大地测量学基础知识
- 格式:ppt
- 大小:966.00 KB
- 文档页数:79
一、水准面与大地水准面1、水准面我们把重力位相等的面称为重力等位面,也就是我们通常所说的水准面。
水准面有无数个。
1)水准面具有复杂的形状。
2)水准面相互既不能相交也不能相切。
3)每个水准面都对应着唯一的位能W=C=常数,在这个面上移动单位质量不做功,亦即所做的功等于0,即dW=-gsds,可见水准面是均衡面。
4)在水准面上,所有点的重力均与水准面正交。
于是水准面又可定义为所有点都与铅垂线正交的面。
故设想与平均海水面相重合,不受潮汐、风浪及大气压变化影响,并延伸到大陆下面处处与铅垂线相垂直的水准面称为大地水准面大地水准面作为测量外业的基准面,而与其相垂直的铅垂线则是外业的基准线。
似大地水准面与大地水准面在海洋上完全重合,而在大陆上也几乎重合,在山区只有2-4m 的差异我们选择参考椭球面作为测量内业计算的基准面,而与其相垂直的法线则是内业计算的基准线。
1.参心坐标系建立一个参心大地坐标系,必须解决以下问题:(1)确定椭球的形状和大小;(2)确定椭球中心的位置,简称定位;(3)确定椭球中心为原点的空间直角坐标系坐标轴的方向,简称定向;(4)确定大地原点。
我国几种常用参心坐标系:BJZ54、GDZ802.地心坐标系地心坐标系分为地心空间大地直角坐标系和地心大地坐标系等。
地心空间大地直角坐标系又可分为地心空间大地平面直角坐标系和空间大地舜时直角坐标系。
1)建立地心坐标系的意义:2)建立地心坐标系的最理想方法是采用空间大地测量的方法。
3)地心坐标系的表述形式(判断)1)WGS一84大地坐标系WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS一84坐标系的几何定义是:坐标系的原点是地球的质心,Z轴指向BIHl984.0定义的协议地球极(CTP)方向,X轴指向BIHl984.0的零度子午面和CTP赤道的交点,y轴和Z、X轴构成右手坐标系。
大地测量学简介大地测量学是一门研究地球形状、大小以及地球表面上各点的空间坐标相互关系的学科。
它是土地测量学的一个分支,涉及测量地球形状、地球重力场、地球表面的高程变化等内容。
大地测量学在地理信息系统(GIS)、地图制图、航空航天等领域有着广泛的应用。
地球形状与地球坐标系统地球形状地球并非完全理想的球体,而是一个略为扁平的椭球体。
为了描述地球的形状,人们提出了多种地球模型,例如椭球模型、基准椭球模型等。
其中,最为常用的是基准椭球模型,常见的基准椭球模型有WGS84、GRS80等。
地球坐标系统地球坐标系统用于描述地球上各点的空间位置,常见的地球坐标系统有经纬度坐标系统和平面坐标系统。
经纬度坐标系统使用经度和纬度来表示位置。
经度是指地球上某点位于东西方向的角度,取值范围为180°到+180°,以本初子午线(通常是伦敦的格林威治子午线)为基准。
纬度是指地球上某点位于南北方向的角度,取值范围为90°到+90°,以赤道为基准。
平面坐标系统使用直角坐标系表示地球上的位置。
常见的平面坐标系统有UTM坐标系统和国家网格坐标系统。
UTM坐标系统将地球表面划分为60个纵向的投影带和相应的横向带号,便于对地球表面进行分区管理和测量。
国家网格坐标系统是各国根据自身特点而制订的具有自主知识产权的坐标系统。
大地测量技术大地测量技术主要包括测量地球形状和测定地球表面上各点的位置和坐标。
常用的大地测量技术包括三角测量、重力测量、高程测量等。
三角测量三角测量是测量地球上任意两点之间的距离和角度的方法。
它基于三角形的性质,通过测量三角形的边长和角度来计算未知点的位置。
三角测量在大地测量学中有着广泛的应用,例如地图测绘、导航定位等。
重力测量重力测量是测量地球表面上各点重力场强度的方法。
地球的重力场是由地球本身的质量和形状所决定的,通过测量重力场的变化可以推断地球表面上各点的高程变化。
重力测量常用于大地水准测量、地壳运动研究等领域。
大地测量基础知识
嘿,朋友们!今天咱来聊聊大地测量基础知识。
你说大地测量是啥呀?就好比给大地这个大巨人量身高、测体重一样!
你想想,咱们生活的地球那可老大了,要是没有大地测量,那得多乱套呀!大地测量就像是给地球画一幅超级精确的画像。
咱先来说说测量的那些工具吧,就像咱画画得有画笔一样。
水准仪,就像一个小机灵鬼,能帮我们知道地面是不是平的。
还有经纬仪,那可是个厉害的角色,能准确地测量角度呢!全站仪就更牛了,集各种本领于一身,简直是测量界的多面手!
那大地测量都干啥呢?比如说要建一座大桥,不得先知道这儿的地形啥样啊,不然桥建歪了咋办?还有盖高楼,要是地基都没测好,那楼还不得摇摇晃晃的呀!
