Progetto di Laboratorio per il corso di Programmazione in Rete e Laboratorio
- 格式:pdf
- 大小:402.18 KB
- 文档页数:22
申请都灵理工大学留学材料及流程一览都灵理工大学是意大利成立最早的国立理工科大学,建于1906年,作为历史悠久的欧洲名校,都灵理工大学在世界范围内的声誉和威望都较高。
接下来为大家介绍申请都灵理工大学留学材料及流程。
1.护照2. 个人简历3. 学位证书如果还没毕业,则使用在读证明代替。
4. 毕业证书如果还没毕业,则使用在读证明代替。
5. 在读证明去学校教务处开,需要盖章(已毕业的不需要)。
6. 成绩单每一页都需要盖章,最好使用有学校名称的抬头纸。
7. 语言要求意大利语授课:意大利语B1+雅思5.5;英语授课:雅思5.5;意大利语+英语授课:意大利语B1+雅思5.5。
8. 推荐信最好有2封,一封出自本校的系主任或校长等,一封出自业界,我们的推荐信都是自己写,然后找大佬签字的,如果有大佬愿意亲自为你写就更好啦。
9. 课程描述每门课+概述,翻译成英语/意大利语。
10. 获奖证明/实习证明11.作品集建筑-城市建设,建筑-可持续建设,建筑-遗产修复与评估,系统设计必须有。
1、首先我们进入都灵理工大学的官网,进入官网后进入网申页面。
2、在网页上注册账号以后都理会给你的邮箱发一封邮件,确认后,补充自己的资料,就可以用注册的账号进行登录啦。
3、研究生可申请两个专业,接着按照要求上传所有的材料(材料清单见下文,记住所有材料需要翻译成英语或者意大利语,并附上中文原件),交完20欧元的考试注册费,就等着好消息吧。
(一)本科申请要求1、学生须持有高中毕业证书或同等学历证书,“马可波罗计划”高考成绩在400分(满分750)及以上即可。
2、语言要求意大利语:B1;英语(英语授课课程):雅思5.5。
3、入学考试1)意大利建筑考试意大利建筑类专业的考试是全国统考的,因此所有学校都是同一天的同一个时间举行考试,建筑统考需要在Universitaly上进行注册,然后再在都理官网进行注册。
2)TIL- Test in LAIB报名除建筑以外所有专业的学生(包括工程类、设计与视觉传达、环境与土地规划)都必须要参加并通过这个考试,才有资格注册都灵理工大学(二)研究生申请要求1、持有本科阶段学士学位证书、大学成绩单、大学课程描述、高中毕业证书或同等学历证书,有高考成绩。
通信11 S7-1200 可实现 CPU 与编程设备、HMI 和其它 CPU 之间的多种通信。
警告PROFINETPROFINET 用于使用用户程序通过以太网与其它通信伙伴交换数据:●在 S7-1200 中,PROFINET 支持 16 个最多具有 256 个子模块的 IO设备,PROFIBUS 允许使用 3 个独立的 PROFIBUS DP 主站,每个 DP 主站支持 32个从站,每个 DP 主站最多具有 512 个模块。
●S7 通信●用户数据报协议 (UDP)●ISO on TCP (RFC 1006)●传输控制协议 (TCP)通信PROFINET IO 控制器作为采用 PROFINET IO 的 IO 控制器,CPU 可与本地 PN 网络上或通过 PN/PN耦合器(连接器)连接的最多 PROFIBUS和PROFIBUSPROFIBUS 用于使用用户程序通过 PROFIBUS 网络与其它通信伙伴交换数据:●借助 CM 1242-5,CPU 作为 PROFIBUS DP 从站运行。
●借助 CM 1243-5,CPU 作为 1 类 PROFIBUS DP 主站运行。
●PROFIBUS DP 从站、PROFIBUS DP 主站和 AS-i(左侧 3 个通信模块)以及PROFINET 均采用单独的通信网络,不会相互制约。
AS-i通过 S7-1200 CM 1243-2 AS-i 主站可将 AS-i 网络连接到 S7-1200 CPU。
CPU 至 CPU S7 通信您可以创建与伙伴站的通信连接并使用 GET 和 PUT 指令与 S7 CPU 进行通信。
TeleService 通信在通过 GPRS 的 TeleService 中,安装了 STEP 7 的工程师站通过 GSM 网络 Internet和与具有 CP 1242-7 的 SIMATIC S7-1200 站进行通信。
该连接通过用作中介并连接到Internet 的远程控制服务器运行。
意大利大学预注册2008-2009学年在2008-2009学年意大利大学预注册日期正式公布前,意大利驻华大使馆要求申请人准备好以下文件材料:1)申请预注册普通大学本科课程a)经中国外交部和意大利驻华使馆领事处双认证的高中毕业证书(需翻译成意大利语);b)向教育部学位与研究生教育发展中心()申请办理以下证明:高考成绩证明高中会考合格证(对于实行高中会考的省份)中心会直接将证明文件递送至意大利使馆(申请人只需保留付款收据);c)从以下四个意大利外交部认可的语言培训机构获得的A2或A2以上等级的语言水平证书:佩鲁贾外国人大学,锡耶纳外国人大学,罗马第三大学,但丁学院;d)个人护照。
请注意:申请预注册的学生的高考成绩不得低于380分(满分750分);申请学生须提交由意大利外交部认可的语言培训机构发放的A2或A2以上等级的语言水平证书:意大利驻华使馆保留对申请人的语言水平进行考核的权利;高三在读的申请人,须先提交c)和d)中所述材料,在高考及会考考试后尽快提交a)和b)中所述文件以完成预注册程序;预注册申请的最终结果将于8月下旬由意大利大学通知意大利驻华使馆。
只有在收到大学的预录取通知书后,意大利驻华大使馆方可发放签证。
2)申请预注册艺术类院校本科课程a)经中国外交部和意大利驻华使馆领事处双认证的高中毕业证书(需翻译成意大利语);b)向教育部学位与研究生教育发展中心()申请办理以下证明:高考成绩证明;在艺术类院校进行的专业考试证明(如表演、舞蹈、声乐、乐器演奏等);高中会考合格证(对于实行高中会考的省份);中心会直接将证明文件递送至意大利使馆(申请人只需保留付款收据);c)从以下四个意大利外交部认可的语言培训机构获得的A2或A2以上等级的语言水平证书:佩鲁贾外国人大学,锡耶纳外国人大学,罗马第三大学,但丁学院;d)个人护照。
请注意:申请学生须提交由意大利外交部认可的语言培训机构发放的A2或A2以上等级的语言水平证书:意大利驻华使馆保留对申请人的语言水平进行考核的权利;高三在读的申请人,须先提交c)和d)中所述材料,在高考及会考考试后尽快提交a)和b)中所述文件以完成预注册程序;预注册申请的最终结果将于8月下旬由意大利大学通知意大利驻华使馆。
A Lab-on-a-Chip for Cell Detection and ManipulationGianni Medoro,NicolóManaresi,Andrea Leonardi,Luigi Altomare,Marco Tartagni,and Roberto GuerrieriAbstract—This paper presents a lab-on-a-chip for electronic manipulation and detection of microorganisms based on the use of closed dielectrophoretic(DEP)cages combined with impedance sensing.A printed circuit board(PCB)prototype has been used to trap,concentrate,and quantify polystyrene micro-beads in agree-ment with CAD simulations.The experiment was successfully repeated with S.cerevisiae.The results prove the effectiveness of the approach for particle manipulation and detection without the need for external optical components nor chemical labeling.With the proposed approach,particle concentration may be in-creased on-chip of more than three orders of magnitude,corre-spondingly boosting the detection sensitivity.Index Terms—Dielectrophoresis,impedance sensing,lab-on-a-chip.I.I NTRODUCTIONM ANY applications in the biological,pharmaceutical, and medical fields are characterized by complex exper-imental protocols which need both microorganism detection and manipulation.Hence,labs-on-a-chip need to integrate functions such as sensing,processing,and actuation to increase their effectiveness.Several approaches for microorganism manipulation have been developed based on dielectrophoresis.Dielectrophoresis [1]is the physical phenomenon whereby neutral particles,in response to a spatially nonuniform electric field,experi-ence a net force directed toward locations with increasing or decreasing field intensity according to the physical properties of particles and medium.In the first case,the force is called positive dielectrophoresis(pDEP)while in the second case it is called negative dielectrophoresis(nDEP).In[2],both pDEP and nDEP are used to precisely displace cells in a microchamber formed between two facing glass chips with elongated electrodes.However,cells get in contact with device surfaces and tend to stick to them.A solution is to levitate cells while manipulating them.Since maxima of the electric field can not be established away from the electrodes,stable levitation is possible only with nDEP force.Hence,the use of closed nDEP cages has been proposed.In[3],three-dimensional(3-D) structures of electrodes located at the vertexes of a cube are used for such a purpose.The main drawback is that fluid flow isManuscript received May20,2002;revised December6,2002.This work was supported by EC under Contract IST-2001-32437.The associate editor co-ordinating the review of this paper and approving it for publication was Prof. Jan Soderkvist.G.Medoro and N.Manaresi are with Silicon Biosystems,Bologna, Italy(e-mail:gmedoro@;nmanaresi@).A.Leonardi,L.Altome,M.Tartagni,and