七年级(下册)第一次月考数学质量分析
- 格式:doc
- 大小:38.00 KB
- 文档页数:6
学校月考质量分析总结(优秀9篇)学校月考质量分析总结篇一第一次月考过去了,成绩不太理想,虽然比以前(接班前总成绩和语数英三科均为本年级几十个班级段中成绩倒数)进步了几个名次,但心中仍无一丝安慰之感。
因为面对现状,并不容乐观。
针对语文这一学科试卷失分情况分析发现:本班学生整体分析能力不强,这点在我授课时已有察觉。
一些学生看似人在班级,眼睛瞅着黑板、老师,到分析具体问题时,思维总达不到八年级应有的水平。
具体表现为一些重点句子在作理解其含义时,提示他们用自己的话概括总结或阐述,而实际情况则是:在未开思路情形下,将我的语言一字不改的给记下了,丝毫没有自己的东西,脑子过滤下来的尽是他人的语言、思维成果,此种情形似乎已成为通病。
怪不得有学生说:一些阅读理解的题目,心中也知道意思,就是说不出写不出。
这说明孩子的思维能力有时跟不上,有时能跟上,而表达则很困难。
再者,学生失分地方还有一部分“死题”,即书本上一些能找到答案的古诗词、基础知识里的字词音义方面的题目,暴露了基础知识掌握得不扎实,答对的几率不高。
即使有时蒙对了,心中也不甚明了缘由。
针对以上情形,制定以下措施,以期更进一步。
加强基础知识的学习和训练,积少成多,及时出错及时更正于纠错本上,及时反复回顾,达到加深记忆之目的。
提升学生思考思维水平,课内多多引导学生自主思考问题,随之训练口语表达,尽量做到思,说,练一体。
“授之以鱼不如授之以渔”教学生知识,不如教会学生学知识之法,逐渐引导学生知道学什么,怎么学。
要求学生做到的,教师要以身作则首先做到。
学校月考质量分析总结篇二老师们不怕你听不懂,就怕你不问;不怕你基础差,就怕你懒,不行动,不勤奋;更怕你丧失信心、失去斗志,自暴自弃。
考试就是竞争,竞争的直接结果是分数,是名次。
每一位负责任的同学,在审视这次月考成绩的时候,不论别人对自己如何评价,都有一个不容回避的思考:什么原因导致了成绩波动?为什么成绩一直平平,没有起色?能不能更好一些?同学们,月考以后很快就要进行期中考试。
最新】人教版七年级下册数学第一次月考试题及答案七年级第一次月考数学试题一、填空题(每小题2分,共20分)1.如图,若∠1=35°,则∠2=145°,∠3=35°。
2.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,DC/BD=6.4,AD=3.6,AC=6,点A到BC 的距离是2.4,点A,B两点间的距离是8.4.3.把命题“平行于同一条直线的两条直线平行”,改写成“如果两条直线在同一条直线上,那么它们平行”的形式为。
4.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD=50°。
5.如图,已知直线a∥b,∠4=40°,则∠2=140°。
6.如图,直线AB∥CD,EF交AB于点M,MN⊥EF于点M,MN交CD于点N,若∠BME=125°,则∠MND=55°。
7.如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4=100°。
8.如图,AB∥CD,BC∥DE,则∠B与∠D的关系是对应角相等。
9.XXX将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90°。
10.如图,DH∥EG∥BC,且DC∥EF,则图中与∠1相等的角有两个,分别是∠3和∠4.二、单项选择题(每小题3分,共18分)11.下列各图中,∠1和∠2是对顶角的是(B)。
12.如图,点A到直线CD的距离是指哪一条线段的长(D)。
13.下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是(B)。
14.如图,下列条件中能判定AB∥CD的是(C)。
15.在如图所示的长方体中,和棱AB平行的梭有(C)。
16.在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:1=∠2(已知)。
北师大版数学七年级下册第一次月考试卷及答案北师大版数学七年级下册第一次月考试题一、选择题(本大题共6小题,共18分)1.下列运算中,计算结果正确的是()A。
a2•a3=a6B.(a2)3=a5C.(a2b)2=a2b2D。
a3+a3=2a32.若(x-1)=1成立,则x的取值范围是()A。
x=-1B。
x=1C。
x≠1D。
x≠-13.已知x2+kxy+64y2是一个完全平方式,则k的值是()A。
8B。
±8C。
16D。
±164.如图的图形面积由以下哪个公式表示()A。
a2-b2=a(a-b)+b(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D。
a2-b2=(a+b)(a-b)5.已知am=6,an=10,则am-n值为()A。
-4B。
4C。
0D。
16.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°。
A。
①②B。
②③C。
①④D。
②④二、填空题(本大题共6小题,共18分)7.如果xny4与2xym相乘的结果是2x5y7,那么mn= 3.8.某红外线遥控器发生的红外线波长为0.xxxxxxxxm,用科学记数法表示这个数据是9.4×10^-7.9.(-)2013·(-3)^2015= -3^2015.10.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成|ad-bc|,上述记号就叫做2阶行列式.若|ad-bc|=3,则x= 1.11.如图所示,AC//BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2的度数为 116°。
12.在下列代数式:①(x-11y)(x+y);②(3a+bc)(-bc-3a);③(3-x+y)(3+x+y);④(100+1)(100-1);⑤(-a+b)(-b+a)中能用平方差公式计算的是②和⑤。
