比和比例综合练习题及答案
- 格式:docx
- 大小:22.18 KB
- 文档页数:7
六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.如图,把三角形A按1∶2缩小后,得到三角形B。
三角形B三条边的长分别是()。
A.14cm、10cm、8cmB.3.5cm、2.5cm、4cmC.3.5cm、2.5cm、2cm2.班级人数一定,每行站的人数和站的行数()。
A.成正比例B.成反比例C.不成比例3.解比例。
=,x= ()A.4B.2.4C.4.2D. 54.分子一定,分母和分数值()。
A.成正比例B.成反比例C.不成比例D.不成反比例5.正方体的表面积与它的棱长成()关系。
A.反比例B.正比例C.没有比例6.120克盐水中含盐30克,盐与水的比是( )。
A.1∶3B.1∶4C.1∶57.第二实验小学新建一个长方形游泳池,长50米,宽30米。
选用比例尺________ 画出的平面图最大;选用比例尺________ 画出的平面图最小。
A.1:1000B.1:1500C.1:500D.1:1008.x=是比例()的解。
A.2.6∶x=1∶8B.3∶6=x∶8C.∶x=∶9.和一定,加数和另一个加数()。
A.成正比例B.成反比例C.不成比例10.分母一定,分子和分数值()。
A.成正比例B.成反比例C.不成比例D.不成正比例11.互为倒数的两个数,他们一定成()。
A.正比例B.反比例C.不成比例12.解比例。
=,x=()A.2B.8C.2.25D.4 013.上操学生总人数一定,站的排数和每排站的人数()。
A.成正比例B.成反比例C.不成比例D.不成反比例14.在一定的距离内,车轮的周长与转动的圈数()。
A.成正比例B.成反比例C.不成比例15.订购练习册总数一定,学生的人数和每位学生分得练习册的数量。
()A.成正比例B.成反比例C.不成比例16.下题中的两种量成什么比例?在小明家的客厅里铺地砖,每块地砖的面积和所需要的块数。
()A.成正比例B.成反比例C.不成比例17.解比例。
比和比率姓名( )得分()一、 填空:1. 甲乙两数的比是 11:9, 甲数占甲、乙两数和的() ,乙数占甲、乙两数和的 ()。
甲、( )( ) 乙两数的比是 3:2 ,甲数是乙数的()倍,乙数是甲数的() 。
( )2. 某班男生人数与女生人数的比是3,女生人数与男生人数的比是(),男生人数4和女生人数的比是()。
女生人数是总人数的比是()。
3. 一本书,小明计划每日看2,这本书计划()看完。
74. 一根绳长 2 米,把它均匀剪成5 段,每段长是()米,每段是这根绳索的() 。
( )( )5. 王老师用 180 张纸订 5 本簿本,用纸的张数和所订的簿本数的比是(),这个比的比值的意义是( )。
6. 一个正方形的周长是8米,它的面积是()平方米。
57.9吨大豆可榨油1吨, 1 吨大豆可榨油()吨,要榨 1 吨油需大豆()吨。
838. 甲数的 2等于乙数的2,甲数与乙数的比是()。
359. 把甲数的 1给乙,甲、乙两数相等,甲数是乙数的(),甲数比乙数多() 。
7 ()()10. 甲数比乙数多 1,甲数与乙数比是()。
乙数比甲数少() 。
4( )11. 在 6 :5 = 1.2 中,6 是比的(),5 是比的(),1.2 是比的( )。
在 4 :7 =48 :84 中, 4 和 84 是比率的(),7 和 48 是比率的()。
12. 4 :5=24 ÷()= () :1513. 一种盐水是由盐和水按 1 : 30 的重量配制而成的。
此中,盐的重量占盐水的(—) ,水的重量占盐水的 (—)。
图上距离 3 厘米表示实质距离 180 千米,这幅图的比率尺是( )。
一幅地图的比率尺是图上 6 厘米表示实质距离 ()千米。
实质距离 150 千米在图上要画( )厘米。
14. 12 的约数有(),选择此中的四个约数,把它们构成一个比例是()。
写出两个比值是 8 的比()、()。
15. 加工部件的总个数必定,每小时加工的部件个数的加工的时间()比率;订数学书的本数与所需要的钱数(的部件和没有加工的部件个数(16. 假如 x ÷ y =712 ×2,那么 x 和y 成()比率;加工部件的总个数必定,已经加工)比率。
六年级下册数学小升初比和比例专项练习一.选择题(共20题,共40分)1.在比例尺是1∶500的图纸上,测得一块长方形的土地长5厘米,宽4 厘米,这块地的实际面积是()平方米。
A.20平方米B.500平方米C.5000平方米2.梯形的面积一定,它的上、下底之和与高()。
A.成反比例B.成正比例C.不成比例D.无法确定3.下面各题中,两种量成反比例的是()。
A.ab=10B.5-a=10C.a+b=104.比例尺一定,图上距离和实际()。
A.成正比例B.成反比例C.不成比例5.在下列各组量中,成正比例的量是()。
A.路程一定,速度和时间B.长方体底面积一定,体积和高C.正方形的边长和面积6.表示x和y成正比例的关系式是()。
A.x+y=k (一定)B.= k (一定)C.xy=k (一定)7.人的体重和身高()。
A.不成比例B.成正比例C.成反比例8.把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米9.在一幅中国地图上,用3厘米长的线段表示地面上240千米,这幅地图的比例尺是()。