R.Guerrieri are with the ARCES, University of Bologna,Bologna,Italy(e-mail:aleonardi@deis.unibo.it; laltomare@deis.unibo.it;mtartagni@deis.unibo.it;rguerrieri@deis.unibo.it). Digital Object Identifier10.1109/JSEN.2003.814648required to transport cells into and out of the DEP cage.In[4], traveling waves combined with nDEP are used to move cells in a microchamber without fluid flow;however,it is difficult to precisely position cells,as required by multistep experimental protocols,due to the fact that cell speed depends on the cell type.As far as sensing is concerned,approaches such as optical [5]or fluorescent labeling(e.g.as usedinFig.1.System setup:A motherboard is used to generate and apply the stimuli to each electrode in the device.Both the actuation and the sensing phases are executed under software control by means of a PC.This paper is structured as follows.Section II describes the system setup and lab-on-a-chip working principles.Section III reports the experimental results followed by conclusions in Sec-tion IV .II.L AB-ON-A -C HIP S YSTEM D ESCRIPTIONFig.1shows a picture of the complete lab-on-a-chip system.The passive sensor/actuator is plugged into a motherboard.The latter generates the proper phased voltages for each electrode in the device in order to create and control the DEP cages and to en-ableparticlesensing.Asoftwaretoolrunningonamicrocomputer (PC)have been developed to control and automate the actuation and sensing operations (Fig.1).A cross-sectioned view of the de-vice is represented in Fig.2(a).The microchamber is comprised ofatopplatethatisbothconductiveandtransparent(whichserves as an electrode and is electrically connected to the PCB device by means of a conductive glue)and on the bottom by a printed circuit board (PCB)support.A spacer (realized by two optic fibers)de-termines the chamber height,while a silicon elastomer gasket de-limits and seals the microchamber on the sides.Fig.2(b)sketches a cylinder-shaped DEP cage in the center of the device.A.ActuationActuation is based on the DEP moving cages approach pre-sented in [15].A cylinder-shaped DEP cage can be realized above each genericelectrodemustbe connected to an in-phase stimulus as shown in Fig.3(a).The prototype device has 39electrodes by which it is possible to re-alize from zero up to 19DEP cages.By sequentiallychanging(a)(b)Fig.2.Schematic view of the prototype device.(a)Cross section of the device:two optic fibers are used as spacer and a gasket is used to delimit the microchamber on the sides,while a conductive lid and a PCB support close the microchamber respectively on the top and on the bottom.(b)Cylinder-shaped DEP cage in correspondence of the central electrode.the electrode activation pattern,each DEP cage can also be in-dependently moved from electrode to the next along the whole microchamber,while dragging the trapped particles.After the electrode activation pattern has been changed,the cage disappears from the original location and re-appears,for example,in correspondence of one of the neighboring elec-MEDORO et al.:LAB-ON-A-CHIP FOR CELL DETECTION AND MANIPULATION319(a)(b)Fig.3.Circuit connections of the electrodes and the lid.(a)During the actuation,each electrode can be connected,under software control,to an in-phase or a counter-phase stimulus.(b)During the sensing phase,the sensing electrode is connected to a transimpedance amplifier and all the others electrodes are connected to GND.A sinusoidal stimulus is applied to the lid.trodes.At the beginning the particles remain in the original lo-cation due to inertial and viscous forces.But,since they are still in the attraction basin of the shifted cage,they will end up toward its center,as proved by simulations and experiments performed for different particles sizes and concentrations.The dynamic is strictly influenced by the particle size.In fact,the dielectrophoretic force is proportional to the particlevolume,while the viscous force is proportional to the par-ticlesurface.The ratio between dielectrophoresis and the viscous force is therefore proportionaltomdiameter particles,5–10s are needed,while for50-(2)where is the particle ra-dius,and themedium ,definedasthe conductivity.For nDEP,it shouldbe .At lowfrequency(3)while at highfrequencym micro-beads).The transfer function of thesensing circuit is described by the followingequation:are the resistance and capacitance between the lidand the sensing electrode.In the low frequency range(is the system resistance with particles.From (6)and (8),we can predictthatthevoltageamplitudeofthetransimpedanceamplifier output decreases when particles are trapped above the electrode.The same holds true for the high frequency range,since from(4)320IEEE SENSORS JOURNAL,VOL.3,NO.3,JUNE2003Fig.4.Basic experiment steps.(a)The device is powered off and the particles fall to the bottom of the microchamber.(b)The device is powered on and a set of DEP cages appears in correspondence to each counter-phase electrode;the particles are trapped in stable levitation inside the cages.