七年级下学期第一次月考数学试题(时间:80分钟 满分:120分)一、选择题:(每小题3分,共计42分)1、面积为5的正方形的边长在 ( )A 0和1之间B 1和2之间C 2和3之间D 3和4之间2、下列命题正确的是 ( )A 一个角的补角是钝角B 两条直线和第三条直线相交,同位角相等C 连接两点的线段叫两点的距离D 对顶角相等3、如图,直线AB ,CD 相交于点O ,OE AB ⊥于O ,55COE ︒∠=,则BOD ∠的度数是( ) A 40︒ B 45︒ C 30︒ D 35︒4、如图,将ABC V 沿AB 方向平移至DEF V ,且5AB =,2DB =,则CF 的长度为( )A 5B 3C 2D 15、如图,下列推理及所注明的理由都正确的是 ( )A 因为DE //BC ,所以1C ∠=∠ (同位角相等,两直线平行)B 因为23∠=∠,所以 DE //BC (两直线平行,内错角相等)C 因为DE //BC ,所以 23∠=∠ (两直线平行,内错角相等)D 因为1C ∠=∠,所以DE //BC (两直线平行,同位角相等)6、同一平面内的四条直线满足a b ⊥,b c ⊥,c d ⊥,则下列式子成立的是 ( )A a //dB a d ⊥C b d ⊥D a c ⊥7、若225a =,3b =,则a b +等于 ( )A 8-B 8±C 2±D 8±或 2±8、给出下列实数:3,3.14 ,364,5,2- ,5π,4 ,13 ,3.102100210002L L ,其中无理数有 ( ) A 2个 B 3个 C 4个 D 5个9、如图,不能判断直线AB CD //的条件的是 ( )A 13∠=∠B 24180∠+∠=dC 45∠=∠D 23∠=∠10、如图,与B ∠是同旁内角的有 ( )A 1个B 2个C 3个D 4个11、如图,AB CD // ,EF BD ⊥,垂足为E ,150∠=d,则2∠的度数为 ( )A 50dB 40dC 30dD 20d12、已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 0ab > B 0a b +< C a b < D 0a b -> 13、已知一个正方体的表面积为12 2dm ,则 这个正方体的棱长为 ( )A 1 dm B2dm C 6dm D 3 dm 14、关于()2a 与 2a ,下列结论中正确的是 ( )A a 为任意实数时,都有()2a =2a 成立。
草峰中学20xx-20xx学年度第二学期第一次月检测质量分析报告一、组织与阅卷情况按照行事历安排,学校定于第五周进行了第一次月考,在教导处的统一组织下施行,考试期间组织严密,共设16个考场,七、八年级采用交叉考试,设10个考场,每个考场1名教师监考,九年级完全按照中考要求组织实施,采用单人单桌单行,共设6个考场,每个考场均有2名监考教师。
为保证考试成绩的真实有效,教导处按照标准要求强调了考试纪律及监考教师的职责,频繁巡考,统一集中订卷、阅卷、登分等方式加大对考试纪律的检查,在考试期间发生的违纪现象大为减少,但是距离杜绝学生违纪行为还有较大距离。
阅卷采取的是分教研组集体作业,统一安排了固定地点,保证了批卷过程严谨、认真。
二、试题总体评价本次考试,试卷为各年级各科任教师统一组织试题,试题难度总体中等(八年级英语、九年级化学、历史较难),质量较高,注重了基础知识与综合能力兼顾,体现了《新课标》中的“三维目标”之间的关系,试题灵活,注重用所学知识解决生活中的实际问题,较好的把握了信度、效度和区分度,对今后的教学具有良好的导向作用。
三、考试成绩分析:本次考试应参加考试人数513人,实际参加考试人数509人,考试成绩情况统计如下:1、全校全科合格人数:85人,全科合格率:16.70%。
各年级全科合格人数:七年级50人,全科合格率:29.94%,七(1)班9人,合格率25.00%,七(2)班11人,合格率33.33%,七(3)班12人, 合格率37.5%,七(4)班9人,合格率29.03%,七(5)班9人,合格率25.71%,八年级22人,全科合格率:12.94%,八(1)班6人,合格率17.14%,八(2)班8人,合格率22.86%,八(3)班2人,合格率6.45%,八(4)班3人,合格率10.00%,八(5)班3人,合格率7.69%,九年级13人,全科合格率:7.56%。
九(1)班5人,合格率11.90%,九(2)班4人,合格率9.30%,九(3)班1人,合格率2.50%,九(4)班3人,合格率6.38%,2、各学科合格情况:七年级:语文合格率88.62%,数学合格率74.85%,英语合格率65.27%,政治合格率77.25%,历史合格率77.84%,地理合格率41.92%,生物合格率74.25%。
七年级下第一次月考考试说明一、命题原则:1、注重基础性(1)严格按照课程标准命题,不随意扩大范围和提高要求。
(2)试题应突出对知识的基础知识、基本技能和数学基本方法的检测。
(3)在控制试题总数的基础上尽可能多考察知识点。
2、体现发展性重视考察学生学习数学过程和方法,重视考察学生的思维能力和创新意识。
二、考试内容、形式、题型1、内容:本次月考检测了第五章相交线与平行线、第六章实数、第七章平面直角坐标系三章内容,2、考试形式题型采用闭卷测试,满分120分,考试时间90分钟,试题类型有填空、选择、计算、作图等题型。
三、试卷结构1、试卷内容比例相交线与平行线占32分,实数51分,平面直角坐标系37分。
2、试卷难易程度容易试题、中等难度试题、较难试题6:3:1数学月考质量分析本次月考主要是相交线与平行线、实数、平面直角坐标系三章内容,学生掌握的还可以,成绩虽然不是十分理想,但也基本保持原有水平。
现对此次数学学科教学质量作简要分析:一、测试结果参考人数:23人,最高分111分,最低分22分,数学平均分79.54分。
其中及格人数14人,,72 -84分有2人,85-120分有12人,60 -71分有6人,优秀率为8.7%,及格率为60.87%。
二、存在的问题1、学生的审题不够认真,抄错数字,看错题目要求,计算粗心马虎等,是导致失分的一个重要原因。
