1﹣x)2=5.278.(3分)如图,正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面四个结论:①a<0;②b<0;③不等式ax>x+b的解集是x<﹣2;④当x>0时,y1y2>0.其中正确的是()A.①②B.②③C.①④D.①③二、填空题(本题共16分,每小题2分)9.(2分)已知点P(2,﹣3)关于原点对称的点的坐标是.10.(2分)将抛物线y=﹣x2向右平移1个单位,得到的抛物线的解析式是.11.(2分)若关于x的方程ax2+2bx+1=0有两个相等的实数根,请写出一组符合条件的a 和b的值:a=,b=.12.(2分)在四边形ABCD中,对角线AC,BD相交于点O.如果AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,这个条件可以是.(写出一种情况即可)13.(2分)在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1 y2 .(用“<”,“=”或“>”号连接)14.(2分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得∠B=60°,对角线AC的长为30cm,接着活动学具成为图2所示的正方形,则图2中对角线AC的长为cm.15.(2分)如图,在平面直角坐标系xOy中,正方形OABC的边长为2,若直线y=k(x ﹣1)与线段BC有公共点,则k的取值范围是.16.(2分)如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).三、解答题(本题共60分,第17~19题,毎小题5分,第20~24题,每小题5分第25题7分,第26题8分)17.(5分)解方程:x(x﹣3)=x+518.(5分)如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.19.(5分)已知关于x的一元二次方程x2﹣4mx+2m2=0(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式2(m﹣1)2﹣3的值.20.(6分)已知直线l1:y=x+b过点A(3,0),直线l2:y=﹣2x与直线l1交于点B.(1)求直线l1的解析式和点B的坐标;(2)如果抛物线C的顶点为B,且它还过点A,求抛物线C的解析式21.(6分)如图1,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)如图2,若∠ADC=60°,AD=4,求AE的长.22.(6分)“垂直”是平面几何中的一个重要概念,也是生活中必不可缺的重要元素问题1:下面是“过直线外一点作已知直线的垂线”的一个作图过程.已知:直线1和直线外的一点P求作:过点P且与直线1垂直的直线PQ,垂足为点Q.作法:①以点P为圆心,适当长度为半径作弧,交直线l于A,B两点;②连结P A,PB,作∠APB的平分线,交直线l于点Q;③作直线PQ,则直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)判断PQ⊥l的数学依据是.问题2:利用垂直,可以作出一些特殊的几何图形已知:线段AB.求作:等腰直角△ABC,使AB=AC,∠BAC=90°(3)使用直尺和圆规,作出问题2中要求的图形(不写作法,保留作图痕迹)23.(6分)对于一些比较复杂的方程,可以利用函数图象来研究方程的根.问题:探究方程2x(|x|﹣2)=1的实数根的情况.下面是小董同学的探究过程,请帮她补全:(1)设函数y=2x(|x|﹣2),这个函数的图象与直线y=1的交点的横坐标就是方程2x (|x|﹣2)=1的实数根.(2)注意到函数解析式中含有绝对值,所以可得:当x≤0时,y=﹣2x2﹣4x;当x>0时,y=;(3)在下图的坐标系中,已经画出了当x≤0时的函数图象,请根据(2)中的解析式,通过描点,连线,画出当x>0时的函数图象.(4)画直线y=1,由此可知2x(|x|﹣2)=1的实数根有个.(5)深入探究:若关于x的方程x(|x|﹣2)=有三个不相等的实数根,且这三个实数根的和为非负数,则m的取值范围是.24.(6分)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3(a≠0)与x轴交于A,B 两点(点A在点B左侧)(1)求抛物线的对称轴;(2)若AB=4,求该抛物线的解析式;(3)若AB≤4,直接写出a的取值范围.25.(7分)如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,将线段AD绕点D顺时针旋转90°,得到线段DE,连接CE,过点D作CE的垂线,与CE交于点F,与线段AB交于点G.(1)依题意补全图形;(2)设∠ABC=α,求∠CDF的度数(用含α的代数式表示);(3)探究DG,DF和CE之间的等量关系,并给出证明.26.(8分)对于平面直角坐标系xOy中的点A和点P,若将点P绕点A逆时针旋转90°后得到点Q,则称点Q为点P关于点A的“垂链点”,图1为点P关于点A的“垂链点”Q的示意图.(1)已知点A的坐标为(0,0),点P关于点A的“垂链点”为点Q;①若点P的坐标为(2,0),则点Q的坐标为.②若点Q的坐标为(﹣2,1),则点P的坐标为.(2)如图2,已知点C的坐标为(1,0),点D在直线y=x+1上,若点D关于点C 的“垂链点”在坐标轴上,试求出点D的坐标.(3)如图3,已知图形G是端点为(1,0)和(0,﹣2)的线段,图形H是以点O为中心,各边分别与坐标轴平行的边长为6的正方形,点M为图形G上的动点,点N为图形H上的动点,若存在点T(0,t),使得点M关于点T的“垂链点”恰为点N,请直接写出t的取值范围.2019-2020学年北京人大附中翠微分校九年级(上)开学数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个1.【解答】解:一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是1,﹣2,﹣3.故选:A.2.【解答】解:∵∠EAD=35°,AE⊥CD,∴∠D=55°,∵▱ABCD,∴∠B=55°,故选:B.3.【解答】解:x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,故选:A.4.【解答】解:∵∠BAP=40°,∠B=30°,∴∠APB=180°﹣40°﹣30°=110°,∵△ABP是由△ACE绕A点旋转得到的,∴∠E=∠APB=110°,故选:C.5.【解答】解:∵抛物线解析式为y=﹣(x+1)2﹣2,∴二次函数图象的顶点坐标是(﹣1,﹣2).故选:B.6.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:A.7.【解答】解:设这两年手机支付用户的年平均增长率为x,依题意,得3.58(1+x)2=5.27.故选:C.8.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:不等式ax>x+b的解集是x<﹣2,③正确;当x>0时,y1y2<0,④错误;故选:D.二、填空题(本题共16分,每小题2分)9.【解答】解:点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).10.【解答】解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位所得对应点的坐标为(1,0),所以平移后的抛物线的解析式是y=﹣(x﹣1)2.故答案为y=﹣(x﹣1)2.11.【解答】解:根据题意得△=(2b)2﹣4a=0,即b2=a,令b=1,a=1.故答案为1,1.12.【解答】解:∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形是平行四边形可知四边形ABCD为平行四边形,故答案为:AB=CD(或AD∥BC等,答案不唯一).13.【解答】解:由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y轴,∴当x>0时,y随x的增大而增大,∵﹣4<x1<﹣2,0<x2<2,∴2<﹣x1<4,∴y1>y2.14.【解答】解:如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=30,∴AB=BC=15,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=15,故答案为:1515.【解答】解:∵正方形OABC的边长为2,∴B(2,2),C(0,2).把B(2,2)代入y=k(x﹣1),得2=k(2﹣1),此时k=2.把C(0,2)代入y=k(x﹣1),得2=k(0﹣1),此时k=﹣2.∴k的取值范围是k≤﹣2或k≥2.故答案是:k≤﹣2或k≥2.16.【解答】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;所有点中,只有点D到A距离为2个单位,故③正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.故答案为:①②③.三、解答题(本题共60分,第17~19题,毎小题5分,第20~24题,每小题5分第25题7分,第26题8分)17.【解答】解:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1.18.【解答】证明:∵E,F分别是BD,CD的中点,∴EF∥BC,∵AB=AD,∴∠ADB=∠ABD,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠DBC,∴AD∥BC,∴AD∥EF.19.【解答】(1)证明:△=(4m)2﹣4•2m2=8m2≥0,所以不论m为何值,该方程总有两个实数根;(2)解:把x=1代入方程得1﹣4m+2m2=0,则2m2﹣4m=﹣1,所以2(m﹣1)2﹣3=2m2﹣4m+2﹣3=﹣1+2﹣3=﹣2.20.【解答】解:(1)∵直线l1:y=x+b过点A(3,0),∴3+b=0,解得b=﹣3,∴直线l1的解析式为y=x﹣3;解得∴点B的坐标为(1,﹣2);(2)设抛物线C的解析式为y=a(x﹣1)2﹣2,∵抛物线C的顶点为B,且它还过点A,∴4a﹣2=0,解得a=,∴抛物线C的解析式为y=(x﹣1)2﹣2.21.【解答】证明:(1)∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是平行四边形,∴DC=AB.∵OE=CD,∴OE=AB.∴平行四边形AEBO是矩形,∴∠BOA=90°.∴AC⊥BD.∴平行四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∴AD=CD=4,AC⊥BD,BO=DO,AO=CO,∠ADO=30°,∴AO=2,DO=AO=2=BO,∴四边形OBEA是平行四边形,∴AE=OB=222.【解答】解:问题1:(1)如图,PQ为所作;(2)∵P A=PB,∴△P AB为等腰三角形,∵PQ平分∠APB,∴PQ⊥AB;故答案为等腰三角形的三线合一;问题2:(3)如图2,△ABC为所作.23.【解答】解:(1)函数y=2x(|x|﹣2)的图象与直线y=1的交点的横坐标就是方程2x (|x|﹣2)=1的实数根.(2)当x>0时,y=2x(|x|﹣2)=2x(x﹣2)=2x2﹣4x,故答案为﹣2x2﹣4x;(3)画出函数的图象如图:(4)由图象可知,直线y=1与函数图象有3个交点,所以,2x(|x|﹣2)=1的实数根有3个,故答案为3.(5)由图象可知:直线y=在x轴的上方(≥0),与函数y=x(|x|﹣2)的交点的横坐标x1<x2<0<x3,且x1+x2=﹣2,x2≥2,∴x1+x2+x3≥0,∴m≥0,∴关于x的方程x(|x|﹣2)=有三个不相等的实数根,且这三个实数根的和为非负数,则m的取值范围是m≥0,故答案为m≥0.24.【解答】解:(1)函数的对称轴为:x=﹣=﹣=1;(2)AB=4,函数对称轴为:x=1,则点A坐标为(﹣1,0),将点A的坐标代入抛物线表达式得:0=a+2a﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3;(3)函数对称轴为:x=1,设AB=2m≤4,则点A(1﹣m,0),同理将点A的坐标代入抛物线表达式并整理得:,而0<m≤2,即:﹣1≤≤8,解得:a≤﹣3或a≥.25.【解答】解:(1)图形如图所示.