(c)–(e)The DEP cages are shifted and merged toward the center,thus increasing the particle concentration in correspondence to the central electrode.Repeating the sensing operation for each electrode in the de-vice,it is possible to build a map of particle distribution.More-over,the measure of the output variation may be associated to the volume occupied by the particles,hence an estimation of the quantity of trapped particles for each cage may be possible.For this purpose,a precalibration procedure is required to associate a volume quantity to the sensing value.So,if the cell specie in the microchamber is known and previously characterized,a cell quantification for each cage is possible.Moreover,the con-centration capabilities of the device can boost the sensitivity of the detection,which is useful when low concentration samples have to be analyzed.Sometimes,the sensing measure can give important informations even if the microorganism specie is not known or if a precalibration is not available.For example,con-sider the problem of checking contaminated water for microor-ganisms.In this case,one has to assess whether microorganisms are present in the sample or not.This could be revealed by de-creasing sensing output after merging DEP cages.III.E XPERIMENTAL R ESULTSA sketch of the experiment steps is shown in Fig.4.The mi-crochamber is filled with a suspension of3.46-cm).When the de-vice is powered-off,the micro-beads are randomly distributed on the bottom of the device [Fig.4(a)].Once the electrodesareFig. 5.Electric field distribution for different stimuli configurations,corresponding to the basic concentration steps (sketched in Fig.4).The darkest regions are the field minima,which corresponds to the center of the DEP cages.The DEP cages are shifted and merged toward the center,thus increasing the particle concentration in correspondence to the central electrode.properly energizedwithtimes,the volume occu-pied by the particles in correspondence to the central electrode increases according to therelationship(10)where).In each ofthe next frames,a concentration cycle is operated and from (10)the particles volume above the central electrode (20th)increasestoMEDORO et al.:LAB-ON-A-CHIP FOR CELL DETECTION AND MANIPULATION321Fig.6.(left)Optical acquisition frames and(right)grey-scale representationof the sensing output.(i)The micro-beads are positioned over one out of threeelectrodes.(ii)After the first concentration cycle,the volume of particlescontained in the DEP cage located over the central electrode is increased threetimes that of the original one,five and seven times,respectively,after(iii)thesecond and(iv)third cycles.The silicon gasket overlaps the first(1–6)and last(35–39)electrodes producing some border effects(visible on the right)in theform of a more or less darker region unaffected by the cage motion.A.Parasitic DEP CagesAs shown in Fig.7,parasitic DEP cages appear,for example,when a counter-phase stimulus is applied to one of three elec-trodes and an in-phase stimulus is applied to the other two elec-trodes[electrodes3and4in Fig.7(a)].In fact,a field minimumin the gap between the two in-phase electrodes is created,whichcorresponds to a parasitic nDEP cage.After the sample has beeninjected into the device,the particles are randomly distributed inthe microchamber and some of them,those located inside the at-traction basin of the parasitic cages,will be trapped[this effect isvisible in Fig.6(i)].These particles can be easily recovered,forexample,by moving the DEP cage as shown in Fig.7(b),wherethe parasitic DEP cage disappears from the original location andthe particles which were trapped between electrodes3and4inFig.7(b)are attracted by the nearest DEP cage.Furthermore,when the diameter of the particle322IEEE SENSORS JOURNAL,VOL.3,NO.3,JUNE2003Fig.8.Intermediate step (b)can be introduced to improve the particle dynamics and to avoid the side-effects of the parasitic DEP cages.injected into the microchamber and before the cages are created [Fig.10(a)].If the sample is equally distributed inside the de-vice,it is possible to extract an information about the different electrode patterns.Once the cages have been created,the fixed pattern noise can be removed from the next measures by using the followingformula:(11)where[Fig.10(c)],m)is suf-ficiently small in comparison with the cage dimension(m);•both the permittivity and the conductivity of the cloud depend on the ratio between the volume of micro-beads and the suspending medium inside the cylinder (in this case distilled water).For example,if we consideracm conductivity for the suspending medium andacm for the particles,from geometrical con-siderations,we can assertthatfor the differentconcentration steps described above.So,if are theinitial cylinder volume and radius,mergingMEDORO et al.:LAB-ON-A-CHIP FOR CELL DETECTION AND MANIPULATION323Fig.10.FPN compensation.(a)After the sample is injected into the microchamber,an FPN measure is fist performed;the FPN can then be removed from all of the other measures(performed after the particles have been trapped)by(b)subtracting electrode by electrode(a)from(b)and adding the average value of(a).The resulting values are shown in(c).parison between simulated and measured output amplituderelating to the central electrode for 3.46- m polystyrene micro-beads indistilled water( '0.5 s=cm,stimulus:10V= r=25 m,L=1cm.becomes and the radiusvalue,obtained fromthe simulations,applied to(6).Fig.11shows the comparisonbetween the measured and simulated values.A good agreementhas been obtained for a starting micro-beads cylinder radius ofm,which concords with optical measurements.The experiments were successfully repeated with S.cere-visiae(Fig.12).Baker’s yeast Saccharomyces cerevisiae(from the University of Bologna,DIPROV AL Type Collection)have been grown at25324IEEE SENSORS JOURNAL,VOL.3,NO.3,JUNE 2003than 30kHz have been avoided to prevent the occurrence of electrolysis.The microchamber of the device has been filled with a suspension of