2、从卷面上看,不论是在计算还是解决问题,都不同程度地出现学生对某些概念产生混淆。
3、学生答题情况来看,学生对图文题、表格题及综合运用的题型(这些题大多把解题条件放在图、表中,要求学生通过观察来解决的)解题能力较薄弱,原因是学生观察能力不强,而导致找不到解题条件。
三、改进措施1、加强自身的业务水平,提高课堂教学效率。
2、注重学生良好习惯的培养。
养成良好的学习习惯,也是学生的一个基本的素质,它将使学生受益终生。
3、加强基础知识的掌握。
针对易错易混的知识点,在平常教学中,要加强对比练习,让学生在对比中自己辨析、掌握,所用的方法可采取题组对比方式。
人教版2020年七年级下册数学第一次月考试题五一.选择题(共10小题,满分30分,每小题3分)1.(3分)四条直线相交于一点,总共有对顶角()A.8对B.10对C.4对D.12对2.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.(3分)某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.164.(3分)如图,∠AOB=50°,CD∥OB交OA于E,则∠AEC的度数为()A.120°B.130°C.140°D.150°5.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行 B.垂直 C.平行或垂直D.无法确定6.(3分)如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠3=∠5 D.∠1+∠3=180°7.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个8.(3分)把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值9.(3分)学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25° D.65°10.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.12.(3分)如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC= ,∠COB= .13.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.14.(3分)如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF= °15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC= .三.解答题(共8小题,满分72分)17.(8分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(8分)已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).19.(8分)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN 上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.21.(8分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE 与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°= °;根据当∠ECB+∠CBD= °时,可得CE∥AB.所以∠ECB= °此时CE与BC的位置关系为.22.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN 与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).参考答案与试题解析1.【解答】解:如图所示,,共有12对,故选D.2.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.3.【解答】解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16对.故选:D.4.【解答】解:∵CD∥OB,∠AOB=50°,∴∠AOB=∠CEO=50°,∵∠AEC+∠CEO=180°,∴∠AEC=180°﹣50°=130°.故选:B.5.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.6.【解答】解:A、∠1=∠2不能判断直线l1∥l2,故此选项错误;B、∠1=∠5不能判断直线l1∥l2,故此选项错误;C、∠3=∠5不能判断直线l1∥l2,故此选项错误;D、∠1+∠3=180°,能判断直线l1∥l2,故此选项正确.故选:D.7.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.【解答】解:(1)当两斜边重合的时候可组成一个矩形,此时x=2,y=3,x+y=5;(2)当两直角边重合时有两种情况,①短边重合,此时x=2,y=3,x+y=5;②长边重合,此时x=2,y=5,x+y=7.综上可得:x+y=5或7.故选:B.9.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.10.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.11.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.12.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=26°,∴∠AOC=∠BOD=90°﹣26°=64°,∴∠BOC=180°﹣∠AOC=180°﹣64°=116°,故答案为:64°,116°.13.