(2)∵∠BAC=90°,BD=CD,∴AD=DB=DC,∴DBA=∠DAB=α,∴∠ADC=∠DBA+∠DAB=2α,∵DA⊥DC,∴∠ADE=90°,∴∠CDE=90°﹣2α,∵DE=DA=DC,DF⊥EC,∴∠CDF=∠EDF=∠CDF=45°﹣α.(3)结论:2(DF﹣DG)=EC.理由:如图,作BH⊥FG交FG于H.∵∠H=90°,∴∠DBH+∠BDH=90°,∵∠BDH=45°﹣α,∴∠DBH=45°+α,∵∠ABC=α,∴∠HBG=45°,∴∠HBG=∠BGH=45°,∴BH=HG,∵∠H=∠DFC=90°,BD=DC,∠BDH=∠CDF,∴△BDH≌△CDF(ASA),∴CF=BH,DF=DH,∵DC=DE,DF⊥EC,∴CF=EF,EC=2CF,∴DF﹣DG=DH﹣DG=HG=BH=CF,∴2(DF﹣DG)=EC.26.【解答】解:(1)A的坐标为(0,0),即点A是原点,根据旋转的性质得:①点Q(0,2),点P(1,2),故答案为:(0,2),(1,2);(2)①当点D在第一象限时,则点D关于点C的“垂链点”在x轴上,点CD⊥x轴,故点D(1,);②当点D在第二象限时,如下图:设点D(m,m+1),点D′(0,n),点D的“垂链点”D′在y轴上,过点D作DH⊥x轴于点H,∵∠DCH+∠HDC=90°,∠OCD′+∠DCH=90°,∴∠HDC=∠OCD′,∵∠DHC=∠COD′=90°,DC=D′C,∴△DHC≌△COD′(AAS),则DH=OC,即:m+1=1,解得:m=0,故点D(0,1),综上,点D(0,1)或(1,);(3)图形G所在直线的表达式为:y=2x﹣2,设点M(m,2m﹣2),其中0≤m≤1,①当点T在y=﹣3下方时,TN与正方形不相交,故不存在“垂链点”;②点T在y=﹣3和y=﹣2时,存在“垂链点”,即:t=﹣3或﹣2;③当TM与H图形右侧的边相交时,如下图:分别过点M、N作y轴的垂线交于点H、G,同理可证△NGT≌△THM(AAS)TH=GN,即t﹣(2m﹣2)=3,t=2m+1,而0≤m≤1,则1≤t≤3;④当TN与正方形的上面的一条边相交时,同理可得:t=3﹣m,而0≤m≤1,解得:2≤t≤3,综上,t的取值范围为:1≤t≤3或t=﹣3或﹣2.。
北京人大附中2019-2020学年九年级(上)期末数学试卷含答案解析一.选择题(共8小题)1.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=x2向左平移2个单位后得到新的抛物线的表达式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2 3.在△ABC中,∠C=90°,以点B为圆心,以BC长为半径作圆,点A与该圆的位置关系为()A.点A在圆外B.点A在圆内C.点A在圆上D.无法确定4.抛物线y=2x2+4x﹣4的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=2 D.直线x=﹣2 5.如图,在⊙O中,点C是上一点,若∠AOB=126°,则∠C的度数为()A.127°B.117°C.63°D.54°6.二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c>mx+n 的x的取值范围是()A.﹣3<x<0 B.x<﹣3或x>0 C.x<﹣3 D.0<x<37.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.8.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定二.填空题(共8小题)9.点P(2,﹣3)关于原点的对称点P′的坐标为.10.请写出一个开口向下,且与y轴的交点坐标为(0,2)的抛物线的表达式:.11.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.12.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣2<x1<0,2<x2<4,则y1y2.(用“<”、“=”或“>”号连接)13.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.14.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.15.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值.16.如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=α中,一定成立的是(填序号).三.解答题(共10小题)17.如图,∠DAB=∠EAC,AB=AD,AC=AE.求证:BC=DE.18.已知一抛物线过点(﹣3,0)、(﹣2,﹣6),且对称轴是x=﹣1.求该抛物线的解析式.19.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 2 …y…﹣3 ﹣4 ﹣3 5 …(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.20.下面是小东设计的“作圆的一个内接矩形,并使其对角线的夹角为60°”的尺规作图过程.已知:⊙O求作:矩形ABCD,使得矩形ABCD内接于⊙O,且其对角线AC,BD的夹角为60°.作法:如图①作⊙O的直径AC;②以点A为圆心,AO长为半径画弧,交直线AC上方的圆弧于点B;③连接BO并延长交⊙O于点D;所以四边形ABCD就是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点A,C都在⊙O上,∴OA=OC同理OB=OD∴四边形ABCD是平行四边形∵AC是⊙O的直径,∴∠ABC=90°()(填推理的依据)∴四边形ABCD是矩形∵AB==BO,∴四边形ABCD四所求作的矩形.21.如图,AB是O的直径,弦CD⊥AB于点E,AM是△ACD外角∠DAF的平分线.(1)求证:AM是⊙O的切线.(2)若C是优弧ABD的中点,AD=4,射线CO与AM交于N点,求ON的长.22.生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)23.有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y =(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.x…﹣2 ﹣1 0 1 2 3 4 5 6 …y…m﹣24 ﹣6 0 0 0 6 24 60 …①m=;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.③写出直线y=x﹣1与②中你画出图象的交点的横坐标之和为.24.已知直线l与抛物线y=ax2﹣2x+c(a>0)的一个公共点A恰好在x轴上,点B(4,m)在抛物线上.(Ⅰ)用含a的代数式表示c.(Ⅱ)抛物线在A,B之间的部分(不包含点A,B)记为图形G,请结合函数图象解答:若图形G在直线l下方,求a的取值范围.25.如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q 顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α(0°<α<60°且α≠30°).(1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);②探究线段CE,AC,CQ之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.26.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C 的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N (,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.问题1 问题2 若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,则r的最小值为.若点P关于⊙C的限距点P′不存在,则r的取值范围为.参考答案与试题解析一.选择题(共8小题)1.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:B.2.将抛物线y=x2向左平移2个单位后得到新的抛物线的表达式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2【分析】先得到抛物线y=x2顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣2,0),然后利用顶点式写出平移后的新的抛物线的解析式.【解答】解:抛物线y=x2顶点坐标为(0,0),把点(0,0)向左平移2个单位后所得对应点的坐标为(﹣2,0),所以平移后的新的抛物线的表达式为y=(x+2)2.故选:C.3.在△ABC中,∠C=90°,以点B为圆心,以BC长为半径作圆,点A与该圆的位置关系为()A.点A在圆外B.点A在圆内C.点A在圆上D.无法确定【分析】根据点与圆的位置关系即可得出结论.【解答】解:∵在△ABC中,∠C=90°,∴AB>BC,∴点A在圆外.故选:A.4.抛物线y=2x2+4x﹣4的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=2 D.直线x=﹣2 【分析】根据二次函数的对称轴公式直接解答即可.【解答】解:y=2x2+4x﹣4中,∵a=2,b=4,c=﹣4,∴对称轴为:x=﹣=﹣=﹣1.故选:A.5.如图,在⊙O中,点C是上一点,若∠AOB=126°,则∠C的度数为()A.127°B.117°C.63°D.54°【分析】作圆周角∠ADB,使D在优弧上,根据圆周角定理求出∠D的度数,再根据圆内接四边形性质求出∠C即可.【解答】解:如图:作圆周角∠ADB,使D在优弧上,∵∠AOB=126°,∴∠D=∠AOB=63°,∵∠ACB+∠D=180°,∴∠ACB=180°﹣63°=117°,故选:B.6.二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c>mx+n 的x的取值范围是()A.﹣3<x<0 B.x<﹣3或x>0 C.x<﹣3 D.0<x<3【分析】根据函数图象写出二次函数图象在一次函数图象上方部分的x的取值范围即可.【解答】解:由图可知,﹣3<x<0时二次函数图象在一次函数图象上方,所以,满足ax2+bx+c>mx+n的x的取值范围是﹣3<x<0.故选:A.7.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.【分析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sin A==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∴=,∴===.故选:B.8.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定【分析】根据题意判定抛物线开口向上,对称轴在0和1之间,然后根据点到对称轴的距离的大小即可判断.【解答】解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.二.填空题(共8小题)9.点P(2,﹣3)关于原点的对称点P′的坐标为(﹣2,3).【分析】由关于原点对称的点,横坐标与纵坐标都互为相反数,即可求出答案.【解答】解:因为关于原点对称的点,横坐标与纵坐标都互为相反数,所以:点(2,﹣3)关于原点的对称点的坐标为(﹣2,3).故答案为:(﹣2,3).10.请写出一个开口向下,且与y轴的交点坐标为(0,2)的抛物线的表达式:y=﹣x2+2 .【分析】把(0,2)作为抛物线的顶点,令a=﹣1,然后利用顶点式写出满足条件的抛【解答】解:因为抛物线的开口向下,则可设a=﹣1,又因为抛物线与y轴的交点坐标为(0,2),则可设顶点为(0,2),所以此时抛物线的解析式为y=﹣x2+2.故答案为y=﹣x2+2.11.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.12.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣2<x1<0,2<x2<4,则y1<y2.(用“<”、“=”或“>”号连接)【分析】根据二次函数的性质即可求解.