超导电力技术前沿技术ppt课件
- 格式:ppt
- 大小:18.05 MB
- 文档页数:101
第二章超导材料超导材料是一种没有电阻的材料,既能节约能量,减少电能因电阻而消耗的能量,还能把电流储存起来,供急需时使用。
自从世界上以电力作为主要动力以来,就遇到两个令人头痛的问题:1、是在输送电流时,不少电力因导线有电阻而发热,白白损失了相当的能量。
2、白天的电力常常严重不足,而深夜的电力又大大富余,使得发电机常常白天超负荷运转,深夜时却空转,电力白白浪费了。
能不能把夜间富余的电力储存起来用以弥补白天电力不足的难题呢?自从有了超导材料以来,解决这个问题就大有希望了。
一、超导材料的发展历程1911年,科学家发现,金属的电阻和它的温度条件有很大关系:温度高时,它的电阻就增加,温度低时电阻减少。
并总结出一个金属电阻与温度之间的关系的理论公式。
当时,荷兰物理学家昂尼斯为检验金属电阻与温度之间的关系的理论公式的正确性,就用水银作试验。
将水银冷却到-40℃时,亮晶晶的液体水银变成了固体;然后,他把水银拉成细丝,并继续降低温度,同时测量不同温度下固体水银的电阻,当温度降低列4 K时,水银的电阻突然变成了零。
开始他不太相信这一结果、于是反复试验,但都是一样。
这一发现轰动了世界的物理学界,后来科学家把这个现象叫超导现象,把电阻等于零的材料称超导材料,而把出现超导现象的温度称作超导材料的“临界温度”。
昂尼斯和许多科学家后来又发现了28种超导元素和8000多种超导化合物材料。
但出现超导现象的临界温度大多在接近绝对零度的极低温,没有什么经济价值,因为制造这种极低的温度,本身就很花钱而又很困难。
为了寻找临界温度比较高的没有电阻的材料,世界上无数科学家奋斗了近60年,也没有取得什么进展。
直到1973年,英、美一些科学家才找到一种在23K出现超导现象的铌锗合金。
此后这一记录又保持了10多年。
到了1986年,在瑞士IBM公司研究室工作的贝特诺茨和缪勒从别人多次失败中总结教训,放弃了在金属和合金中寻找超导材料的老观念,终于发现一种钇钡铜氧陶瓷氧化物材料在43K这一较高温度下出现超导现象。
超导技术在电力中的应用课件一、背景电力工业作为城市化生活、产业发展的基础设施,随着全球经济的快速发展,电力负荷越来越大,因此电力系统的可靠性、经济性、环保性和安全性等要求越来越高,同时也不断促进科学技术的快速发展。
其中超导技术就是一种新型的应用技术,具有无限大的潜力和广泛的应用前景。
二、超导技术的基本概念超导技术是指在超导体材料内,当达到一定的温度和磁场时,电阻为零,电能可以在超导体材料内无限地传递。
超导技术有许多种类:高温超导、低温超导、单晶体超导、薄膜超导等。
其中最具有实用价值的是高温超导技术,其基本原理是在铜氧化物材料内,当温度降到比液氮还低的低温时,电子发生了配对现象,发生了超导,从而形成超导体材料。
1、电能输送超导电缆是超导技术应用最广泛的领域之一。
传统的电力输送方式为地下配电缆、空中输电线路等方式。
而超导电缆通过超导材料的低温超导特性,可以对电能进行高效、稳定的输送,不会产生电阻和热损耗。
因此,超导电缆不仅可以提高电网输电效率,降低输电损耗和维护成本,同时也具有较小的体积和重量,使得图省空间,适用于在城市地下、铁路路基等狭窄的空间中的电力输送。
2、储能电力储能是一种新型的清洁能源应用技术,利用超导技术可以实现高效的电力储能。
超导电感储能装置是一种新型的高频储能系统,它可以将电能转换成磁能,在磁能的帮助下,可以形成强大的场地效应,可以让电力储能系统的效率提高到90%以上,从而提高电力储能系统的能量密度和周期性,更好地适应不同应用场景的需求。
3、发电超导技术还可以应用于电力发电。
超导磁体是一种基于超导技术和磁体技术的结合技术,它可以利用超导体材料的超导特性,将电能转换为强路中磁场,产生巨大能量。
超导发电技术可以实现高效的电力转换和传输,同时可以产生几乎没有能量损失的纯净电力,具有较高的效率和可靠性,更加环保。
1、能效高超导技术具有无电阻、无热损耗的特性,能够实现高效稳定的输送、储存和发生电能,能够显著提高电力系统的总体能效。