【解答】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.14.【解答】解:根据折叠的特性,G、H、D共线,∠DEF=∠FEG=∠EFG=19°,根据三角形的外角等于不相邻的内角的和,如图②,∠DGF=2∠E=2×19°=38°,如图③,同理∠DHF=38°+19°=57°.故答案为:57.15.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .16.【解答】解:设∠EFC=x,∠1=y,则∠BFC′=x﹣y,∵∠BFC′比∠BFE多6°,∴x﹣2y=6,∵x+y=180°,可得x=122°故答案为122°.17.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.18.【解答】解:如图所示,直线CD即为所求.19.【解答】解:(1)∵∠BOD=∠AOC=76°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×76°=38°.∴∠COE=180°﹣∠DOE=180°﹣38°=142°,∵OF平分∠COE,∴∠EOF=∠COE=×142°=71°,∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°.(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠DOE=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得:x=36°,故∠AOC=72°.(3)设∠BOE=x,则∠DOE=x,则∠COA=2x,∠BOF=90°﹣x,∵|∠AOC﹣∠BOF|=α°,∴|2x﹣(90°﹣x)|=α°,解得:x=()°+α°或x=()°﹣α°,当x=()°+α°时,∠AOC=2x=()°+α°,∠BOF=90°﹣x=()°﹣α°;当x=()°﹣α°时,∠AOC=2x=()°﹣α°,∠BOF=90°﹣x=()°+α°.20.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时,∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合,所以,不存在.21.【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.22.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,(两直线平行,同旁内角互补)∵∠A=∠B,∴∠A+∠O=180°,(等量代换)∴OB∥AC.(同旁内角互补,两直线平行)(2)(ⅰ)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF,∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(ⅱ)∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(ⅲ)∵OB∥AC,∴∠OCA=∠BOC,设∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.23.【解答】解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN=∠AMN,∠ENM=∠MNC,∴∠EMN+∠ENM=90°,即∠MEN=90°,又∵NG⊥EN,∴∠MEN+∠ENH=180°,∴EM∥NG;(2)设∠HEG=x,则∠HGE=∠MEG=x,∠NEH=90°﹣2x,∵EP平分∠FEH,∴∠FEH=2∠PEH=2(∠PEG+x),又∵∠FEH+∠HEN=180°,∴2(∠PEG+x)+90°﹣2x=180°,解得∠PEG=45°.24.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n =∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.第11 页共11 页。
一、选择题(本大题共8小题,每小题3分,共24分)1.计算:a2•a3等于()A.a5B.a6C.a8D.a92.如图,AB∥CD,如果∠B=20°,那么∠C的度数是()A.40°B.20°C.60°D.70°3.下列图形中,不能通过其中一个四边形平移得到的是()A. B.C.D.4.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形5.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°6.[﹣(﹣a)2]3=()A.﹣a6B.a6C.﹣D.7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个 B.2个 C.3个 D.4个8.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.A.5 B.10 C.15 D.20二、填空题(本大题共10小题,每小题3分,共30分)9.如图,一块直角三角尺的两个顶点分别在长方形的一组对边上,若∠1=30°,则∠3=°.10.计算:(﹣2xy2)2=.11.遗传物质脱氧核糖核酸(DNA)的分子直径为0.00000023cm,用科学记数法表示为cm.12.如果a x•a3=a7,那么x=.13.内角和与外角和相等的多边形的边数为.14.等腰三角形的两边长分别为3cm和4cm,则它的周长是cm.15.如图,平面上直线a,b分别经过线段OK两端点(数据如图),则a,b相交所成的锐角是.16.一个正多边形的每个内角都等于140°,那么它是正边形.17.如图,小明从点O出发,沿直线前进10米后向左转n°(0<n<90),再沿直线前进10米向左转相同的度数,…照这样走下去,小明发现:当他第一次回到了出发点时,共转过了24次,则小明每次转过的角度n的值为.18.