A.1∶80000B.1∶8000000C.1∶800D.1∶800010.9x-=0(x、y均不为0),x和y成()。
A.正比例B.反比例C.不成比例11.比例尺是()。
A.一个比例B.一个比C.一个方程12.和∶可以组成比例的是()。
A.6∶8B.3∶4C.4∶3D.∶13.下面各题中,两种量成反比例关系的是()。
A.正方形的边长和周长B.订阅《小学生周报》的总价和数量C.被减数一定,减数和差D.从武夷山东站到福州北站,列车行驶的速度和所需的时间14.如果A×2=B÷3,那么A:B=()。
A.2:3B.3:2C.1:615.根据a×b=c×d,下面不能组成比例的是()。
比和比例单元测试题及答案一、选择题(每题2分,共20分)1. 比的基本性质是什么?A. 比的前项和后项同时乘或除以相同的数(0除外)B. 比的前项和后项相加或相减C. 比的前项和后项相乘或相除D. 比的前项和后项相等2. 比例的基本性质是什么?A. 内项之积等于外项之积B. 内项之和等于外项之和C. 内项之差等于外项之差D. 内项之比等于外项之比3. 已知a:b=c:d,当b=2时,c的值是多少?A. 1B. 2C. 4D. 无法确定4. 两个比的比值相等,这两个比是什么关系?A. 互为倒数B. 互为相反数C. 成正比D. 成反比5. 一个比的前项扩大10倍,后项缩小10倍,比值会如何变化?A. 保持不变B. 扩大100倍C. 缩小100倍D. 扩大10倍6. 一个比例的两个外项的积是24,一个内项是3,另一个内项是多少?A. 8B. 7C. 6D. 97. 已知A:B=2:3,B:C=4:5,那么A:B:C的比例是什么?A. 2:3:4B. 2:3:5C. 8:12:15D. 无法确定8. 一个比的后项是10,比值是1/2,那么前项是多少?A. 5B. 10C. 20D. 无法确定9. 两个比相等,它们的比值相等吗?A. 一定相等B. 可能相等C. 不一定相等D. 一定不相等10. 已知比例3:4=9:12,如果第一个比的前项增加3,那么后项应该增加多少?A. 4B. 5C. 6D. 7二、填空题(每题2分,共20分)11. 比的前项是8,后项是4,比值是________。
12. 如果比的前项是10,比值是1/2,那么后项是________。
13. 比例2:3=8:12可以化简为________:________。
14. 如果一个比例的两个内项分别是6和18,那么两个外项的积是________。
15. 已知A:B=3:2,B:C=4:3,那么A:B:C的比例是________:________:________。
六年级数学比和比例试题答案及解析1.从6、24、20、18与5这五个数中选出四个数组成一个比例是( )。
【答案】24:4=20:5【解析】此题为一个开放题,有多种答案。
首先确定选哪4个数,根据比例的基本性质,发现:24×5=20×6,可以用24和5同时做内项或外项,20和6做另外两项,写出不同的比例。
如24:4=20:52.把1克盐放入100克水中,盐与盐水的比是1:100。
()【答案】×【解析】要求盐和盐水的比,就要先求出盐水的重量,1+100=101,所以盐和盐水的比是1:101,题目错误。
3.请在下图中画出一个钝角三角形,并用阴影表示,使得阴影部分的面积与空白部分的面积比是2:3。
【答案】只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。
答案不唯一。
【解析】本题需先计算出钝角三角形的面积是多少。
假设每个小正方形的边长为1,那么整个长方形的面积就是15,阴影面积与空白的比是2:3,说明阴影与整个图形面积的比是2:5,整个图形面积为15,钝角三角形的面积就是6。
根据三角形面积公式可知,底和高的乘积是12,所以只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。
答案不唯一。
4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。
【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。
因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。
6÷3=2(分米),说明1份表示2分米。
梯形上底:2×1=2(分米),梯形下底:2×4=8(分米),因为是正方形,所以梯形的高也是8分米。
(2+8)×8÷2=9(平方分米),梯形面积是9平方分米。
5.小王、小李、小刘三家共同在莲花村租了一套房子,共有三房一厅,每月要交物业管理费210元。
比和比例复习题答案1. 甲数和乙数的比是3:4,如果甲数增加6,要使比值不变,乙数应该增加多少?答:根据比的性质,甲数和乙数的比是3:4,即甲数是乙数的3/4。
如果甲数增加6,要使比值不变,乙数也应该按照相同的比例增加。
设乙数增加x,则有(3+6)/4 = 3/4,解得x=8。
所以乙数应该增加8。
2. 一个长方形的长和宽的比是5:3,如果长增加10,宽增加6,新的长宽比是多少?答:设原长方形的长为5x,宽为3x。