【解答】解:由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y轴,∴当x>0时,y随x的增大而增大,∵﹣2<x1<0,2<x2<4,∴0<﹣x1<2,∴y1<y2.故答案为<.13.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为16 .【分析】直接运用切线长定理即可解决问题;【解答】解:∵DA、DC、EB、EC分别是⊙O的切线,∴DA=DC,EB=EC;∴DE=DA+EB,∴PD+PE+DE=PD+DA+PE+BE=PA+PB,∵PA、PB分别是⊙O的切线,∴PA=PB=8,∴△PDE的周长=16.故答案为:1614.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:△OCD绕C点逆时针旋转90°,并向右平移2个单位得到△AOB.【分析】根据旋转的性质,平移的性质即可得到由△OCD得到△AOB的过程.【解答】解:△OCD绕C点逆时针旋转90°,并向右平移2个单位得到△AOB(答案不唯一).故答案为:△OCD绕C点逆时针旋转90°,并向右平移2个单位得到△AOB.15.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值2(答案不唯一).【分析】根据函数图象可以直接得到答案.【解答】解:∵在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,∴当y<0的x的取值范围是:1<x<3,∴x的值可以是2.故答案是:2(答案不唯一).16.如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=α中,一定成立的是①③(填序号).【分析】如图,连接OC,设OB交CD于K.利用全等三角形的性质以及圆周角定理一一判断即可;【解答】解:如图,连接OC,设OB交CD于K.∵AB=CD,OD=OC=OB=OA,∴△AOB≌△COD(SSS),∴∠CDO=∠OBA,∵∠DKO=∠BKE,∴∠DOK=∠BEK=α,即∠BOD=α,故①正确,不妨设,∠OAB=90°﹣α,∵OA=OB,∴∠OAB=∠OBA,∴∠OBE+∠BEK=90°,∴∠BKE=90°,∴OB⊥CD,从条件上看,AB=CD,推不出OB⊥CD这样的位置关系,故②错误,∵CD=AB,∴=,∴=,∴∠ABC=∠DOB=α,故③正确.故答案为①③.三.解答题(共10小题)17.如图,∠DAB=∠EAC,AB=AD,AC=AE.求证:BC=DE.【分析】求出∠DAE=∠BAC,根据SAS推出△BAC≌△DAE,根据全等三角形的性质得出即可.【解答】证明:∵∠DAB=∠EAC,∴∠DAB+∠BAE=∠EAC+∠BAE,∴∠DAE=∠BAC,在△BAC和△DAE中,∴△BAC≌△DAE,∴BC=DE.18.已知一抛物线过点(﹣3,0)、(﹣2,﹣6),且对称轴是x=﹣1.求该抛物线的解析式.【分析】先利用对称性得到抛物线与x轴另一交点是(1,0),则可设交点式y=a(x+3)(x﹣1),然后把(﹣2,﹣6)代入求出a的值即可.【解答】解:∵抛物线的对称轴是直线x=﹣1,抛物线过点(﹣3,0)∴抛物线与x轴另一交点是(1,0),设抛物线的解析式为y=a(x+3)(x﹣1),把(﹣2,﹣6)代入得﹣6=a•(﹣2+3)•(﹣2﹣1),解得a=2,∴抛物线解析式为y=2(x+3)(x﹣1),即y=2x2+4x﹣6.19.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 2 …y…﹣3 ﹣4 ﹣3 5 …(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.【分析】(1)由待定系数法即可得出答案;(2)求出y=0时x的值,即可得出答案.【解答】解:(1)由题意,得c=﹣3.将点(2,5),(﹣1,﹣4)代入,得解得∴y=x2+2x﹣3.顶点坐标为(﹣1,﹣4).(2)当y=0时,x2+2x﹣3,解得:x=﹣3或x=1,∴函数图象与x轴的交点坐标为(﹣3,0),(1,0).20.下面是小东设计的“作圆的一个内接矩形,并使其对角线的夹角为60°”的尺规作图过程.已知:⊙O求作:矩形ABCD,使得矩形ABCD内接于⊙O,且其对角线AC,BD的夹角为60°.作法:如图①作⊙O的直径AC;②以点A为圆心,AO长为半径画弧,交直线AC上方的圆弧于点B;③连接BO并延长交⊙O于点D;所以四边形ABCD就是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点A,C都在⊙O上,∴OA=OC同理OB=OD∴四边形ABCD是平行四边形∵AC是⊙O的直径,∴∠ABC=90°(直径所对圆周角是直角)(填推理的依据)∴四边形ABCD是矩形∵AB=AO=BO,∴四边形ABCD四所求作的矩形.【分析】(1)根据要求作图即可得;(2)根据圆周角定理推论及圆的性质求解可得.【解答】解:(1)如图所示,矩形ABCD即为所求;(2)证明:∵点A,C都在⊙O上,∴OA=OC同理OB=OD∴四边形ABCD是平行四边形∵AC是⊙O的直径,∴∠ABC=90°(直径所对圆周角是直角)∴四边形ABCD是矩形∵AB=AO=BO,∴四边形ABCD即为所求作的矩形,故答案为:直径所对圆周角是直角,AO.21.如图,AB是O的直径,弦CD⊥AB于点E,AM是△ACD外角∠DAF的平分线.(1)求证:AM是⊙O的切线.(2)若C是优弧ABD的中点,AD=4,射线CO与AM交于N点,求ON的长.【分析】(1)根据垂径定理得到AB垂直平分CD,根据线段垂直平分线的性质得到AC=AD,得到∠BAD=∠CAD,由AM是△ACD的外角∠DAF的平分线,得到∠DAM=∠FAD,于是得到结论;(2)证明△ACD是等边三角形,得到CD=AD=4,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E,∴AB垂直平分CD,∴AC=AD,∴∠BAD=∠CAD,∵AM是△ACD的外角∠DAF的平分线,∴∠DAM=∠FAD,∴∠BAM=(∠CAD+∠FAD)=90°,∴AB⊥AM,∴AM是⊙O的切线;(2)解:∵AC=AD,C是优弧ABD的中点,∴AC=AD=CD,∴△ACD是等边三角形,∴CD=AD=4,∴CE=DE=2,∴OC=OA=,∵∠ANO=∠OCE=30°,∴ON=2OA=.22.生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)【分析】连接OC,求出OC和OE,根据勾股定理求出CE,根据垂径定理求出CD即可.【解答】解:如图,连接OC,AB交CD于E,由题意知:AB=0.8a+3.2a+2a=6a,所以OC=OB=3a,OE=OB﹣BE=3a﹣2a=a,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE===2a,∴CD=2CE=4a,所以路面的宽度l为4a.23.有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y =(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.x…﹣2 ﹣1 0 1 2 3 4 5 6 …y…m﹣24 ﹣6 0 0 0 6 24 60 …①m=﹣60 ;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=11 ;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.③写出直线y=x﹣1与②中你画出图象的交点的横坐标之和为0 .【分析】(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)①把x=﹣2代入函数解析式可求得m的值;②观察给定表格中的数据可发现函数图象上的点关于点(2,0)对称,再根据点M、N 的坐标即可求出n值;(3)①找出点A关于点(2,0)对称的点B1,再找出与点B1纵坐标相等的B2点;②根据表格描点、连线即可得出函数图象;③根据图象的性质以及直线的性质即可求得.【解答】解:(2)①当x=﹣2时,y=(x﹣1)(x﹣2)(x﹣3)=﹣60.故答案为:﹣60.②观察表格中的数据可得出函数图象关于点(2,0)中心对称,∴﹣7+n=2×2,解得:n=11.故答案为:11.(3)①作点A关于点(2,0)的对称点B1,再在函数图象上找与点B1纵坐标相等的B2点.②根据表格描点、连线,画出图形如图所示.③函数图象关于点(2,0)中心对称,且直线y=﹣1经过此点,∴直线y=x﹣1与图象的交点的纵坐标化为相反数,∴交点的纵坐标之和为0,故答案为0.24.已知直线l与抛物线y=ax2﹣2x+c(a>0)的一个公共点A恰好在x轴上,点B(4,m)在抛物线上.(Ⅰ)用含a的代数式表示c.(Ⅱ)抛物线在A,B之间的部分(不包含点A,B)记为图形G,请结合函数图象解答:若图形G在直线l下方,求a的取值范围.【分析】(1)先利用一次函数解析式求出A点坐标为(﹣2,0),然后把A点坐标代入抛物线解析式即可得到a与c的关系式;(2)先分别计算出x=4时所对应的一次函数值和二次函数值,然后利用图形G在直线l下方得到12﹣12a≤3,然后解不等式即可.【解答】解:(Ⅰ)当y=0时,x+1=0,解得x=﹣2,则A点坐标为(﹣2,0),把A(﹣2,0)代入y=ax2﹣2x+c得4a+4+c=0,所以c=﹣4a﹣4;(Ⅱ)当x=4时,y=ax2﹣2x+c=16a﹣8﹣4a﹣4=12a﹣12,则B(4,12a﹣12),当x=4时,y=x+1=3,因为图形G在直线l下方,所以12﹣12a≤3,解得a≤,所以a的取值范围为0<a≤.25.如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α(0°<α<60°且α≠30°).(1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);②探究线段CE,AC,CQ之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.【分析】(1)①先根据等边三角形的性质的QA=QB,进而得出QB=QE,最后用三角形的内角和定理即可得出结论;②先判断出△QAF≌△QEC,得出QF=QC,再判断出△QCF是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.【解答】解:(1)当0°<α<30°时,①画出的图形如图1所示,∵△ABC为等边三角形,∴∠ABC=60°.∵CD为等边三角形的中线,∵Q为线段CD上的点,∴CD是AB的垂直平分线,由等边三角形的对称性得QA=QB.∵∠DAQ=α,∴∠ABQ=∠DAQ=α,∠QBE=60°﹣α.∵线段QE为线段QA绕点Q顺时针旋转所得,∴QE=QA.∴QB=QE.∴∠QEB=∠QBE=60°﹣α,∴∠BQE=180°﹣2∠QBE=180°﹣2(60°﹣α)=60°+2α;②CE+AC=CQ;解:如图2,延长CA到点F,使得AF=CE,连接QF,作QH⊥AC于点H.∵∠BQE=60°+2α,点E在BC上,∴∠QEC=∠BQE+∠QBE=(60°+2α)+( 60°﹣α)=120°+α.∵点F在CA的延长线上,∠DAQ=α,∴∠QAF=∠BAF+∠DAQ=120°+α.∴∠QAF=∠QEC.又∵AF=CE,QA=QE,∴△QAF≌△QEC.∴QF=QC.∵QH⊥AC于点H,∴FH=CH,CF=2CH.∵在等边三角形ABC中,CD为中线,点Q在CD上,∴∠ACQ==30°,即△QCF为底角为30°的等腰三角形.∴.∴CE+AC=AF+AC=CF=.(2)如图4,当30°<α<60°时,在AC上取一点F使AF=CE,∵△ABC为等边三角形,∴∠ABC=60°.∵CD为等边三角形的中线,∵Q为线段CD上的点,∴CD是AB的垂直平分线,由等边三角形的对称性得QA=QB.∵∠DAQ=α,∴∠ABQ=∠DAQ=α,∠QBE=60°﹣α.∵线段QE为线段QA绕点Q顺时针旋转所得,∴QE=QA.∴QB=QE.∴∠QEB=∠QBE=60°﹣α=∠QAF,又∵AF=CE,QA=QE,∴△QAF≌△QEC.∴QF=QC.∵QH⊥AC于点H,∴FH=CH,CF=2CH.∵在等边三角形ABC中,CD为中线,点Q在CD上,∴∠ACQ==30°,即△QCF为底角为30°的等腰三角形.∴.∴AC﹣CE=AC﹣AF=CF=.26.