S.cerevisiae in 280-mM mannitol.Once the electrodes have been properly energized with a 100kHz frequency sinusoidal signal (10V ),the yeasts have been attracted toward the DEP cages.The concentration cycle described in Fig.4has been repeated five times;therefore,the volume occupied by the yeasts in correspondence to the central electrode has been increased up to nine times the original one,in agreement with the formula (10).After each concentration step,a sensing operation has been performed in correspondence to the central electrode.The sensing output value are plotted in Fig.12,showing lower value for higher volumes.The detection technique described is also suited to be integrated with the cell separation principle presented in [13],increasing the effectiveness of the proposed device.Based on dielectrophoresis,this separation principle has been implemented on the same device described herein success-fully proving the capabilities for separating red blood cells from K562cells [14].DEP-based separation and isolation capabilities of different phenotypes has also been recently proven [19]–[25].As a further example of applications,one may consider the problem of the detection and recovery of rare cells in a liquid sample.The concentration effects of the above described experiment can be easily repeated for a larger area device and combined with the DEP separation principle.Thus,it would be possible to concentrate a selected population (i.e.,rare cells)of three orders of magnitudes or more by just extending the chamber length to few centimeters (e.g.,to 10cm).Such a concentration factor correspondingly boosts the sensitivity of this lab-on-a-chip,allowing one to quantify the cells electronically,yielding real-time direct readouts without the need for chemical labeling techniques nor optical instruments.IV .C ONCLUSIONA lab-on-a-chip which integrates actuation and sensing ca-pabilities for the electronic manipulation and detection of mi-croorganisms has been presented.A prototype has been real-ized using a low cost technology (PCB)proving how,exploiting the impedance-sensing applied to the “moving-cage,”it is pos-sible to concentrate the sample and quantitate it (which is useful for the detection of rare cells).The seven-fold concentration demonstrated in this paper could be readily extended to three or more orders of magnitude.The increased sensitivity due to the concentration effect has been demonstrated by using first micro-beads and then S.cerevisiae .Furthermore,this lab-on-a-chip af-fords high flexibility,thanks to software programmability of the experimental protocol and the fast customization of the actu-ator/sensor.A CKNOWLEDGMENTThe authors would like to thank D.Baldi and M.Borgatti for the biological experiment support.R EFERENCES[1]X.-B.Wang,Y .Huang,F.F.Becker,and P.R.C.Gascoyne,“A uni-fied theory of dielectrophoresis and traveling wave dielectrophoresis,”J.Phys.D ,vol.27,pp.1571–1574,1994.[2]J.Sueheiro and R.Pethig,“The dielectrophoretic movement and po-sitioning of a biological cell using a three-dimensional grid electrode system,”J.Phys.D ,vol.31,pp.3298–3305,1998.[3]T.Muller,G.Gradl,S.Howitz,S.Shirley,Th.Schnelle,and G.Fuhr,“A 3-D microelectrode system for handling and caging single cells and particles,”Biosens.Bioelectron.,vol.14,pp.247–256,1999.[4]Y .Huang,X.-B.Wang,J.A.Tame,and J.A.Pethig,“Electrokineticbehavior of colloidal particles in traveling electric fields:studies using yeast cells,”J.Phys.D ,vol.26,pp.1528–1535,1993.[5]M.S.Talary and R.Pethig,“Optical technique for measuring the pos-itive and negative dielectrophoretic behavior of cells and colloidal sus-pensions,”Proc.Inst.Elect.Eng.—Sci.Meas.Technol.,vol.14,no.5,Sept.1994.[6] A.Y .Fu,C.Spence,A.Scherer,F.H.Arnold,and S.R.Quake,“Amicrofabricated fluorescence-activated cell sorter,”Nat.Biotech.,vol.17,Nov.1999.[7]S.Gawad,L.Schild,and Ph.Renaud,“Micromachined impedance spec-troscopy flow cytometer for cell analysis and particle sizing,”Lab on a Chip ,vol.1,pp.76–82,2001.[8]K.C.Fuller,J.Hamilton,H.Ackler,P.Krulevitch,B.Boser,A.El-dredge,F.Becker,J.Yang,and P.Gascoyne,“Microfabricated multi-fre-quency particle impedance characterization systems,”in Micro Total Analysis Systems .Enschede,The Netherlands:Kluwer,2000.[9]L.L.Sohn,O.A.Saleh,G.R.Facer,A.J.Beavis,R.S.Allan,and D.A.Notterman,“Capacitance cytometry:measuring biological cells one by one,”in A ,vol.97,2002,pp.10687–10690.[10]P.Fortina,S.Surrey,and Lj.Kricka,“Molecular diagnostics:hurdles forclinical implementation,”Trends Mol.Med.,vol.8,pp.264–266,2002.[11]K.K.Jain,“Pharmacogenomics,”in Cambridge Healthtech Inst.Thirdb-on-a-Chip and Microarrays ,vol.2,Zurich,Switzer-land,2001,pp.73–77.[12]Lj.Kricka,“Microchips,microarrays,biochips and nanochip:personallaboratories for the 21st century,”Clin.Chim.Acta ,vol.307,pp.219–223,2001.[13]G.Medoro,N.Manaresi,M.Tartagni,L.Altomare,A.Leonardi,and R.Guerrieri,“A Lab-on-a-Chip for Cell Separation Based on the Moving-Cages Approach,”in 16th Eur.Conf.on Solid State Transducers .Prague,Czech Republic,2002.[14]L.Altomare,M.Borgatti,G.Medoro,N.Manaresi,M.Tartagni,R.Guerrieri,and R.Gambari,“Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis,”Biotechnol.Bioeng.,vol.82(4),pp.474–479,2003.[15]G.Medoro,N.Manaresi,M.Tartagni,and R.Guerrieri,“CMOS-onlysensor and manipulator for microorganizms,”IEDM ,pp.415–418,2000.[16]ISE-T-CAD User Guide Manual ,ISE Integrated System Engineering,2001.[17]Femlab Electromagnetic Module,COMSOL AB,Nov.2001.[18]W.M.Arnold et al.,“Dielectric measurement on electromanipulationmedia,”BBA ,vol.1157,pp.32–44,1993.