长增加10后,新的长为5x+10;宽增加6后,新的宽为3x+6。
新的长宽比为(5x+10)/(3x+6)。
由于题目中没有给出具体的数值,所以新的长宽比无法具体计算,但可以表示为(5x+10)/(3x+6)。
3. 某工厂男女工人的比例是7:5,如果男工人数增加14人,女工人数不变,新的男女工人比例是多少?答:设原工厂男工人数为7x,女工人数为5x。
男工人数增加14人后,新的男工人数为7x+14。
女工人数不变,仍为5x。
新的男女工人比例为(7x+14)/5x。
由于题目中没有给出具体的数值,所以新的男女工人比例无法具体计算,但可以表示为(7x+14)/5x。
4. 一个数的1/3与另一个数的1/4相等,这两个数的比是多少?答:设这两个数分别为a和b。
根据题意,有a/3 = b/4。
两边同时乘以12,得4a = 3b。
所以这两个数的比为a:b = 3:4。
5. 甲乙两车同时从A地出发前往B地,甲车速度是乙车速度的4/5。
如果甲车比乙车晚出发1小时,但两车同时到达B地,那么A、B两地的距离是多少?答:设乙车速度为v,甲车速度为4/5v。
设A、B两地的距离为d。
根据题意,甲车行驶时间为乙车行驶时间加1小时。
即d/(4/5v) = d/v + 1。
解得d=5v。
所以A、B两地的距离是5倍乙车的速度。
由于题目中没有给出具体的数值,所以A、B两地的具体距离无法计算,但可以表示为5v。
比和比例〔一〕比的意义和性质1、将正确答案填在〔〕里〔1〕把5.2:6.5化成最简单的整数比是〔4〕:〔5〕〔2〕0.2吨:600千克的比值是〔13 〕〔3〕1.5小时:24分钟的最简整数比是〔15:4〕,比值是〔〕〔4〕3:〔4〕=18:〔24〔5〕〔〕:〔〕=〔〕〔〕=4÷ 答案不唯一〔6〕把45 :0.25化成最简整数比是〔16:5〕,比值是〔315 〕〔7〕小刚行走的路程比小丽多14 ,而小丽走路所用的时间比小刚多110 ,小刚和小丽的速度比是〔11:8〕〔8〕58 =〔〕〔用小数表示〕=〔5÷8〕〔用除式表示〕=62.5%〔用百分数表示〕=5:8〔用比表示〕〔9〕10.08 这个比的比值是〔〕〔10〕8:〔40〕=〔4〕20 =20%=1:〔5〕=6:〔30〕〔11〕一个正方形边长和周长的比是〔1:4〕〔12〕49 与它的倒数的比是〔16:81〕〔13〕甲数与艺术的比是9:4,甲数比乙数多〔125〕%〔14〕1:0.25化成最简单的整数比是〔4〕:〔1〕,比值是〔4〕〔15〕一个等腰三角形,一个地窖和定焦的i 是3:4,这个等腰三角形的顶角是〔72〕度。
〔16〕小圆半径是3厘米,大圆半径是4厘米,小圆和大圆的周长比是〔3:4〕,面积比是〔9:16〕 解法:根据圆周长公式,周长=半径×2×π。
把数据代入公式,小圆周长=3×2×π=6π。
大圆周长=4×2×π=8π。
小圆与大圆周长比为6π:8π,化简后为3:4。
根据圆面积公式,面积=半径×半径×π,把数据代入公式:小圆面积=3×3×π=9π;大圆面积=4×4×π=16π。
小圆与大圆面积比为9π:16π,化简后为9:16〔17〕参加学校课外小组的男生人数的319 正好与女生人数的322 相等,男生和女生人数的比是〔19:22〕〔18〕比的后项不能是〔0〕〔19〕大正方形与小正方形的边长的比是3:2,他们周长的比是〔3;2〕,面积比是〔9:4〕〔20〕甲数是乙数的135 ,乙数与甲数的比是〔5:8〕〔21〕34 与它的倒数的最简单的整数比是〔9:16〕〔22〕差相当于被减数的37 ,差和减数的比是〔3:4〕〔23〕a 、b 都是不等于0的自热桉树,假如a ×7=b ×9,那么,a:b=〔9:7〕〔24〕20克盐甲200克水融成盐水,盐和盐水的比是〔1:11〕,比值是〔111 〕〔25〕1千克的盐溶解在35千克的水中,盐水与盐最简单的整数比是〔36:1〕〔26〕一个比的比值是3,它的前项是2.25,后项是〔〕〔27〕两个完全相等的正方形拼成一个长方形,这个长方形的长和它周长的比是〔1:3〕 解法:设这个正方形的边长为a ,那么,拼成后的长方形的长为2a ,拼成后的长方形的周长是a ×2+〔2a 〕×2=2a+4a=6a 。
第二单元比和比例综合测试卷—、快乐填一填。
(每空1分,共20分)1. ( )÷5=6:10=()()=()15=( ):152.把9×4.5=1.5×27改写成比例是( )。
3.把 4.2:54化成最简单的整数比是( ),比值是( )。
4.在比例中,两个外项互为倒数,其中一个内项是98,另—个内项是( )。
5.一个三角形的三个内角度数的比是2:5:ll ,这个三角形按角分类是( )三角形。
6.在一个比例里,两个比的比值等于3,这个比例的内项分别是10和60,这个比例是( )。
7.从36的因数中选取4个组成比例是( )。
8.若31a =51b (a 、b 均不为0),则a :b=( )。
9.甲、乙两数的比是7:5,已知乙数是35,甲数是( )。
10.把一条绳子按4:5截成两段,已知较短的一段长16米,那么较长的一段是( )米。
11.用35厘米的铁丝围成一个等腰三角形,已知腰和底的长度比是3:1,则腰长是( )厘米。
12.大小两个正方体的棱长比是3:2,大小正方体的表面积比是( );大小正方体的体积比是( )。