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C 的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N (,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.问题1 问题2若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,则r的最小值为.若点P关于⊙C的限距点P′不存在,则r的取值范围为0<r<.【分析】(1)①根据限距点的定义即可判断.②分三种情形:①当点P在线段EF上时,②当点P在线段DE、DF(不包括端点)上时,③当点P与点D重合时,分别说明即可解决问题.(2)问题1:如图2中,△PP′C是等边三角形,点P在PP′上运动时,有限距点,列出不等式即可解决.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,列出不等式即可解决.【解答】解:(1)①点M、点T关于⊙O的限距点不存在,点N关于⊙0的限距点存在,坐标为(1,0).②∵点D坐标为(2,0),⊙O半径为1,DE、DF分别切⊙O于E、F,∴切点坐标为(,),(,﹣),如图所示,不妨设点E(,),点F(,﹣),EO、FO的延长线分别交⊙O于点E′、F′,则E′(﹣,﹣),F′(﹣,).设点P关于⊙O的限距点的横坐标为x,①当点P在线段EF上时,直线PO与⊙O的交点P′满足1≤PP′≤2,故点P关于⊙O 的限距点存在,其横坐标x满足﹣1≤x≤﹣.②当点P在线段DE、DF(不包括端点)上时,直线PO与⊙O的交点P′满足0<PP′<1或2<PP′<3,故点P关于⊙O的限距点不存在.③当点P与点D重合时,直线PO与⊙O的交点P′(1,0),满足PP′=1,故点P关于⊙O的限距点存在,其横坐标x=1.综上所述点P关于⊙O的限距点的横坐标x的范围为﹣1≤x≤﹣或x=1.(2)问题1:如图2中,∵△DEF是等边三角形,点C是△DEF的外接圆的圆心,∵若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,∴图中△PP′C是等边三角形,点P在PP′上运动时,有限距点,∵PC∥ED,∴==,∴PC=,由题意:r≤﹣r≤2r,∴,∴r的最小值为.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,∵HC=,∴﹣r>2r,∴r<,∴0<r<时点P的限距点不存在.故答案分别为,0<r<.。
2019-2020学年北京人大附中九年级(下)限时练习数学试卷(4)一.选择题(共8小题)1.已知二次函数y=x2﹣4x+5的顶点坐标为()A.(2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(﹣2,1)2.若在实数范围内有意义,则x的取值范围是()A.x≠3B.x>且x≠3C.x≥2D.x≥且x≠3 3.如果点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,那么m与n的关系是()A.m>n B.m<n C.m=n D.不能确定4.从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是()A.1B.C.D.05.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30B.﹣20C.﹣5D.06.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.B.C.D.7.函数y=k(x﹣k)(k<0)的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.小雨利用几何画板探究函数y=图象,在他输入一组a,b,c的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足()A.a>0,b>0,c=0B.a<0,b>0,c=0C.a>0,b=0,c=0D.a<0,b=0,c>0二.填空题(共8小题)9.分解因式:4x2﹣8x+4=.10.在平面直角坐标系中,点P(m,m﹣2)在第三象限内,则m的取值范围是.11.写出一个函数,满足当x>0时,y随x的增大而减小且图象过(1,3),则这个函数的表达式为.12.已知反比例函数y=的图象上两点A(x1,y1),当x1<0<x2时,有y1<y2,则m 的取值范围是.13.已知二次函数y=ax2+8x﹣7的图象和x轴有交点,则a的取值范围是.14.将直线L1:y=2x+3沿y轴向下平移5个单位的到L2,则L1与L2的距离为.15.二次函数y=ax2+bx+c(a≠0)的图象如图,若|ax2+bx+c|=k有两个不相等的实数根,则k的取值范围是.16.如图,正方形ABCD的边长是3,P,Q分别在AB,BC的延长线上,BP=CQ,连接AQ,DP交于点O,并分别与CD,BC交于点F,E,连接AE.下列结论:①AQ⊥DP②OA2=OE•OP③S△AOD=S四边形OECF④当BP=1时,tan∠OAE=其中正确结论的序号是.三.解答题(共8小题)17.计算:.18.已知x2+4x+1=0,求代数式(x﹣1)2﹣2x(x+1)+7的值.19.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.20.为了促进旅游业的发展,某市新建一座景观桥.桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),求与CD的距离为5米的景观灯杆MN的高度.21.如图,在Rt△ACB中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,连接DF.(1)求证:DF=2CE;(2)若BC=3,sin B=,求线段BF的长.22.在平面直角坐标系xOy中,抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A,求点A的坐标;(3)抛物线y=﹣2x2+(m+9)x﹣6与y轴交于点C,点A关于平移后抛物线的对称轴的对称点为点B,两条抛物线在点A、C和点A、B之间的部分(包含点A、B、C)记为图象M.将直线y=2x﹣2向下平移b(b>0)个单位,在平移过程中直线与图象M始终有两个公共点,请你写出b的取值范围.23.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.24.对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.(1)当⊙M半径为2,点M和点O重合时.①点P1(﹣2,0),P2(1,1),P3(2,2)中,⊙O的“美好点”是;②若直线y=2x+b上存在点P为⊙O的“美好点”,求b的取值范围;(2)点M为直线y=4上一动点,以2为半径作⊙M,点P为直线y=x上一动点,点P 为⊙M的“美好点”,求点M的横坐标m的取值范围.参考答案与试题解析一.选择题(共8小题)1.已知二次函数y=x2﹣4x+5的顶点坐标为()A.(2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(﹣2,1)【分析】将题目中的函数解析式化为顶点式,即可得到该函数的顶点坐标,本题得以解决.【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数的顶点坐标为(2,1),故选:A.2.若在实数范围内有意义,则x的取值范围是()A.x≠3B.x>且x≠3C.x≥2D.x≥且x≠3【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,2x﹣1≥0,x﹣3≠0,解得x,且x≠3,故选:D.3.如果点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,那么m与n的关系是()A.m>n B.m<n C.m=n D.不能确定【分析】先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【解答】解:∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,1<3,∴m>n.故选:A.4.从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是()A.1B.C.D.0【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、1、3,3、1、3,4、1、3,其中三条线段能构成三角形的结果数为1,所以三条线段能构成三角形的概率=.故选:C.5.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30B.﹣20C.﹣5D.0【分析】原式利用完全平方公式配方后,确定出最小值即可.【解答】解:x2﹣10x+5=x2﹣10x+25﹣20=(x﹣5)2﹣20,当x=5时,代数式的最小值为﹣20,故选:B.6.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.B.C.D.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.7.函数y=k(x﹣k)(k<0)的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k<0来推测函数y=k(x﹣k)(k<0 )的图象不经过的象限.【解答】解:y=k(x﹣k)(k<0 )可变形为:y=kx﹣k2,∵k<0,∴k2>0,∴﹣k2<0,∴函数y=kx﹣k2,的图象经过第二、三、四象限.故选:A.8.小雨利用几何画板探究函数y=图象,在他输入一组a,b,c的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足()A.a>0,b>0,c=0B.a<0,b>0,c=0C.a>0,b=0,c=0D.a<0,b=0,c>0【分析】从函数整体图象来看,发现部分图象有类似反比例函数,再从y轴右侧图象,判断图象虚线代表的意义,即可求解.【解答】设虚线为x=m(显然,m>0),易知两条由图中可知,当x<m时,y>0,|x﹣c|>0,所以>0,当x>m时,y<0,|x﹣c|>0,所以<0,可得(x﹣b)在m的左右两侧时,符号是不同的,即b=m>0;当x<b时,x﹣b<0,而y>0,所以a<0显然另外一条分割线为x=0=c,故选:B.二.填空题(共8小题)9.分解因式:4x2﹣8x+4=4(x﹣1)2.【分析】先提取公因式4,再根据完全平方公式进行二次分解即可求得答案.【解答】解:4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.10.在平面直角坐标系中,点P(m,m﹣2)在第三象限内,则m的取值范围是m<0.【分析】利用第三象限点的坐标特征得到,然后解不等式组即可.【解答】解:∵点P(m,m﹣2)在第三象限内,∴,∴m<0.故答案为m<0.11.写出一个函数,满足当x>0时,y随x的增大而减小且图象过(1,3),则这个函数的表达式为如,答案不唯一.【分析】没有指定是什么具体的函数,可以从一次函数,反比例函数,二次函数三方面考虑,只要符合条件①②即可.【解答】解:符合题意的函数解析式可以是y=,y=﹣x+4,y=﹣x2+4等,(本题答案不唯一)故答案为:如,答案不唯一;12.已知反比例函数y=的图象上两点A(x1,y1),当x1<0<x2时,有y1<y2,则m 的取值范围是m>﹣.【分析】根据反比例函数的性质,可以得到关于m的不等式,从而可以求得m的取值范围.【解答】解:∵反比例函数y=的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴1+3m>0,解得,m>﹣,故答案为m>﹣.13.已知二次函数y=ax2+8x﹣7的图象和x轴有交点,则a的取值范围是a≥﹣且a ≠0.【分析】直接利用根的判别式进行计算,“图象和x轴有交点”说明△≥0,a≠0.【解答】解:∵二次函数y=ax2+8x﹣7的图象和x轴有交点,∴△=b2﹣4ac=64+28a≥0,∴a≥﹣,其中a≠0.故答案为:a≥﹣且a≠0.14.将直线L1:y=2x+3沿y轴向下平移5个单位的到L2,则L1与L2的距离为.【分析】根据平移的规律得到L2的解析式为:y=2x﹣2,求得L2:y=2x﹣2与y轴交于(0,﹣2),根据三角形面积公式即可得到结论.