[19]G.H.Marks et al.,“Dielectrophoretic characterization and separation ofmicro-organizms,”Microbiol.,vol.140,pp.585–591,1994.[20]G.H.Marks,M.S.Talary,and R.Pethig et al.,“Separation of viableand nonviable yeast using dielectrophoresis,”J.Biotechnol.,vol.32,no.1,pp.29–37,1994.[21]R.Pethig et al.,“Dielectrophoresis:using inhomogeneous AC electricalfields to separate and manipulate cells,”Crit.Rev.Biotech.,vol.16,pp.331–348,1996.[22],“Apparatus for Separating by Dielectrophoresis,”U.S.Patent 5814200.[23]J.Cheng et al.,“Isolation of cultured cervical carcinoma cells mixedwith peripheral blood cells on bioelectronic chip,”Anal.Chem.,vol.70,pp.2321–2326,1998.[24]M.P.Hughes et al.,“Strategies for dielectrophoretic separation inlaboratory-on-a-chip systems,”Electrophoresis ,vol.23,no.16,pp.2569–2582,2002.[25]Y .Huang et al.,“Dielectrophoretic cell separation and gene expressionprofiling on microelectronic chip arrays,”Anal.Chem.,vol.74,no.14,pp.3362–3371,2002.[26]N.Manaresi et al.,“A CMOS chip for individual cell manipulation anddetection,”in IEEE International Solid State Circuit Conf.(ISSCC),2003,pp.192–193.MEDORO et al.:LAB-ON-A-CHIP FOR CELL DETECTION AND MANIPULATION325Gianni Medoro received the degree(cum laude) in electrical engineering from the University of Bologna,Bologna,Italy,in1999.He is currently pursuing the Ph.D.degree.His research interests include dielectrophoresis and microelectronic biomanipulators and sensors. In1999,he cofounded Silicon Biosystems s.r.l.,Bologna.NicolóManaresi received the degree(cum laude)incomputer sciences and the Ph.D.degree in electricalengineering from the University of Bologna,Bologna,Italy,in1993and1999,respectively.From1993to1995,and from1997to2000,hehas been with the University of Bologna as a Con-sultant to ST Microelectronics in the field of analogICs and sensors design.In1996,he spent one year asResearch Assistant at the Swiss Federal Institute ofTechnology,Zurich.In1999,he cofounded SiliconBiosystems s.r.l.,Bologna,and has since served asits CEO.He is co-author of more than25scientific papers and co-inventor ineight European and U.S.patents.Andrea Leonardi received the degree in electricalengineering from the University of Bologna,Bologna,Italy,in2000.He is currently pursuing thePh.D.degree.His research interests include dielectrophoresissimulators.Luigi Altomare received the degree and the Ph.D.degree(cum laude)in biological sciences from theUniversity of Bologna,Bologna,Italy,in1996and2000,respectively.From1996to1997,he was with the Departmentof Pharmaceutical Sciences,and later with the De-partment of Genetics,University of Bologna.He thenwent back to the Department of Pharmaceutical Sci-ences to work on genetic engineering of bifidobac-teria.Beginning in June1997,he spent19months inGermany,first at the Institute of Biotechnologies atthe Forchungszentrum Juelich,Juelich,then at the Department of Microbiologyand Biotechnology,Ulm University,Ulm.Marco Tartagni received the Laurea degree in elec-trical engineering and the Ph.D.degree in electricalengineering and computer sciences from the Univer-sity of Bologna,Bologna,Italy,in1988and1993,respectively.He joined the Department of Electrical En-gineering,California Institute of Technology,Pasadena,in1992as Visiting Student and in1994as Research Fellow,working on various aspects ofanalog VLSI for imaging processing.Since March1995,he has been an Assistant Professor with theDepartment of Electronics,University of Bologna,where he designs and testslow-noise optical and capacitive sensors.He is currently involved in researchon sensors aimed at implementing a hybrid technology composed of self-as-sembling proteins with microelctronics technology(alias:“receptronics”)where biomolecules are self-assembled on a microelectronicsubstrate.Roberto Guerrieri received the electrical en-gineering degree and the Ph.D.degree from theUniversity of Bologna,Bologna,Italy,He is currently Associate Professor of electricalengineering at the University of Bologna.Since1986,he has been visiting the Electrical Engineeringand Computer Science Department,Universityof California,Berkeley,and the Department ofElectrical Engineering,Massachusetts Instituteof Technology,Cambridge.During his scientificactivity,he has published more than80papers invarious fields,including numerical simulation of semiconductor devices,numerical solution of Maxwell’s equations,and parallel computation onmassively parallel machines.In recent years,his work has been focused onintegrated silicon systems to solve various problems,such as optical andcapacitive smart sensors,integrated digital circuits for speech and video pro-cessing,and analog circuits for fuzzy controllers.In1998,he became Directorof the Laboratory for Electronic Systems,a joint venture of the University ofBologna and ST Microelectronics for the development of innovative designsof systems-on-chip.Dr.Guerrieri was awarded the Best Paper Award of the IEEE for his work inthe area of process modeling in1992.。
意大利留学名校--都灵大学2019年入学英文授课项目都灵大学的目的在于培养适合国际环境的高素质人才,所以在研究和培训领域实行广泛的国际合作与交流,合作伙伴遍及世界各地,如中国,印度,拉丁美洲,东欧以及地中海的一些国家和地区。
都灵大学以开放的姿态欢迎来自世界各地的留学生。