13.一个比是3;8,如果比的前项扩大到原来的5倍,要使比值不变,后项应( );如果前项加上15,要使比值不变,后项应加上( )。
二、火眼金睛辨是非。
(对的打“√”,错的打“X ”)(10分)1.在比例里,两个外项的积与两个内项的积的差是o 。
( )2.打一份稿件,甲用2小时,乙用3小时,甲、乙的工作效率比是2:3。
( )3.5千克:10千克的比值是0.5千克。
( ) 4.如果甲数比乙数多32,甲数和乙数的比是5:3。
( )5.把‘2克盐溶解在20克水中,盐和盐水的比是1:10。
( )6,柳树的棵数是杨树的54,柳树棵数和杨树棵数的比是4:5。
( ) 7.5a =3b ,那么a 和b 的比是5:3。
( ) 8.一个长方形的宽和长的比是2:3,就是说这个长方形的宽是2分米,长是3分米。
六年级数学比和比例试题答案及解析1.下面各题中的两个量是否成比例,成什么比例。
①圆的周长和它的直径。
()②书的总页数一定,已看的页数和未看的页数。
( )③在一定的距离内,车轮周长和它转动的圈数。
()【答案】正比例,不成比例,反比例【解析】①圆的周长÷直径=圆周率,圆周率是一个固定不变的数值,所以圆的周长和直径成正比例。
②已看的页数+未看的页数=全书的页数,这两个量的和是一定的,积和商都不确定,所以已看页数和未看页数不成比例。
③因为车轮的周长×转动的圈数=所行的路程,题目中已知在一定的距离内,也就是所行路程是一定的,所以车轮周长和转动的圈数是成反比例的。
2.两个量不成正比例就成反比例。
()【答案】×【解析】两种相关联的量除了成正比例和反比例之外,还有可能不成比例,所以错误。
3.两个圆的半径的比是2:3,它们直径的比是2:3,面积比也是2:3。
()【答案】×【解析】可以用假设的方法,假设两个圆的半径分别为2和3,那么它们直径比是(2×2):(3×2)=2:3,它们的面积比是22:32="4:9" ,所以错误。
4.解比例。
(1)(2)=【答案】(1)x=3,(2)x=6【解析】(1)根据比例的基本性质,两个内项积等于两个外项积。
3x=12×,3x=9,进而得到x=3;(2)像这种分数形式的比,要看清哪是比的内项,哪是比的外项。
根据比例的基本性质得到1.2x=2.5×3,1.2x=7.5,x=6。
5.会议室用一种方砖铺地,用边长4dm的方砖,要360块。
用边长3dm的方砖,至少要多少块?(用比例解)【答案】640块【解析】对于用比例解的问题,首先要判断题目中的哪种量一定,哪种量和哪种量成什么比例。
根据题意可知,是在会议室里铺地,用不同大小的方砖铺,需要的块数也不一样,但是房间的面积是一定的,所以房间面积一定,方砖面积和需要的块数成反比例。
六年级数学比和比例试题答案及解析1.甲、乙、丙三人分一箱苹果.若按3:2:5或1:2:3分配,两种分法()分得一样多.A.甲 B.乙 C.丙【答案】C【解析】根据两种分配方法,分别求出两种方案中甲、乙、丙各分得总数的几分之几,分数值相同的及时分得糖果相同的.解答:解:第一种:3+2+5=10甲占:乙占:=丙占:=第二种:1+2+3=6甲占:乙占:=丙占:=所以两次丙分得的一样多.故选:C.点评:本题的关键是求出两次甲、乙、丙各占总份数的几分之几.2.:==80%=÷40=折=小数.【答案】4,5,50,32,八,0.8【解析】分析:80%可以化成,根据分数的性质,的分子和分母同时乘10可化成;用的分子4做比的前项,分母5做比的后项也可转化成比为4:5;用的分子4做被除数,分母5做除数可转化成除法算式为4÷5,根据商不变的性质,把被除数和除数同时乘8可化成32÷40;80%也就是八折;把80%的百分号去掉,把小数点向左移动两位可化成0.8;由此进行转化并填空.解答:解:4:5==80%=32÷40=八折=0.8.故答案为:4,5,50,32,八,0.8.点评:此题考查小数、分数、比、除法和百分数之间的关系和转化,也考查了分数的性质和商不变性质的运用.3.用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,房间的长宽高分别是多少?若粉刷屋顶和四面墙壁,除去门窗20平方米,粉刷的面积是多少平方米?【答案】房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.【解析】用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,首先求得一条长、宽、高的和:120÷4=30厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可;粉刷的是四面墙壁和顶棚,根据长方体的表面积的计算方法,求出这5个面的总面积减去门窗和黑板面积即可.据此解答.解答:解:长:120÷4×=30×=15(米)宽:120÷4×=30×=10(米)高:120÷4×=30×=5(米)15×10+(15×5+10×5)×2﹣20=150+(75+50)×2﹣20=150+250﹣20=400﹣20=480(平方米)答:房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.点评:此题解答的关键字在于求出长、宽、高的和,再运用按比例分配的方法解决,还要搞清粉刷的是哪几个面,然后根据长方体的表面积的计算方法进行解答.4. 