【解答】解:∵将直线L1:y=2x+3沿y轴向下平移5个单位的到L2,∴L2的解析式为:y=2x﹣2,∴L2:y=2x+2与y轴交于(0,﹣2),如图,∵y=2x+3与x轴交于B(﹣,0),与y轴交于A(0,3),y=2x﹣2与x轴交于F(1,0),与y轴交于E(0,﹣2),过O作OC⊥AB于C,反向延长OC交EF于D,∵AB∥EF,∴CD⊥EF,∵OA=3,OB=,∴AB==,∵OE=2,OF=1,∴EF==,∵AB•OC=OA•OB,∴OC==,∵EF•OD=OE•OF,∴OD==,∴CD=,∴L1与L2的距离为,故答案为.15.二次函数y=ax2+bx+c(a≠0)的图象如图,若|ax2+bx+c|=k有两个不相等的实数根,则k的取值范围是k=0或k>2.【分析】先根据题意画出y=|ax2+bx+c|的图象,即可得出|ax2+bx+c|=k(k≠0)有两个不相等的实数根时,k的取值范围.【解答】解:∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,∴此时y=|ax2+bx+c|=ax2+bx+c,∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣2,∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是2,∴y=|ax2+bx+c|的图象如右图,∵观察图象可得当k≠0时,函数图象在直线y=2的上方时,纵坐标相同的点有两个,函数图象在直线y=2上时,纵坐标相同的点有三个,函数图象在直线y=2的下方时,纵坐标相同的点有四个,∴若|ax2+bx+c|=k有两个不相等的实数根,则函数图象应该在y=2的上边,故k=0或k>2.16.如图,正方形ABCD的边长是3,P,Q分别在AB,BC的延长线上,BP=CQ,连接AQ,DP交于点O,并分别与CD,BC交于点F,E,连接AE.下列结论:①AQ⊥DP②OA2=OE•OP③S△AOD=S四边形OECF④当BP=1时,tan∠OAE=其中正确结论的序号是①③④.【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD =S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ(SAS),∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE(AAS),∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△PBE∽△P AD,∴==,∴BE=,∴QE=,∵△QOE∽△P AD,∴===,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE===,故④正确,故答案为①③④.三.解答题(共8小题)17.计算:.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=9+2+1﹣3=10﹣.18.已知x2+4x+1=0,求代数式(x﹣1)2﹣2x(x+1)+7的值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2﹣2x+1﹣2x2﹣2x+7=﹣x2﹣4x+8,∵x2+4x+1=0,∴x2+4x=﹣1,∴原式=﹣(x2+4x)+8=1+8=9.19.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.20.为了促进旅游业的发展,某市新建一座景观桥.桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),求与CD的距离为5米的景观灯杆MN的高度.【分析】以AB所在直线为x轴、CD所在直线为y轴建立坐标系,可设该抛物线的解析式为y=ax2+16,将点B坐标代入求得抛物线解析式,再求当x=5时y的值即可.【解答】解:建立如图所示平面直角坐标系,设抛物线表达式为y=ax2+16,由题意可知,B的坐标为(20,0)∴400a+16=0∴∴,∴当x=5时,y=15.答:与CD距离为5米的景观灯杆MN的高度为15米.21.如图,在Rt△ACB中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,连接DF.(1)求证:DF=2CE;(2)若BC=3,sin B=,求线段BF的长.【分析】(1)连接OE交DF于G,首先证明四边形EGFC是矩形,再根据垂径定理即可证明.(2)设OE=x,由OE∥BC,得△AOE∽△ABC,得,列出方程求出x,再在Rt△BDF中,由sin B=,推出cos B==,即可解决问题.【解答】(1)证明:连接OE交DF于G,∵AC切⊙O于E,∴∠CEO=90°.又∵BD为⊙O的直径,∴∠DFC=∠DFB=90°.∵∠C=90°,∴四边形CEGF为矩形.∴CE=GF,∠EGF=90°,∴DF=2CE.(2)解:在Rt△ABC中,∵∠C=90°,BC=3,,∴AB=5,设OE=x,∵OE∥BC,∴△AOE∽△ABC.∴,∴,∴,∴BD=.在Rt△BDF中,∵∠DFB=90°,sin B=,∴cos B===,∴BF=.22.在平面直角坐标系xOy中,抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A,求点A的坐标;(3)抛物线y=﹣2x2+(m+9)x﹣6与y轴交于点C,点A关于平移后抛物线的对称轴的对称点为点B,两条抛物线在点A、C和点A、B之间的部分(包含点A、B、C)记为图象M.将直线y=2x﹣2向下平移b(b>0)个单位,在平移过程中直线与图象M始终有两个公共点,请你写出b的取值范围0<b≤.【分析】(1)根据抛物线的对称轴公式求出m的值,进而求出抛物线的解析式以及顶点坐标;(2)先求出平移后的抛物线解析式,然后求出交点坐标;(3)根据图象即可写出b的取值范围.【解答】解:(1)∵抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2,∴.∴m=﹣1.∴抛物线的表达式为y=﹣2x2+8x﹣6.∴y=﹣2(x﹣2)2+2.∴顶点坐标为(2,2).(2)由题意得,平移后抛物线表达式为y=﹣2(x﹣3)2+2,∵﹣2(x﹣2)2=﹣2(x﹣3)2,∴.∴A(,).(3)点A坐标为(,),则点B的坐标为(,),设直线y=2x﹣2向下平移b(b>0)个单位经过点B,则y=2x﹣2﹣b,故=7﹣2﹣b,解得b=,设直线y=2x﹣2向下平移b(b>0)个单位经过点A,=5﹣2﹣b,b=,由,消去y得到:2x2﹣10x+14﹣b=0,由题意:△=0,∴100﹣8(14﹣b)=0,∴b=,观察图象可知:平移过程中直线与图象M始终有两个公共点,则.23.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【分析】(1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出=,可得=,解方程即可;【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.24.对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.(1)当⊙M半径为2,点M和点O重合时.①点P1(﹣2,0),P2(1,1),P3(2,2)中,⊙O的“美好点”是P1和P2;②若直线y=2x+b上存在点P为⊙O的“美好点”,求b的取值范围;(2)点M为直线y=4上一动点,以2为半径作⊙M,点P为直线y=x上一动点,点P 为⊙M的“美好点”,求点M的横坐标m的取值范围.【分析】(1)①根据⊙M的“美好点”即可判断.②求出直线y=2x+b与⊙M相切时,b的值即可解决问题;(2)当直线y=4与⊙M相切时,求出点M的坐标,有两个值,由此即可解决问题;【解答】解:(1)①如图1中,∵OP1=2=r,OP2=<r,OP3=2<r,根据⊙M的“美好点”的定义可知,P1,P2是⊙M的“美好点”.故答案为P1和P2.②当直线y=2x+b与⊙O相切时,设切点为T,该直线交x轴于K,交y轴于E.由题意E(0,b),K(﹣,0),∴OE=b,OK=,EK=b,∵sin∠TKO==,∴=,∴b=2,根据对称性可知:当直线与⊙O在下方相切时,OF=OE=2,∴b=﹣2,∴b的取值范围为:﹣2≤b≤2.(2)如图2中,当直线y=4与⊙M相切时,切点分别为E或E′,连接ME,M′E′,∵EM=E′M′=2,∴M′(2,2),m(6,6),∴满足条件的m的取值范围为2≤m≤6.。
2019-2020学年人大附中朝阳学校九年级(上)月考数学试卷一.选择题(共8小题)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2 2.“垃圾分类,从我做起”,以下四幅图案分别代表四类垃圾,其中图案是中心对称图形的是()A.B.C.D.3.用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x+2)2=7D.(x+2)2=1 4.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+25.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.38.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径二.填空题(共8小题)9.方程x2﹣2x=0的根是.10.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB 的距离等于.11.如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),则关于x的方程ax2+bx=mx+n的解为.12.一个斜边长是8的Rt△AEC,一个斜边长是6的Rt△AFB,一个正方形AEDF,拼成一个如图所示的Rt△BCD,则Rt△AEC和Rt△AFB的面积之和是.13.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性“凹面向上”的可能性.(填“大于”,“等于”或“小于”).14.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).15.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是.16.如图,一段抛物线:y=x(x﹣2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,得到图形(1)请写出抛物线C2的解析式:.(2)若点P(4037.5,a)在图形G上,则a=.三.解答题(共12小题)17.解方程:x2﹣4x﹣5=0(用配方法)18.下面是小明主设计的“作一个含30°角的直角三角形”的尺规作图过程.已知:直线l.求作:△ABC,使得∠ACB=90°,∠ABC=30°.作法:如图,①在直线l上任取两点O,A;②以点O为圆心,OA长为半径画弧,交直线l于点B;③以点A为圆心,AO长为半径画弧,交于点C;④连接AC,BC.所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:在⊙O中,AB为直径,∴∠ACB=90°(①),(填推理的依据)连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②),(填推理的依据)19.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,、△ABC的顶点都在格点上,建立平面直角坐标系(1)点A的坐标为,点C的坐标为.(2)以原点O为中心,将△ABC逆时针旋转90°,得到△A1B1C1请在网格内画出△A1B1C1,并写出点A1和B1的坐标,.22.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.23.如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.24.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表刹车时车速(千0510********米/时)刹车距离(米)00.10.30.61 1.6 2.1(1)在如图所示的平面直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连接这些点,得到某函数的大致图象;(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式;(3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.25.