英文授课本科项目:相关信息网址:https://en.unito.it/studying-unito/programs/degree-programs/degree-programs-english BachelorofBusinessandManagement商业与管理学制三年开学日期:10月申请截止日期:6月30日需要英语成绩(入学时提供即可),无英语成绩者可参加入学考试,入学考试时间9月3GlobalLawandTransnationalLegalStudies世界法与跨国法律研究学制:3年要求:英语B2,到校后需参加入学考试,考试时间9月14日和10月23日开学日期:10月申请截止日期:6月30日英文授课硕士项目:相关信息网址:https://en.unito.it/studying-unito/programs/degree-programs/degree-programs-englishMasterinAreaandGlobalStudiesforInternationalCooperation 区域和世界国际合作研究学制:2年学费:最多2800欧元/年语言:B2申请日期:第一轮:2月1日-2月28日;第二轮:3月15日-4月30日MasterinAppliedLabourEconomicsforDevelopment应用劳动经济学促动发展学制:2年申请截止日期:7月1日学费:8500欧元英语要求B2奖学金:最多50%学费MasterinEuropeanLegalStudies欧洲法律研究学制:2年学费:最多2800欧元/年语言:B2申请截止:2月1日-4月30日MasterinBusinessAdministration工商管理申请截止日期:1月20日语言:B2(无英语成绩证明的也可通过面试证明英语水平)学制:2年学费:最多2800欧元/年MasterinOccupationalSafetyandHealth职业安全与健康学制:1年学费:8500欧元英语要求B2申请截止日期:5月31日MasterinPublicProcurementManagementforSustainableDevelopment 可持续发展公共采购管理硕士学制:1年学费:最多2800欧元/年语言:B2申请截止日期:6月30日MasterinEconomics经济学基本要求:有经济学、数学和统计学学分基础语言:B2(无英语成绩证明的也可通过面试证明英语水平)学制:2年申请截止日期:4月30日学费:最多2800欧元/年。
ALLEGATO EIATA - AHM 810 Annex A - Ed. January 2008 (estratto) Sezione 1 - RAPPRESENTANZA, AMMINISTRAZIONE E SUPERVISIONE1.1. Generalità1.1.2 Relazionarsi con le autorità aeroportuali.1.1.3 Segnalare che la Committente sta operando in qualità di handling agent del Vettore.1.1.4 Informare tutte le parti interesCommittentee dei movimenti dell'aeromobile del Vettore.1.2. Funzioni Amministrative1.2.1 Stabilire e mantenere procedure locali1.2.2 Prendere adeguate azioni nelle comunicazioni con il Vettore1.2.3 Secondo quanto convenuto con le parti, preparare, spedire ed archiviare messaggi/reports/statistiche/documenti ed eseguire altri compiti amministrativi delle seguenti aree:d) Controllo del caricoe) Operazioni di volof) Servizi Cargog) Servizi di Postah) Servizi di supportoi) Servizi di sicurezza1.2.4 Mantenere i manuali di compagnia, circolari e altri rilevanti documenti operativi, aggiornati alle prestazioni dei servizi.1.2.5 secondo quanto convenuto con i singoli Vettoria) Controllareb) Firmarec) SpedirePer conto del Vettore. fatture, ordini, note di prestazioni suppletive, ordini di lavoro1.2.6 Secondo quanto convenuto tra le parti, provvedere per conto del Vettore, al pagamento delle spese, comprese ma non limitate a:a) aeroportuali, doganali, di polizia ed ogni altro importo riguardante i servizi ricevutib) costi per garanziec) spese non previste, spese di sistemazione alberghiera, di trasporto etc.1.3. Supervisione e Coordinamento dei Servizi Concordati dal Vettore con Terze Parti1.3.1a) Supervisionareb) CoordinareI servizi concordati dal Vettore con terze parti1.3.3 Relazionarsi con il rappresentante di CompagniaSezione 4 - CONTROLLO DEL CARICO, COMUNICAZIONI E OPERAZIONI VOLO4.1 Controllo del Carico4.1.1 Inviare e consegnare la documentazione di volo tra l'aeromobile e gli edifici aeroportuali competenti.4.1.2a) Preparareb) Firmarec) Distribuired) Inoltraree) Archiviarecon diligenza i documenti, inclusi ma non limitati a: istruzioni di carico, piani di carico, tabelle di bilanciamento, NOTOC ed i manifesti, quando:1.Il Controllo del carico è effettuato da Committente2.Il Controllo del carico è effettuato dal Vettore4.2. Comunicazioni4.2.1.(a)Compilare(b)Inviare, ricevere e processaretutti i messaggi connessi con i servizi prestati dalla Compagnia di Handling usando il codice del Vettore oppure, se applicabile, il doppio codice.(c)( c) Effettuare le transazioni EDI (Electronic Data Interchange)(d)Comunicare al rappresentante del Vettore il contenuto di tali messaggi.Sezione 5 - SERVIZI CARGO E POSTA5.1 Assistenza cargo e Posta - Generalità5.1.1(a)Fornire o(b)Prendere accordi per forniremagazzino adatto e servizi di assistenza adeguati per:1)merce generica2)spedizioni di merce speciali3)prodotti merce specializzati4)Posta(c)Immagazzinare la merce(d)prendere appropriate azioni per prevenire furti o danni alla merce.5.1.2(a)(a) Fornire o(b)Prendere accordi per fornireattrezzature adatte per l’assistenza di1)merce generica2)spedizioni di merce speciali3)prodotti merce specializzati4)Posta5.1.3(a)(a) Fornire o(b)Prendere accordi per fornireservizio di assistenza per1)merce generica2)spedizioni di merce speciali3)prodotti merce specializzati4)Posta6)Merce Diplomatica7)Materiale e merce di Compagnia5.1.4(a)emettere(b)ottenerericevuta al momento della consegna della merce5.1.5 Monitorare la consegna delle merci5.1.6 Prendere adeguate azioni per prevenire furti e/o danni e/o l’uso non autorizzato dei pallets, containers, reti, cinghie, ganci e altro materiale in custodia. Notificare immediatamente il Vettore di qualsiasi danno o perdita di questo equipaggiamento.5.2 Controlli Doganali5.2.1 Preparare la documentazioni doganali per:(a)Merce in arrivo(b)Merce in partenza(c)Merce in transito5.2.2 Ottenere le autorizzazioni doganali per:(d)Merce in arrivo(e)Merce in partenza(f)Merce in transito5.2.3 Sottoporre la merce a controllo doganale, se richiesto, per:(a)Merce in arrivo(b)Merce in partenza(c)Merce in transito5.2.4 Mettere a disposizione della Dogana, se richiesto, la merce per il controllo fisico.5.3 Gestione delle irregolarità5.3.1 Prendere azioni immediate relativamente alle irregolarità, danni o disguidi di merce pericolosa e altre spedizioni di merce speciale.5.3.2 Riportare al Vettore ogni irregolarità scoperta nell’assistenza alle merci5.3.3 Prendersi cura della merce persa, trovata o danneggiata5.3.4(a) Notificare al vettore ogni reclamo o lamentela5.3.5Prendere azioni qualora il destinatario rifiuti la merce ed il pagamento delle spese5.4 Assistenza Documentale5.4.1(a) Preparare Air Waybill(b) Controllare tutti i documenti per assicurare che le spedizioni possano essere trasportate. Secondo quanto concordato con i Vettori, il controllo potrebbe includere le tariffe di trasporto applicate dal Vettore stesso.