4:3的后项加上12,要使比值不变,前项应加上.【答案】16.【解析】比的后项加上12,扩大了5倍,根据比的基本性质,要使比值不变,比的前项也应扩大5倍,即乘上5,据此解答即可.解答:解:3+12=15,15÷3=5比的后项变成15,扩大了5倍,要使比值不变,比的前项也应扩大5倍;即比的前项应乘上5,或加上4×5﹣4=16.故答案为:16.点评:此题主要考查了比的基本性质的灵活应用.5. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.6.画一个周长是24厘米,长与宽的比是3:1的长方形.【答案】24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【解析】解:24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【点评】依据长方形的周长公式,分别计算出长方形的长和宽的值,是解答本题的关键.7. 10克药溶解在100克水中,药和药水的比是()A.1:10 B.1:9 C.1:11【答案】C【解析】将10克药放入100克水中,即可配制成10+100=110克药水,那么药和药水的比是10:110,然后化简即可.解:10:(10+100)=10:110=1:11答:药和药水的比是1:11.故选:C.【点评】此题解题的关键是看所求的问题是谁与谁比,然后根据题意进行解答,继而得出结论.8.男生与女生的人数比是6:5,男生比女生多()A. B. C.【答案】C【解析】男生与女生人数的比是6:5,把男生人数看作6份,则女生人数就是5份,就是求男生比女生多的人数占女生人数的几分之几,用男生比女生多的人数除以女生人数即可解答.解:(6﹣5)÷5=1÷5=;故选:C.【点评】求一个数比另一个数多或少百分之几,用这两数之差除以另一个数.9.在一个比例中,两个外项的积是,一个内项是3,另一个内项是.【答案】.【解析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积.10.a=b则a:b= :.【答案】16,15.【解析】逆用比例的基本性质:在比例里,内项的积等于外项的积.解:因为a=b,所以a:b=:==16:15;故答案为:16,15.【点评】本题主要是灵活利用比例的基本性质解决问题.11.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.13.学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.【答案】52.【解析】由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.【点评】此题是考查比的应用,要把比理解为几份和几份的比.14.把下面各比化成最简整数比24:16=0.45:0.3=0.375:=:=【答案】3:2;3:2;3:1;1:5.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:24:16=(24÷8):(16÷8)=3:2;0.45:0.3=(0.45÷0.15):(0.3÷0.15)=3:2;0.375:=(0.375×8):(×8)=3:1;:=(×6):(×6)=1:5.故答案为:3:2;3:2;3:1;1:5.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数.15.﹦0.6﹦ ÷40﹦12:﹦:15.【答案】3,24,20,9.【解析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘8就是24÷40;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘3就是9:15;都乘4就是12:20.解:=0.6=24÷40=12:20=9:15.故答案为:3,24,20,9.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.16. 3: =24 :8=0.5.【答案】,4.【解析】根据比值的含义:比的前项除以后项所得的商叫做比值;可知:比的后项=比的前项÷比值,比的前项=比的后项×比值;据此解答.解:①3÷24=,所以应填;②0.5×8=4,所以应填4;故答案为:,4.【点评】根据比的前项、后项和比值三者之间的关系进行解答.17.从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红的速度之比是4:5 .(判断对错)【答案】×【解析】把从学校走到电影院的路程看作单位“1”,根据“路程÷时间=速度”分别求出小明和小红的速度,进而根据题意求比即可判断.解:(1÷8):(1÷10),=:,=(×40):(×40),=5:4;故答案为:×.【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系.18.把下面各比化成最简单的整数比.8:12=0.25:0.45==【答案】2:3,5:9,2:1.