如图,在△ABC中,∠ABC=90°,∠C=40°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至AD',连接BD'.已知AB=2cm,设BD为x cm,BD'为y cm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3y/cm 1.7 1.3 1.10.70.9 1.1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:线段BD'的长度的最小值约为cm;若BD'≥BD,则BD的长度x的取值范围是.26.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n(m≠0)与x轴交于点A,B,点A 的坐标为(﹣2,0).(1)写出抛物线的对称轴;(2)直线y=x﹣4m﹣n过点B,且与抛物线的另一个交点为C.①分别求直线和抛物线所对应的函数表达式;②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2:y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.27.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.28.在平面直角坐标系xOy中,A(t,0),B(t+,0),对于线段AB和x轴上方的点P 给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=﹣,在点C(0,),D(,1),E(﹣,)中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥P A,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.参考答案与试题解析一.选择题(共8小题)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选:B.2.“垃圾分类,从我做起”,以下四幅图案分别代表四类垃圾,其中图案是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断.【解答】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.3.用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x+2)2=7D.(x+2)2=1【分析】把方程两边都加上4,方程左边可写成完全平方式.【解答】解:x2+4x+4=7,(x+2)2=7.故选:C.4.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+2【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,y=x2向左平移3个单位,再向下平移2个单位得y=(x+3)2﹣2.故选:A.5.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°【分析】由A,B,C是⊙O上的三个点,若∠C=35°,直接利用圆周角定理求解即可求得答案.【解答】解:∵A,B,C是⊙O上的三个点,∠C=35°,∴∠AOB=2∠C=70°.故选:D.6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.3【分析】根据抛物线的对称性得到抛物线与x轴的另一个交点可得答案.【解答】解∵关于x的方程ax2+bx﹣8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(﹣2,0),∴方程的另一个根为x=﹣2.故选:B.8.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径【分析】利用图象信息一一判断即可解决问题.【解答】解:A、小红的运动路程比小兰的短,故本选项不符合题意;B、两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;C、当小红运动到点D的时候,小兰还没有经过了点D,故本选项不符合题意;D、当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;故选:D.二.填空题(共8小题)9.方程x2﹣2x=0的根是x1=0,x2=2.【分析】因为x2﹣2x可提取公因式,故用因式分解法解较简便.【解答】解:因式分解得x(x﹣2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.10.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于2.【分析】由圆心角∠AOB=120°,可得△AOB是等腰三角形,又由OC⊥AB,再利用含30°角的直角三角形的性质,可求得OC的长.【解答】解:如图,∵圆心角∠AOB=120°,OA=OB,∴△OAB是等腰三角形,∵OC⊥AB,∴∠ACO=90°,∠A=30°,∴OC=.故答案为:211.如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),则关于x的方程ax2+bx=mx+n的解为x1=﹣3,x2=1.【分析】关于x的方程ax2+bx=mx+n的解为抛物线y=ax2+bx与直线y=mx+n交点的横坐标.【解答】解:∵抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),∴关于x的方程ax2+bx=mx+n的解为x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.12.一个斜边长是8的Rt△AEC,一个斜边长是6的Rt△AFB,一个正方形AEDF,拼成一个如图所示的Rt△BCD,则Rt△AEC和Rt△AFB的面积之和是24.【分析】设正方形AEDF的边长为x,则AE=AF=x,证明△AEC∽△BF A,利用相似比得到BF=x,CE=x,在Rt△ACE中利用勾股定理得到x2+(x)2=82,则x2=,然后根据三角形面积公式计算Rt△AEC和Rt△AFB的面积之和.【解答】解:设正方形AEDF的边长为x,则AE=AF=x,∵AE∥BD,∴∠CAE=∠B,而∠AEC=∠AFB=90°,∴△AEC∽△BF A,∴==,即==,∴BF=x,CE=x,在Rt△ACE中,x2+(x)2=82,∴x2=,∴Rt△AEC和Rt△AFB的面积之和=•x•x+•x•x=x2=×=24.故答案为24.13.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性小于“凹面向上”的可能性.(填“大于”,“等于”或“小于”).【分析】根据图形中的数据即可解答本题.【解答】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,∴凸面向上”的可能性小于“凹面向上”的可能性.,故答案为:小于.14.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a<b(填“<”或“=”或“>”).【分析】根据二次函数图象的增减性即可解答.【解答】解:y=2x2﹣5的对称轴为x=0,开口方向向上,顶点为(0,﹣5).对于开口向上的函数,x距离对称轴越近,y值越小,2比3距离近,所以a<b.故答案为<.15.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是②④.【分析】根据图象的开口方向、与x和y轴的交点、对称轴所在的位置,判断即可.【解答】解:①该函数图象的开口向下,a<0,错误;②∵a<0,﹣>0,∴b>0,正确;③把x=2代入解析式可得4a+2b+c>0,错误;④∵AD=DB,CE=OD,∴AD+OD=DB+OD=OB=4,可得:AD+CE=4,正确.故答案为:②④16.如图,一段抛物线:y=x(x﹣2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,得到图形(1)请写出抛物线C2的解析式:y=﹣(x﹣2)(x﹣4).(2)若点P(4037.5,a)在图形G上,则a=0.75.【分析】(1)利用交点式得到A1(2,0),利用旋转的性质得A2(4,0),然后利用交点式写出抛物线C2的解析式;(2)利用4037.5=2018×2+1.5可判断点P在抛物线C2019上,而它的解析式为y=(x ﹣4036)(x﹣4038),然后计算把x=4037.5对应的函数值即可.【解答】解:(1)抛物线C1的解析式为y=x(x﹣2),则A1(2,0),根据旋转的性质得A1A2=OA1=2,则A2(4,0),抛物线C2的解析式为y=﹣(x﹣2)(x﹣4);(2)∵4037.5=2018×2+1.5,∴点P(4037.5,a)在抛物线C2019上,而抛物线C2019的解析式为y=(x﹣4036)(x﹣4038)把x=4037.5代入得a=(4037.5﹣4036)(4037.5﹣4038)=0.75.故答案为y=﹣(x﹣2)(x﹣4);0.75.三.解答题(共12小题)17.解方程:x2﹣4x﹣5=0(用配方法)【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2﹣4x=5,即x2﹣4x+4=9,变形得:(x﹣2)2=9,开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1.18.下面是小明主设计的“作一个含30°角的直角三角形”的尺规作图过程.已知:直线l.求作:△ABC,使得∠ACB=90°,∠ABC=30°.作法:如图,①在直线l上任取两点O,A;②以点O为圆心,OA长为半径画弧,交直线l于点B;③以点A为圆心,AO长为半径画弧,交于点C;④连接AC,BC.所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:在⊙O中,AB为直径,∴∠ACB=90°(①直径所对的圆周角是直角),(填推理的依据)连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②直角三角形两锐角互余),(填推理的依据)【分析】(1)根据要求作出图形即可.(2)根据圆周角定理,等边三角形的判定和性质即可解决问题.【解答】解:(1)△ABC即为所求.(2)在⊙O中,AB为直径,∴∠ACB=90°(①直径所对的圆周角是直角),连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②直角三角形两锐角互余).故答案为:直径所对的圆周角是直角,直角三角形两锐角互余.19.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(﹣1,﹣4),则可设顶点式y=a(x+1)2﹣4,然后把点(0,﹣3)代入求出a即可;(2)利用描点法画二次函数图象;(3)根据x=﹣4、﹣2时的函数值即可写出y的取值范围.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,﹣3)代入y=a(x+1)2﹣4,得a=1,故抛物线解析式为y=(x+1)2﹣4,即y=x2+2x﹣3;(2)如图所示:(3)∵y=(x+1)2﹣4,∴当x=﹣4时,y=(﹣4+1)2﹣4=5,当x=﹣2时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<﹣2时,y的取值范围是﹣3<y<5.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数,然后根据概率公式求解.【解答】解:(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率==;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数为8,所以两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率==.21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,、△ABC的顶点都在格点上,建立平面直角坐标系(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)以原点O为中心,将△ABC逆时针旋转90°,得到△A1B1C1请在网格内画出△A1B1C1,并写出点A1和B1的坐标(﹣8,2),(﹣6,0).