再说说测量的精度吧,这可太重要啦!就好比你做衣服,尺寸差一点那穿上就不合适呀。
测量也是一样,差一点可能就会出大问题呢!你说要是地图上差了一点点,那实际走起来可就差老远啦!
大地测量还和我们的日常生活息息相关呢!你平时用的手机导航,那不就是靠大地测量的数据嘛。
你能准确地找到想去的地方,可都得感谢大地测量的功劳呀!
还有啊,大地测量的人可不容易,他们得背着那些仪器翻山越岭的,风里来雨里去。
他们就像一群勇敢的探险家,为了得到准确的数据,什么苦都能吃!
你说这大地测量是不是特别神奇?它就像一双神奇的眼睛,让我们能看清大地的模样。
没有它,我们的生活可就没那么方便啦!所以啊,可别小看了这大地测量,它可在背后默默地为我们的生活做着大贡献呢!这就是大地测量,有趣又重要,不是吗?。
第一章绪论1、大地测量学:在一定时间、空间参考系统中,测量和描绘地球及其他行星体的一门学科。
最基本任务:测量和描绘地球并检测其变化,为人类活动提供关于地球等行星体的空间信息经典测量学是把地球假设为刚体不变,均匀旋转的球体或椭球体,并一定范围内测绘地和研究其形状、大小及外部重力场。
2、大地测量学地位及作用:(1)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。
(2)大地测量学在防灾减灾救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用。
(3)大地测量学是发展空间技术和国防建设的重要保障。
(4)大地测量学在当代地球科学研究中的地位显得越来越重要。
(5)大地测量学是测绘学科的各类分支学科(大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础学科。
3、大地测量学的三个基本分支:几何大地测量学、物理大地测量学及空间大地测量学。
4、现代大地测量学同传统大地测量学之间没有严格界限,但是现代大地测量学确实具有许多新的特征(测量范围大,动态方式,周期短,精度高)。
5、大地测量学的基本内容:(1)确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水平面地形及其变化等。
(2)研究月球及太阳系行星的形状及重力场。
(3)建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要.(4)研究为获得告警的测量成果的仪器和方法等。
(5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。
(6)研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。
第二章坐标系统与时间系统1、地球的运转可分为四类:(1)与银河系一起在宇宙中运动。
(2)在银河系内与太阳系一起旋转。
(3)与其他行星一起绕太阳旋转(公转或周年视运动)(4)绕其瞬时旋转轴旋转(自转或周日视运动)。
大地测量学第一章1.大地测量学的定义?大地测量学与普通测量学有哪些主要区别?大地测量学是研究精确测定和描绘地面控制点空间位置、研究地球形状和大小、研究地球表面和外部重力场及其变化的学科。
区别在于:(1)测量的精度等级更高,工作更加严密。
(2)测量的范围更加广阔,常常是上百平方公里乃至整个地球。
(3)侧重研究的对象不同。
普通测量学侧重于研究如何测绘地形图以及进行工程施工测量的理论和方法。
大地测量学侧重于研究如何建立大地坐标系、建立科学化、规范化的大地控制网并精确测定控制网点坐标的理论和方法。
2.大地测量学的任务和主要研究内容是什么?简述其在国民经济建设中的地位。
一·基本任务可以概括为:1.在地球表面的陆地上建立高精度的大地测量控制网,并监测其数据随时间的变化;2.确定地球重力场及其随时间的变化,测定和描述地球动力学现象;3.根据地球表面和外部空间的观测资料确定地球形状和大小。
二·主要研究内容:1.确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。
2.研究月球及太阳系行星的形状及重力场。
3.研究建立和维持高科技水平的工程和国家水平控制网和精密水准网的原理和方法;4.研究获得高精度测量成果的精密仪器和科学的使用方法;5.研究地球表面测量成果向椭球及平面的数学投影变换及有关问题的测量计算;6.研究高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法。
三·国民经济建设中的地位:(1)为地形测图和大型工程测量提供基本控制;(2)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用;(3)大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着特殊的作用;(4)大地测量是发展空间技术和国防建设的重要保障;(5)大地测量在当代地球科学研究中的地位显得越来越重要。
地测专业基础知识点
1.地球测量学基础知识:地球形状和大小、地球的各种坐标系统、地
球的大地水准面和等高线、地球的自转和公转等。
2.大地测量学:测地线的基本概念和性质、大地测量学的基本原理和
方法、大地测量学中的高程、大地水准面和高程系统等。