(c) Ottenere la capacità/prenotato per i singoli voli(d) Separare l’Air waybill. Inviare le copie di manifesti e Air Waybill al Vettore(e) Preparare il manifesto di carico(f) Fornire all’unità addetta ai Piani di Carico copia della NOTOC(g) Qualora previsto, restituire al mittente, copia della Air waybill con i dettagli del volo5.4.2(a)Notificare al destinatario od al suo agente l’arrivo delle spedizioni(b)Mettere a disposizione del destinatario o del suo agente i documenti della merce5.4.3(a)Fornire o(b)Prendere accordi per fornire1.Incasso dei noli di trasporto mostrati in Air Waybill2.Incasso delle altre spese e tasse riportate in Air Waybill3.Credito al destinatario o un suo agente5.5 Trattamento fisico della merce in arrivo e partenza5.5.1 Accettare la merce assicurando che:(b)Le etichette siano affisse e processate(c)Le spedizioni sino “ready for carriage”(d)Controllo peso/volume delle spedizioni(e)Le regole per il trasporto di “Special Cargo” , con particolare riferimento alle IATADGR, alle IATA LAR ed altre siano state rispettate.5.5.2 Riscontrare ed assemblare la merce da caricare rispetto al Volo previsto5.5.3 Preparare(a) Merce sfusa(b)ULDper la consegna sui voli.5.5.4 Stabilire il peso di(a)Merce sfusa(b)ULD allestitee comunicare al centraggio i pesi del carico inerte.5.5.54.Scaricare la merce sfusa dai veicoli5.Controllare la merce in arrivo rispetto alle air waybill ed ai manifesti6.Disallestire le ULD’s5.5.6 Rilasciare le merci al destinatario od un suo agente5.6 Merce in transito5.6.1 Identificare la merce in transito.5.6.2 Preparare i manifesti di trasferimento per la merce che deve essere trasportata da un altro Vettore5.6.4 Accettare/preparare(a)Merce in trasferimento(b)Merce in transitoPer il successivo trasporto5.7 Posta5.7.1 controllare la posta in arrivo a fronte della documentazione Postale5.7.2 in caso di mancanza dei documenti, emettere sostitutivi5.7.3 consegnare la posta in arrivo a(a) strutture aeroportuali5.7.4 ritirare la posta in partenza da(a) strutture aeroportuali5.7.5 controllare la posta in partenza a fronte dei documenti Postali; fornire ricevuta alle autorità postali5.7.6 assistere e controllare la posta in transito a fronte della documentazione Postale5.7.7(a) preparare1. posta sfusa3.ULD4.per consegna sui voli5.7.8 stabilire il peso(a) posta sfusa(b) ULDe comunicare al centraggio i pesi del carico inerte5.7.9 distribuire i documenti postali in arrivo/partenza5.7.10 prendere cura della posta persa, trovata o danneggiata e trasmettere i rapportidi irregolarità al Vettore e alle autorità postaliSezione 6 – SERVIZI DI SUPPORTO6.2 Automazione/Sistemi di calcolo6.2.1(a)(a) Fornireo(b)(b) Prendere accordi per forniree(c)OperareI sistemi in modo da consentire l’accesso ai1.Sistemi di compagnia2.Sistemi della Committente3.Altri sistemi6.2.2 Accedere alle seguenti funzioni nei(a)Sistemi di Compagnia(b)Sistemi della Committente(c)Altri sistemiPer1.Programmi di addestramento6.Operazioni, bilanciamento e controllo del carico7.Prenotazioni e vendite cargo8.Assistenza Cargo6.3 Controllo delle Unità di Carico (ULDs)6.3.1(a)(a) Fornireo(b)Prendere accordi per fornirespazio per lo stoccaggio delle ULDs in accordo e collaborazione con il Committente2.Cargo ULDs6.3.2 Prendere azione per prevenire danni, furti o uso non autorizzato delle ULDs di proprietà dei Vettori in custodia alla Committente. Notificare immediatamente ogni perdita o danno al Vettore.6.3.3(a)Effettuare l’inventario delle ULDs e tenere la registrazione(b)Compilare ed inviare i messaggi di controllo delle ULDs6.3.4 Preparare la documentazione di controllo per il trasferimento lo scambio di tutte le ULDs ed ottenere la firma dal Vettore trasferente e dal Vettore ricevente o una terza parte approvata.6.3.5 Trattare le ULDs danneggiate, perse e ritrovate e notificare ogni irregolarità al Vettore6.6 Trasporti di superficie6.6.1(a)(a) Fornireo(b)Prendere accordi per fornireil trasporto di3.Cargo4.ULDs vuotetra1)l’aeroporto e il terminal in città2)terminals ed altri punti stabiliti all'interno dell' aeroporto3)terminals distaccati nell’aeroporto stessoSezione 7 – SECURITY7.2 Merce e posta7.2.1(a)Fornireo(b)Prendere accordi per fornire1)controllo degli accessi ai reparti cargo2)controllo di merce e/o posta con mezzi di ispezione approvati3)Controllo fisico Merci e Posta4)Giacenza di Merci o Posta per periodi variabili (Quarantena)5)immagazzinamento sicuro di merce e/o posta11。
毕设英语翻译有线⽹络设计的⼀个基于地理信息系统的专家系统伊尼⼽·莫尼德罗,卡洛斯·列昂,罗伯特·登达和乔阿坎·卢克摘要:由于技术的进步和电信⽹的演化,⽹络拓扑结构和设备已经变得越来越复杂。
专家系统被成功地应⽤于电信⽹络管理。
然⽽,将专家系统应⽤于⽹络设计是另⼀种特别有益,但仍然不是很常见的⽅法。
在本⽂中我们提出基于规则的专家系统称为Datacab。
Datacab 开展在恩德萨与塞维利亚⼤学的电⼦技术部,混杂纤维的⾃动设计电缆⽹ (HFC)。
使⽤地理信息系统中的数据作为输⼊,它会⾃动⽣成可⾏的混合光纤同轴电缆⽹络设计。
关键字:电信⽹络、专家系统、 HFC ⽹络、地理信息系统1.介绍伟⼤的技术演化发⽣在电信领域,就可以沟通和迅速地获得信息,通过电话和通信⽹络(如 Internet 访问信息。
电信⽹已经演化了时间,以满⾜不同的通讯服务,不断要求更⼤的带宽和更优质的服务的需求。
⽹络技术的复杂性,更有效地⽣成管理这些系统的资源促进了⽹络管理系统的演化,需要增加。
另⼀⽅⾯,研究表明⼈⼯智能在治疗领域已经取得了重要的进展,存储重要的进展和利⽤的知识。
这些进展包括:基于知识的专家系统领域(布坎南和杜达, 1982;利博维茨, 1998; 伊尼西奥,1991;阿⽡德,1996;麦格劳 - 哈⽐森布⾥格斯,2002)。
另⼀⽅⾯,进⾏的研究领域⼈⼯智能已导致在治疗中,存储重要的进展和利⽤的知识。
这些进展包括:基于知识的专家系统领域(布坎南和杜达,1982;利博维茨,1998; 伊尼西奥,1991;阿⽡德,1996;麦格劳 - 哈⽐森布⾥格斯,2002)。
专家系统被成功地应⽤到实现不同任务(解释、预测、诊断、设计、规划、指导、控制等等)在多个领域,如医药、地质、化学和⼯程(利博维茨,1998年)。
专家系统也可应⽤到电信⽹络的领域,因为很多的前⾯列举的任务需要专门的知识和需要为这些⽹络服务,这可以通过⼀个专家系统的⾃动化来管理和操作。
ProgettodiLaboratorioperilcorsodiProgrammazioneinReteeLaboratorio
AnnoAccademico2002/2003MatteoBaldoniAggiornatoa:May8,2003
AbstractQuestepaginedescrivonoillaboratorioperilcorsodiProgrammazioneinReteeLaboratorioperl’annoaccademico2002/2003.Ilpresentelabo-ratoriohacomeobiettivolarealizzazionediun“chatserver”edelrelativo“client”grafico.