【分析】(1)直接根据图形即可写出点A和C的坐标;(2)直接依据旋转中心,旋转方向以及旋转角度,即可得到△A1B1C1.【解答】解:(1)如图所示,A点坐标为:(2,8),C点坐标为:(6,6);故答案为:(2,8),(6,6);(2)如图所示,△A1B1C1即为所求,A1和B1的坐标分别为(﹣8,2),(﹣6,0).故答案为:(﹣8,2),(﹣6,0).22.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.【分析】(1)先根据方程有两个相等的实数根列出关于m的一元二次方程,求出m的值即可;(2)根据题意得到x=1和x=m+2是原方程的根,根据方程两个根均为正整数,可求m 的最小值.【解答】(1)证明:依题意,得△=[﹣(m+3)]2﹣4(m+2)=m2+6m+9﹣4m﹣8=m+1)2.∵(m+1)2≥0,∴△≥0.∴方程总有两个实数根.(2)解:解方程,得x1=1,x2=m+2,∵方程的两个实数根都是正整数,∴m+2≥1.∴m≥﹣1.∴m的最小值为﹣1.23.如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF =AC =.24.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表0510********刹车时车速(千米/时)刹车距离(米)00.10.30.61 1.6 2.1(1)在如图所示的平面直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连接这些点,得到某函数的大致图象;(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式;(3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.【分析】(1)通过描点、连线就可以得出函数的大致图象;(2)由函数图象,设抛物线的解析式为y=ax2+bx,由待定系数法求出其解即可;(3)将x=100代入(2)的解析式求出其值,再与130作比较即可.【解答】解:(1)如图所示:(2)该图象可能为抛物线,猜想该函数为二次函数,∵图象经过原点,∴设二次函数的表达式为:y=ax2+bx(x≥0),选取(20,1)和(10,0.3)代入表达式,得:,解得:,∴二次函数的表达式为:y=x2+x(x≥0),(3)∵当x=100时,y=21<40,∴汽车已超速行驶.25.如图,在△ABC中,∠ABC=90°,∠C=40°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至AD',连接BD'.已知AB=2cm,设BD为x cm,BD'为y cm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3 y/cm 1.7 1.3 1.10.90.70.9 1.1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:线段BD'的长度的最小值约为0.7cm;若BD'≥BD,则BD的长度x的取值范围是0≤x≤0.9.【分析】(1)先构造出全等三角形,判断出DE=BD'=y,再利用三角函数求出BC,AC,进而得出CE,进而利用三角函数求出EF,CF,进而得出DF,最后用勾股定理即可得出结论;(2)利用画函数图象的方法即可得出结论;(3)方法1、利用图象和表格即可得出结论;方法2、利用(1)的方法得出的y=,即可得出y的最小值,再令y=x求出x的值,即可得出结论.【解答】解:(1)如图1,在AC上取一点E使AE=AB=2,由旋转知,AD=AD',∠DAD'=50°=∠BAC,∴∠DAE=∠D'AB,在△DAE和△D'AB中,,∴△DAE≌△D'AB(SAS),∴DE=BD'=y,在Rt△ABC中,AB=2,∠C=40°,∴∠BAC=50°,AC==≈=3.13,BC==≈≈2.40∴CE=AC﹣AE=3.13﹣2=1.13,过点E作EF⊥BC于F,在Rt△CEF中,EF=CE•sin C=1.13×sin40°≈0.72,CF=CE•cos C=1.13×cos40°≈1.13×0.78≈0.88,当x=1时,BD=1,∴DF=BC﹣BD﹣CF=2.40﹣1﹣0.88=0.52,在Rt△DEF中,根据勾股定理得,y=DE=≈0.9,故答案为:0.9.(2)函数图象如图2所示.(3)方法1、由图象和表格知,线段BD'的长度的最小值约为0.7cm,∵BD'≥BD,∴y≥x,由图象知,0≤x≤0.9,故答案为:0.7,0≤x≤0.9.(3)方法2、由(1)知,BC=2.4,CF=0.88,EF=0.72,DF=BC﹣BD﹣CF=2.40﹣x﹣0.88=1.52﹣x,根据勾股定理得,y==,∵0≤x≤2.40,∴x=1.52时,y最小=0.72≈0.7,当BD'=BD时,DE=y=x在Rt△DEF中,根据勾股定理得,DE2=DF2+EF2,∴x2=(1.52﹣x)2+(0,72)2,∴x≈0.9∴BD'≥BD,则BD的长度x的取值范围是0≤x≤0.9.故答案为:0.7,0≤x≤0.9.26.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n(m≠0)与x轴交于点A,B,点A 的坐标为(﹣2,0).(1)写出抛物线的对称轴;(2)直线y=x﹣4m﹣n过点B,且与抛物线的另一个交点为C.①分别求直线和抛物线所对应的函数表达式;②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2:y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.【分析】(1)由给定的抛物线的表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)①根据抛物线的对称性可得出点B的坐标,再利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征,即可求出m、n的值,此问得解;②联立直线及抛物线的函数关系式成方程组,通过解方程组可求出点C的坐标,利用一次函数图象上点的坐标特征求出直线l2过点B、C时b的值,进而可得出点P的坐标,再结合函数图象即可找出当图形G与线段BC有公共点时,点P的纵坐标t的取值范围.【解答】解:(1)∵抛物线所对应的函数表达式为y=mx2﹣2mx+n,∴抛物线的对称轴为直线x=﹣=1.(2)①∵抛物线是轴对称图形,∴点A、B关于直线x=1对称.∵点A的坐标为(﹣2,0),∴点B的坐标为(4,0).∵抛物线y=mx2﹣2mx+n过点B,直线y=x﹣4m﹣n过点B,∴,解得:,∴直线所对应的函数表达式为y=x﹣2,抛物线所对应的函数表达式为y=﹣x2+x+4.②联立两函数表达式成方程组,,解得:,.∵点B的坐标为(4,0),∴点C的坐标为(﹣3,﹣).当直线l2:y=﹣x+b1过点B时,0=﹣4+b1,解得:b1=4,∴此时直线l2所对应的函数表达式为y=﹣x+4,当x=1时,y=﹣x+4=3,∴点P1的坐标为(1,3);当直线l2:y=﹣x+b2过点C时,﹣=3+b2,解得:b2=﹣,∴此时直线l2所对应的函数表达式为y=﹣x﹣,当x=1时,y=﹣x﹣=﹣,∴点P2的坐标为(1,﹣).∴当图形G与线段BC有公共点时,点P的纵坐标t的取值范围为﹣≤t≤3.27.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.【分析】(1)①依题意补全图形,如图1所示,②判断出△BAD≌△CAF即可;(2)先判断出△BAD≌△CAF,得到BD=CF,BG⊥CF,得到直角三角形,利用勾股定理计算即可.【解答】(1)证明:①依题意补全图形,如图1所示,。
2019-2020学年北京人大附中九年级(上)限时练习数学试卷(4)一、选择题(每小题4分,共32分)1.将抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,则得到的抛物线解析式为()A.y=(x﹣1)2﹣1B.y=(x﹣1)2+1C.y=(x+1)2+1D.y=(x+1)2﹣1 2.如图,△ABC内接于⊙O,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°3.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.40°C.80°D.70°4.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=7.则∠BDC的度数是()A.15°B.30°C.45°D.60°5.如图,⊙O的半径为4,将⊙O的一部分沿着AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.3B.2C.6D.46.已知二次函数y=ax2+bx+c的图象如图所示,则下列选项中不正确的是()A.a<0B.c>0C.0<﹣<1D.a+b+c<07.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.108.如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合),∠DCE=∠ABO+∠AEO均成立.上述结论中,所有正确结论的序号是()A.①②③B.①③④C.②④D.①②③④二、填空题(9-13每题4分14-16每题3分,共29分)9.半径为3,圆心角120度的扇形面积为.10.写出一个对称轴为x=1的二次函数的解析式:.11.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为.12.如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=70°,则∠ADC的度数是.13.如图,PA与⊙O相切于A点,若PA=4,PB=2,则⊙O的半径为.14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若方程ax2+bx+c=k有两个实数根1<x<3范围内,则k的取值范围是.15.在平面直角坐标系中半径为5的⊙C与x轴交于P(1,0)与Q(﹣5,0),则圆心C的坐标为.16.如图,四边形ABCD是⊙O的内接正方形,点P为上一点,若PB=1,PA=2,则PD的长是.三、解答题(17题7分,18-21题,每题8分,共39分)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=8,求BE的长.18.下面是“作一个30°角”的尺规作图过程已知射线AB;求作:∠PAB,使得∠PAB=30°.作法如图①在射线AB上取一点O以O为圆心,OA为半径作圆,与射线AB相交于点C;②以C为圆心OC为半径作弧,与⊙O交于点P,作射线AP,所以∠PAB即为所求的角;根据上述的尺规作图过程(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面证明证明:连接PO、PC,在⊙O和⊙C中∵OP=OC=.∴△POC是等边三角形()(填推理的依据)∴∠POC=60°()填推理的依据)∵=∴∠PAB═∠POB=30°()(填推理的依据)19.已知,二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:(1)直接写出m的值和函数的对称轴;(2)求该二次函数的解析式;(3)若A(p,y1)、B(p+1,y2)两点都在该函数的图象上,且p<0结合函数图象比较y1与y2的大小,并说明理由.20.如图,AB是⊙O的直径,半径OD⊥弦AC于点E,F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若CD∥AB,AB=4,求DF的长.21.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3.(1)直接写出抛物线的顶点坐标(用a的代数式表示);(2)当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.求点B的坐标;(3)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与(2)中得到的线段AB恰有两个公共点,结合函数的图象,求a的取值范围.22.