3.地形测量学:地面表面形态的测量和描述、地物档案的建立和维护、数字高程模型(DEM)的生成和应用等。
4.GPS测量与导航:GPS测量原理、GPS信号接收与处理、GPS定位和
导航的基本原理和方法、GPS测量在地测中的应用等。
5.遥感与地球信息系统(GIS):遥感数据源与获取方式、遥感影像
的处理和解译、GIS数据库的建立和管理、GIS在地测领域的应用等。
6.地图投影与坐标系统:地图投影的基本原理和分类、常用地图投影
的具体应用、坐标系统的选择与转换等。
7.测绘仪器与软件:各种测绘仪器的原理和使用、测绘软件的功能和
应用、测绘精度与误差分析等。
8.海洋测绘学:船舶测绘的原理和方法、海洋测量的基础知识、海洋
地球物理测量等。
9.卫星测量与导航:卫星测量的基本原理和方法、卫星导航系统的基
本原理和应用、卫星测量与导航在地测中的应用等。
10.阵地地形测量:战场上的地形测量与战争模拟。
11.土地评估与土地规划:土地的权益和规划评估、土地利用规划和决策支持系统等。
以上仅为地测专业基础知识点的一部分,涉及面广泛,内容深入。
掌握这些基础知识,可以为日后从事地测工作打下坚实的基础。
另外,随着技术的发展和应用的推进,地测专业的知识体系也在不断更新和完善,因此,持续学习和不断更新知识是地测专业人员的必备素质。
1.概念(1)垂直偏差(2)大地水准面间隙(3)正高(4)正高(5)力高(6)参考椭球体(7)一般地球椭球体(8)正椭球体和水平椭球体(9)地高(10)正剖面(11)正圆(12)相对法剖面(13)平均曲率半径子午线会聚角大地线大地要素地图投影七个参数天文站点拉普拉斯点等纬度重力扁平底点纬度垂直尺度纬度未知方向角2.大地测量的研究内容; 野外测量和内部计算的基准线和线。
建立大地基准的意义; 按位置分类; 方向应满足的几何条件。
平面二维矩形坐标系的变换公式(四个参数)5。
重力势方程地面点法向重力计算公式。
研究了真实身高、正常身高与土高之间的关系公式。
几个辅助函数和曲率半径计算公式: t,2,w,v,n,r,m,e2 = 2-28。
本文对大地测量微分方程和clairau 方程及其应用(实例) ,clairau 定理3.子午面的直角坐标与地球纬度的关系; 平行圆的曲率半径;。
地面观测方向→椭球面应校正→平面应校正11。
解决大地主题的方法是什么,以及它们的使用情况。
用高斯平均论元法和贝塞尔投影法解决重大问题的基本思路。
贝塞尔投影条件; 高斯投影条件14。
地图投影变形性能; 地图投影方法按不同性质分类。
地图投影对控制测量的要求. 使用等距投影的优点16。
椭球三角形系统的主要内容归结为高斯行星4.为什么要进行分区计算和更换计算; 用例换带计算; 间接法换带计算步骤。
2005年10月19日,中国科学院地球物理研究所在地球物理实验室进行了二维修正的实验研究,研究了地面观测距离→椭球大地测线长度→高斯平面弦线统一修正长度的二维修正意义及其简化计算公式。
建立国家飞机控制网络的方法是什么?基本原则20。
国家高程控制网等级布置原则。
精密水准计算精度指标: 偶然平均误差和每公里高差中位数平均误差总和22。
控制网优化的质量标准: 精度、可靠性和成本坐标方位角和大地方位角之间的关系= a + 定义了不同时间系统选择周期的测量依据:5.大地测量数据库的数据组成和数据特征是什么?图24。
《大地测量基础》知识要点第二章坐标与时间系统1、地轴方向相对于空间的变化(岁差和章动)2、地轴相对于地球本身相对位置变化(极移)3、地球自转速度变化(日长变化)4、描述上述三种地球自转运动规律的参数称为地球定向参数(EOP),描述地球自转速度变化的参数和描述极移的参数称为地球自转参数(ERP),EOP 即为ERP 加上岁差和章动5、时间的描述包括时间原点、单位(尺度)两大要素6、地球的自转运动:恒星时(ST) 世界时UT 未经任何改正的世界时表示为UT0,经过极移改正的世界时表示为UT1,进一步经过地球自转速度的季节性改正后的世界时表示为UT2。
地球的公转:历书时ET与力学时DT(太阳系质心力学时TDB 地球质心力学时TDT)物质的振动:原子时(A T) 协调世界时(UTC)7、大地基准所谓基准是指用以描述地球形状的参考椭球的参数(如参考椭球的长短半轴),以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。
8、天球坐标系:用于研究天体和人造卫星的定位与运动。
地球坐标系:用于研究地球上物体的定位与运动,是以旋转椭球为参照体建立的坐标系统,分为大地坐标系和空间直角坐标系两种形式。
9、高程参考系统❖以大地水准面为参照面的高程系统称为正高以似大地水准面为参照面的高程系统称为正常高;❖大地水准面相对于旋转椭球面的起伏如图所示,正常高及正高与大地高有如下关系:H=H正常+ζH=H正高+N10、大地测量参考系统的具体实现,是通过大地测量手段确定的固定在地面上的控制网(点)所构建坐标参考架、高程参考框架、重力参考框架。
11、参考椭球: 具有确定参数(长半径a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球.总地球椭球:除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球.椭球定位:是指确定椭球中心的位置,可分为两类:局部定位和地心定位。