【解析】(1)根据比的性质:把8:12的前项和后项同时除以4即可化成最简整数比;(2)根据比的性质:把0.25:0.45的前项和后项同时乘20即可化成最简整数比;(3)根据比的性质:把:的前项和后项同时乘8即可化成最简整数比;据此进行化简并计算.解:(1)8:12=(8÷4):(12÷4)=2:3;(2)0.25:0.45=(0.25×20):(0.45×20)=5:9;(3):=(×8):(×8)=2:1.故答案为:2:3,5:9,2:1.【点评】此题考查化简比的方法,是根据比的基本性质进行化简的,最简比是指比的前项和后项是互质数的比;要注意区分:化简比的结果仍是一个比;求比值的结果是一个数,可以是小数、分数和整数.19.当0.3a=5b(a、b均不为0)时,则b:a= :.【答案】3、50.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为0.3a=5b,则b:a=0.3:5=3:50;故答案为:3、50.【点评】此题主要考查比例的基本性质的灵活应用.20.=15÷20= :24== (填小数).【答案】3,18,36,0.75.【解析】解答此题的突破口是15÷20,根据分数与除法的有关系15÷20=,将分数化简是;根据分数的基本性质,分子、分母都乘9就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;15÷20=0.75,解:=15÷20=18:24==0.75.故答案为:3,18,36,0.75.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.21.一个最简整数比的比值是0.15,这个最简比是(:)【答案】3,20.【解析】根据比的意义和比值的意义:两个数相除又叫做两个数的比,比的前项除以后项所得的商,叫做比值;可得:假设比的后项是1,则比的前项为0.15×1=0.15,则比为0.15:1,化成最简整数比即可.解:0.15:1=(0.15×20):(1×20)=3:20;故答案为:3,20.【点评】此题应根据比的意义和比的性质进行解答.22. 3.2:0.24的最简整数比是,比值是.【答案】40:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1)3.2:0.24,=(3.2×100):(0.24×100),=320:24,=(320÷8):(24÷8),=40:3;(2)3.2:0.24,=3.2÷0.24,=,故答案为:40:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23. 1.8:化成最简单的整数比是,比值是.【答案】6:1,6.【解析】(1)化简整数比时,应根据比的性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变”,进行化简.(2)求比值时,应根据比的意义“两个数相除,叫做两个数的比”去算,用比的前项除以后项得出答案.解:1.8:=(1.8×10):(×10)=18:3=6:1;1.8:=1.8÷=1.8×=6;故答案为:6:1,6.【点评】化简整数比最后的答案是一个比,而求比值最后的答案是一个比值,它可以表示为一个整数、分数或小数.24.一条公路长120千米,其中上坡路、下坡路和平路的比是2:3:5,上坡路、下坡路和平路各是多少千米?【答案】上坡路是24千米,下坡路是36千米,平路是60千米.【解析】分别把上坡路、下坡路和平路的长度看作2份、3份和5份,则总份数为2+3+5=10份,利用按比例分配的方法,即可求解.解:120×=24(千米),120×=36(千米),120×=60(千米);答:上坡路是24千米,下坡路是36千米,平路是60千米.【点评】此题主要考查按比例分配的方法的灵活应用.25.男生人数的等于女生人数的,则男、女生人数的比是()A.4:5 B.5:4 C.:【答案】B【解析】由题意可知:男生人数×=女生人数×,于是即可逆运用比例的基本性质,即两内项之积等于两外项之积,即可求出它们的比.解:因为男生人数×=女生人数×,则男生人数:女生人数=:=5:4;故选:B.【点评】此题主要考查比例的基本性质的灵活应用.26.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形【答案】A【解析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.27.大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比..【答案】对【解析】根据圆周率的含义可知:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示.解:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示,所以大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.答:大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.故填:对.【点评】此题主要考查的是圆周率含义的应用.28. 