Novit`aemodifiche:20-2-2003:LaSezione2.5.2`estataaggiornataconmaggioridettaglirelativialladefinizionedeicomandieseguibilisuunachatroomelagestionedelleeccezioni.
21-2-2003:LeSezioni2.6,2.7e2.9sonoinfasediridefinizioneperl’introduzionedimaggioridettagliespiegazioni.
24-2-2003:AlmetodoexecCRCdell’interfacciaChatRoomCommand,nellaSezione2.5.2,`estatoaggiuntounparametro.
25-2-2003:CompletamenteriscrittalaSezione2.6.10-3-2003:ApportatealcunesemplicicorrezionidierroridistampanellaSezione2.6.10-3-2003:RiscrittalaSezione2.78-5-2003:LaSezione2.4`estataresaobbligatoriaperchisosterr`al’esamedallasessionedigiugno-luglioinpoi.
8-5-2003:LaSezione2.8`estataintrodottacomeparteobbligatoriaperchisosterr`al’esamedallasessionedigiugno-luglioinpoi.
11Modalit`adisvolgimentoeconsegnadellabo-ratorio
`Efortementeconsigliatosvolgereillaboratorioduranteilcorsoequindisostenere
l’esamenellaprimasessioned’esamedopoilcorsostesso(cisarannodueappelliintalesessione).
1.1IscrizionedelgruppodilaboratorioSiricordacheperpotersvolgereillaboratorio`enecessarioprimadituttois-criversicompilandol’appositoformdiiscrizioneallaboratorio:
https://www.educ.di.unito.it/studenti/iscrizionelaboratori/nelqualevannoindicatiicomponentidelgruppo,chepossonoesserealpi`udue(limiterigido!),eiloronumeridimatricola.Taleiscrizionehailsoloedunicoscopodiconoscerecomesonocompostiigruppidilaboratorio.
1.2MaterialedaportareallaconsegnadellaboratorioAllaconsegnadellaboratorio`enecessarioallegare:•unfloppydiskcontenenteilcodicesorgenteecompilatodelprogettosvoltocontutteleistruzioninecessarieadunfacileutilizzodelsoftwarestesso;
•illistatostampatodelcodicesorgente;•ladocumentazionegeneratamediantejavadoc(sulfloppydisk);•idiagrammidiclasseUMLedunabreverelazionesullavorosvolto.Ladatadellaconsegnacorrispondealgiornodell’esameoraledell’appelloprescelto.
1.3Modalit`ad’esameL’esame`eoraleedindividualeancheseillaboratorio`esvoltoincollaborazioneconun’altrapersona.Persostenerel’esameadunappello`eobbligatoriopreno-tarsion-line:
https://www.educ.di.unito.it/studenti/L’esamehal’obitettivodiverificaresiailcorrettosvolgimentodellaboratoriochelacomprensionedellepartidi“teoria”introdottedurantelelezionidelcorso.Laverificadellapartediteoriaavvienemedianteprovascritta.Laprovascrittahavalidit`asinoall’iniziodelcorsodiProgrammazioneinReteeLaboratoriodell’annoaccademico2003/2004.Perpoterdiscutereillaboratorio`enecessarioaversuperatolaprovascritta.`Eimportantericordarecheillaboratoriopotr`aesseremodificatoe/opersonalizzatoperchidecider`adisostenerel’esamenellesessionisuccessiveallaprima(marzo/aprile2003).Permodifichesiintendean-chel’aggiuntadinuovepartidasvolgere.Talimodificheverrannopubblicizzatesullapaginawebdelcorso:
2http://www.di.unito.it/˜baldoni/didattica/aa0203/ProgInReteIlvotoperloscrittoeperillaboratoriosar`aespressointrentesimi.Ilvotofinalesar`aformatodallamediapesatadelvotodellaprovascrittaedellaboratorio,secondoillorocontributoinCFU,ecio`evotofinale=(votodelloscritto*2+votodellaboratorio)/3.
1.4Valitid`adelpresentetestodilaboratorioIlpresentetestodilaboratoriovalesolofinoall’iniziodelcorsodiProgram-mazioneinReteeLaboratoriodell’annoaccademico2003/2004.
2DescrizionedellaboratorioIllaboratorio`eorganizzatoindiversepartidasvolgereinmanieraincrementale.Obiettivodellaboratorio`elarealizzazionediun“chatserver”erelativo“client”grafico.Ilpresentetestodilaboratorio`eispiratodaaltutorialon-linetrovatopressolasezionedeveloperWorksdelsitodell’IBM[4].Unoschemageneraledelfunzionamento`eriportatoinFigura1.Inbreve,
Figure1:Schemageneraledelprogettodarealizzare.lechatadefferenzadellee-mail,consentonoloscambiointempiridottidifrasiefiletrautentichesonoconnessicontemporaneamente.Inunachatesistonovariestanze(ocanali),ognunaconunproprionome1.Ingenereinognistanzasi
1`Eusofarprecederetalenomedalsimbolo“#”.
3