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.(1)①依题意补全图1;②线段EF、CF、AE之间的等量关系是.(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)2019-2020学年北京人大附中九年级(上)限时练习数学试卷(4)参考答案与试题解析一、选择题(每小题4分,共32分)1.将抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,则得到的抛物线解析式为()A.y=(x﹣1)2﹣1B.y=(x﹣1)2+1C.y=(x+1)2+1D.y=(x+1)2﹣1【解答】解:抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,那么所得新抛物线的表达式是y=(x+1)2﹣1.故选:D.2.如图,△ABC内接于⊙O,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=100°,∴∠ACB=∠AOB=50°.故选:B.3.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.40°C.80°D.70°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∴∠BOD=2∠CAB=2×20°=40°.故选:B.4.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=7.则∠BDC的度数是()A.15°B.30°C.45°D.60°【解答】解:如图,连接OC.∵AB=14,BC=7,∴OB=OC=BC=7,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故选:B.5.如图,⊙O的半径为4,将⊙O的一部分沿着AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.3B.2C.6D.4【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD==2,由垂径定理得,AB=2AD=4,6.已知二次函数y=ax2+bx+c的图象如图所示,则下列选项中不正确的是()A.a<0B.c>0C.0<﹣<1D.a+b+c<0【解答】解:A、抛物线的开口向下,∴a<0,故正确;B、抛物线与y轴交于正半轴,∴c>0,故正确;C、抛物线的对称轴在y轴的右边,在直线x=1的左边,∴,故正确;D、从图象可以看出,当x=1时,对应的函数值在x轴的上方,∴a+b+c>0,故错误.故选:D.7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.10【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,8.如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合),∠DCE=∠ABO+∠AEO均成立.上述结论中,所有正确结论的序号是()A.①②③B.①③④C.②④D.①②③④【解答】解:①当BE是⊙O的直径时,∠BCE=∠DCE=90°,故①正确;②当AE∥BC时,=,∴=,∴∠BAE=∠AEC;故②正确;③当点E是的中点时,EO平分∠AEC;故正确;④如图2,∵∠A=∠ECD,∠A+∠BOE=180°,∴∠ABO+∠AEO=360°﹣∠A﹣∠BOE=360°﹣∠DCE﹣2(180°﹣∠DCE),∴∠DCE=∠ABO+∠AEO,故正确;故选:D.二、填空题(9-13每题4分14-16每题3分,共29分)9.半径为3,圆心角120度的扇形面积为3π.【解答】解:S===3π,故答案为:3π.10.写出一个对称轴为x=1的二次函数的解析式:y=x2﹣2x.【解答】解:由题意得,﹣=1,得,﹣2a=b,令a=1则b=﹣2,所以,对称轴是x=1的二次函数的一个表达式为:y=x2﹣2x.故答案为:y=x2﹣2x.11.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为1.【解答】解:过点O作OH⊥AB与点H,∵△ABC是等边三角形,∴∠CAB=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=OA=1,故答案为:112.如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=70°,则∠ADC的度数是27.5°.【解答】解:如图,连接OB,OA,∵过⊙O外一点P引⊙O的两条切线PA,PB,∴∠PBO=∠PAO=90°,∠BPO=∠APO,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣70°=110°,∴∠AOC=∠BOC=55°;由圆周角定理,得∠ADC=∠AOC=27.5°,故答案为:27.5°.13.如图,PA与⊙O相切于A点,若PA=4,PB=2,则⊙O的半径为3.【解答】解:∵PA与⊙O相切于A点,∴∠PAO=90°,∵PA2+OA2=PO2,∴42+OA2=(OA+2)2,解得:OA=3,故答案为:3.14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若方程ax2+bx+c=k有两个实数根1<x<3范围内,则k的取值范围是0<k≤2.【解答】解:从图象可以看出,当k=0时,ax2+bx+c=0有两个解1和3,∵抛物线开口向下,对称轴是直线x=2,顶点坐标为(2,2),∴当k=2时,ax2+bx+c=0有两个相等的实数根,x1=x2=2,根据抛物线的对称性可知:当0<k≤2时,方程ax2+bx+c=k有两个实数根1<x<3范围内.故答案为0<k≤2.15.在平面直角坐标系中半径为5的⊙C与x轴交于P(1,0)与Q(﹣5,0),则圆心C 的坐标为(﹣2,4)或(﹣2,﹣4).【解答】解:∵⊙C与x轴交于P(1,0)与Q(﹣5,0),∴点C在PQ的垂直平分线上,∴C点的横坐标为﹣2,设C(﹣2,n),∵半径为5,∴CP=5,∴=5,解得|n|=4,∴n=±4,∴C的坐标为(﹣2,4)或(﹣2,﹣4),故答案为(﹣2,4)或(﹣2,﹣4).16.如图,四边形ABCD是⊙O的内接正方形,点P为上一点,若PB=1,PA=2,则PD的长是1+2.【解答】解:如图,在DP上截取DM,使DM=BP=1,∵四边形ABCD是正方形,∴∠DAB=90°,DA=BA,又∵,∴∠ADM=∠ABP,∴△ADM≌△ABP(SAS),∴AM=AP=2,∠DAM=∠BAP,∵∠DAB=∠DAM+∠MAB=90°,∴∠BAP+∠MAB=90°,即∠MAP=90°,∴△MAP是等腰直角三角形,∴MP=AP=2,∴DP=DM+PM=1+2,故答案为:1+2.三、解答题(17题7分,18-21题,每题8分,共39分)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=8,求BE的长.【解答】(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=8,∴CE=ED=4.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.18.下面是“作一个30°角”的尺规作图过程已知射线AB;求作:∠PAB,使得∠PAB=30°.作法如图①在射线AB上取一点O以O为圆心,OA为半径作圆,与射线AB相交于点C;②以C为圆心OC为半径作弧,与⊙O交于点P,作射线AP,所以∠PAB即为所求的角;根据上述的尺规作图过程(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面证明证明:连接PO、PC,在⊙O和⊙C中∵OP=OC=CP.∴△POC是等边三角形(三条边相等的三角形是等边三角形)(填推理的依据)∴∠POC=60°(等边三角形每个角都等于60°)填推理的依据)∵=∴∠PAB═∠POB=30°(同弧所对的圆周角等于它所对圆心角的一半)(填推理的依据)【解答】解:(1)如图:∠PAB即为所求作的图形.(2)证明:连接PO、PC,在⊙O和⊙C中∵OP=OC=CP.∴△POC是等边三角形(三条边相等的三角形是等边三角形)∴∠POC=60°(等边三角形的每个角都等于60°)∵=∴∠PAB═∠POB=30°(同弧所对的圆周角等于圆心角的一半)故答案为:CP,三条边相等的三角形是等边三角形,等边三角形每个角都等于60°,同弧所对的圆周角等于圆心角的一半.19.已知,二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:(1)直接写出m的值和函数的对称轴;(2)求该二次函数的解析式;(3)若A(p,y1)、B(p+1,y2)两点都在该函数的图象上,且p<0结合函数图象比较y1与y2的大小,并说明理由.【解答】解:(1)观察上表可知x=0和x=2时的函数值都是﹣3,∴对称轴为直线x==1,∴(﹣1,0)的对称点为(3,0),∴m=0;(2)由表格可得,二次函数y=ax2+bx+c顶点坐标是(1,﹣4),∴y=a(x﹣1)2﹣4,又当x=﹣1时,y=0,∴a=1,∴这个二次函数的解析式为y=(x﹣1)2﹣4;(3)∵若A(p,y1)、B(p+1,y2)两点都在该函数的图象上,且p<0,∴p<p+1<1,∵a=1>0,∴开口向上,在对称轴的左侧y随x的增大而减小,∴y1>y2,20.如图,AB是⊙O的直径,半径OD⊥弦AC于点E,F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若CD∥AB,AB=4,求DF的长.【解答】解:(1)DF与⊙O相切.理由:∵∠CDB=∠CAB,又∵∠CDB=∠BFD,∴∠CAB=∠BFD.∴AC∥DF.∵半径OD垂直于弦AC于点E,∴OD⊥DF.∴DF与⊙O相切.(2)∵AC∥DF,CD∥AB,∴四边形ACDF是平行四边形,∴DF=AC,∵OD⊥弦AC,∴AE=AC,∴AE=DF,∴OA=OF,∴OF=4,∵OD=2,∴DF==2.21.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3.(1)直接写出抛物线的顶点坐标(1,a﹣4)(用a的代数式表示);(2)当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.求点B的坐标;(3)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与(2)中得到的线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【解答】解:(1)函数的对称轴为:x=1,故函数顶点为:(1,a﹣4),故答案为:(1,a﹣4);(2)当a=0时,∴抛物线的解析式为y=x2﹣2x﹣3;A(0,﹣3),∵将点A向右平移4个单位长度,得到点B.∴B(4,﹣3);(3)当函数经过点A时,a=0,有三个交点.∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a<0,当a=1时,y=x2﹣2x+a﹣3沿着y=1翻折,此时,图形M与线段AB恰有两个公共点.综上所述:﹣3<a<0或a=1.22.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.(1)①依题意补全图1;②线段EF、CF、AE之间的等量关系是AE2=EF2+CF2.(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是AE=CE+2EF.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)【解答】解:(1)①依题意补全图形如图1所示,②连接CE,∵四边形ABCD为菱形,∴BD⊥AC,BD平分AC,∴AE=CE,∵EF⊥CD,∴∠EFC=90°,根据勾股定理得,CE2=EF2+CF2,∴AE2=EF2+CF2,故答案为AE2=EF2+CF2;(2)如图2,延长EF至G,使EF=FG,连接DG,∴EG=2EF,∵DF⊥CF,∴DE=DG,∠EDG=2∠EDF∵四边形ABCD是菱形,∴AD=CD,∠ADC=2∠0DC=60°,由旋转得,∠ODC=∠EDF,∴∠ADC=∠EDG,∴∠ADE=∠CDG,在△ADE和△CDG中∵,∴△ADE≌△CDG,∴AE=CG=CE+EG=CE+2EF,∴AE=CE+2EF,故答案为AE=CE+2EF.。