0.2:0.8化成最简整数比是,比值是.【答案】1:4,0.25【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1)0.2:0.8=(0.2×10):(0.8×10)=2:8=(2÷2):(8÷2)=1:4;(2)0.2:0.8=0.2÷0.8=2÷8=1÷4=0.25;故答案为:1:4,0.25.【点评】此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数.29.解方程.x:1.2=3:4; 3.2x﹣4×3=52; x+x=.【答案】(1)0.9;(2)20;(3).【解析】(1)根据比例的基本性质,原式化成4x=1.2×3,再根据等式的性质,方程两边同时除以4求解;(2)先化简方程,再根据等式的性质,方程两边同时加上12,再两边同时除以3.2求解;(3)先化简方程,再根据等式的性质,方程两边同时除以求解.解:(1)x:1.2=3:44x=1.2×34x÷4=3.6÷4x=0.9;(2)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(3)x+x=x=x=x=.【点评】解答方程的依据是等式的性质,同时应注意“=”号上下要对齐.30.甲、乙两地相距600千米,卡车和货车同时从两地相向开出。
比和比例综合练习题及答案
比和比例练习题
一、填空:
1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)
()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的()倍,乙数是甲数的)
()(。
2. 某班男生人数与女生人数的比是
4
3,女生人数与男生人数的比是(),男生人数和女生人数的比是()。
女生人数是总人数的比是()。
3. 一本书,小明计划每天看72,这本书计划()看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)
()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是(),这个比的比值的意义是()。
6. 一个正方形的周长是5
8米,它的面积是()平方米。
7. 89吨大豆可榨油3
1吨,1吨大豆可榨油()吨,要榨1吨油需大豆()吨。
8. 甲数的32等于乙数的5
2,甲数与乙数的比是()。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)
()(。
10. 甲数比乙数多
41,甲数与乙数比是()。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的(),5是比的(),1.2是比的()。
在4 :7 =48 :84中,4和84是比例的(),7和48是比例的()。
12. 4 :5 = 24÷()= ():15
13. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是()。
一幅地图的比例尺
是图上6厘米表示实际距离()千米。
实际距离150千米在图上要画()厘米。
14. 12的约数有(),选择其中的四个约数,把它们组
成一个比例是()。
写出两个比值是8的比()、
()。
15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间
()比例;订数学书的本数与所需要的钱数()比例;
加工零件的总个数一定,已经加工的零件和没有加工的零件个数
()比例。
16. 如果x ÷y = 712 ×2,那么x 和y 成()比例;如果x:4=5:y ,
那么x 和y 成()比例。
三、选择(将正确答案的序号填在括号里)
1. 图上6厘米表示表示实际距离240千米,这幅图的比例尺是()。
A 、1:40000
B 、1:400000
C 、1:4000000
2. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是
( )
A 、2:7
B 、6:
21 C 、4:14
3. 下面第( )组的两个比不能组成比例。
A 、8:7和14:16
B 、0.6:0.2和3:1
C 、19: 110 和10:9
4. 三角形的高一定,它的面积和底( )
A 、成正比例
B 、成反比例
例
5. 与51:6
1能组成比例的是()。
A 、61:51 B 、6
1:5 C 、 5:6 D 、6:5 6. 在盐水中,盐占盐水的10
1,盐和水的比是()。
A 、1:8 B 、1:9 C 、 1:10 D 、1:11
7. 如果X =4
3Y ,那么Y :X =()。
A 、1:43 B 、4
3:1 C 、3:4 D 、4:3 8. 圆的半径与圆周长()。
A 、成正比例
B 、成反比例
C 、不成比例
D 、没有关系
9. 在一幅地图上,量得AB 两城市距离是7厘米,而AB 两城市之间的实际距离
是350千米,这幅地图的比例尺是()。
A 、150
B 、15000
C 、150000
D 、 1500000
10. 把4.5、7.5、21 、 10
3这四个数组成比例,其内项的积是()。
A 、1.35
B 、3.75
C 、33.75
D 、2.25
11. 小明从家里去学校,所需时间与所行速度()。
A 、成正比例
B 、成反比例
12. 一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙效率的最简比是
()。
A 、 6:9
B 、 3:2
C 、 2:3
D 、 9:6
13. 一个三角形三个内角度数的比是6:2:1,这个三角形是()。
A 、直角三角形
B 、锐角三角形
C 、钝角三角形
D 、无法确定
14. 甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做()。
A 、 480个
B 、400个
C 、80个
D 、40个
七、应用题
1. 建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、
沙子、石子各多少吨?
2. 一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是
3:8,这两种拖拉机各有多少台?
3. 用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?
4. 甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:
4:5,甲、
乙、丙三个数各是多少?
5. 乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
6. 一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
7. 一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的
面积是多少平方米?
8. 一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3)用48千克药粉,可配制成多少千克的药水?
9. 商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求
运来电冰箱多少台?
10. 纸箱里有红绿黄三色球,红色球的个数是绿色球的4
3,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?
11. 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?
12. 甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,
应画多少厘米?
13. 在一幅比例尺是1:300的地图上,量得东、西两村的距离是12.3厘米,东、
西两村的实际距离是多少米?
14. 朝阳小学的操场是一个长方形,长120米,宽75米,用
3000
1的比例尺画成平面图,长和宽各是多少厘米?
15. 在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地
之间的实际距离是多少千米?
16. 右图是一个梯形地平面图(单位:厘米),求它的实际面积
17. 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可
以修完?(用比例方法解)
18. 同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少
行?(用比例方法解)
19. 飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4
2
1小时的路程,汽车要行多少小时?(用比例方法解)
20. 修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可
修完?(用比例方法解)
21.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海
水可以晒多少吨盐?(用比例方法解答)
22.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40
天完成任务,每天应装多少台?(用比例方法解)
23.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,
可以提前几天完成?(用比例方法解)
24.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样
的练习本?
25.配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
26.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第
二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米?
27.园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵这时
剩下的与已栽的棵数的比是3:5。
这批树苗一共有多少棵?。