如果等式(2a﹣1)a+2=1,则a的值为.三、解答下列各题19.计算(1)(5﹣2a3)2•(﹣a2)3(2)(﹣1)2017+2﹣1+(π﹣3.14)0(3)()2016×(﹣1.25)2017(4)(a﹣b)2(b﹣a)3(a﹣b)4.20.先化简,再求值:﹣(﹣2a)3•(﹣b3)2+(﹣ab2)3,其中a=﹣,b=2.21.将一副直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.22.如图,每个小正方形的边长均为1,每个小方格的顶点叫格点.(1)画出△ABC中AB边上的中线CD.(2)画出△ABC向右平移4个单位后得到的△A1B1C1.(3)图中AC与A1C1的关系是:.23.已知10a=5,10b=6,(1)求102a+103b的值;(2)求102a+3b的值;(3)求102a﹣3b的值.24.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,(1)试判断DG与BC的位置关系,并说明理由.(2)若∠A=70°,∠B=40°,求∠AGD的度数.25.(1)一个多边形每个内角都相等,且每个外角等于一个内角的,求这个多边形的边数;(2)两个多边形边数之比为3:4,内角和之比为2:3,求这两个多边形的边数.26.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的角平分线,∠B=20°,∠C=60°.(1)求∠EAD的度数;(2)若其他条件不变,图形发生了变化,已知的两个角度数改为:当∠B=30°,∠C=60°,则∠EAD=°;当∠B=50°,∠C=60°时,则∠EAD=°;当∠B=64°,∠C=78°时,则∠EAD=°;(3)若∠B<∠C,你能找到∠EAD与∠B和∠C之间的关系吗?请写出你发现的结论并说明理由.27.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B 落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.计算:a2•a3等于()A.a5B.a6C.a8D.a9【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,得出答案.【解答】解:a2•a3=a5.故选:A.2.如图,AB∥CD,如果∠B=20°,那么∠C的度数是()A.40°B.20°C.60°D.70°【考点】平行线的性质.【分析】根据两直线平行内错角相等可得∠B=∠C,进而可得答案.【解答】解:∵AB∥CD,∴∠B=∠C,∵∠B=20°,∴∠C=20°,故选:B.3.下列图形中,不能通过其中一个四边形平移得到的是()A. B.C.D.【考点】生活中的平移现象.【分析】根据平移与旋转的性质得出.【解答】解:A、能通过其中一个四边形平移得到,错误;B、能通过其中一个四边形平移得到,错误;C、能通过其中一个四边形平移得到,错误;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确.故选D.4.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【考点】三角形内角和定理.【分析】根据已知条件和三角形的内角和是180度求得各角的度数,再判断三角形的形状.【解答】解:∵∠A=20°,∴∠B=∠C==80°,∴三角形△ABC是锐角三角形.故选A.5.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.【解答】解:方法1:∵AB∥CD,∠C=115°,∴∠EFB=∠C=115°.。
七年级数学下册第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 已知{x =−1y =2是二元一次方程组{3x +2y =m nx −y =1的解,则m −n 的值是( )A. 1B. 2C. 3D. 42. 下列运算中,结果正确的是( )A. (a +b)2=a 2+b 2B. (−a 2b)3=a 6b 3C. (a 3)2=a 6D. a 6÷a 2=a 33. 方程2x +y =5与下列方程构成的方程组的解为{x =3y =−1的是( )A. x −y =4B. x +y =4C. 3x −y =8D. x +2y =−14. 《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”这一章里,二元一次方程组是由算筹(算筹是中国古代用来记数、列式和进行演算的一种工具)来记录的.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示两位数时,个位用立式,十位用卧式.如图(1),从左到右列出的算筹数分别表示x 、y 的系数与相应的常数项,根据图(1)可列出方程组{3x +y =177x +4y =23,则根据图(2)列出的方程组是( )A. {x +5y =32x +2y =14 B. {x +5y =112x +4y =9 C. {x +5y =212x +2y =9D. {x +5y =12x +2y =95. 下列运算正确的是( )A. a 3⋅a 2=a 6B. (−a 2)3=a 6C. a 7÷a 5=a 2D. −2mn −mn =−mn6. 下列等式中正确的个数是( )①a 5+a 3=a 10②(−a)6⋅(−a)3⋅a =a 10③−a 4⋅(−a)5=a 20④(−a)5÷a 2=−a 3A. 1个B. 2个C. 3个D. 4个7. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( )A. 120kmB. 140kmC. 160kmD. 180km8. 若x 2−2(m −3)x +16是完全平方式,则m 的值等于( )A. −1B. 7C. 7或−7D. 7或−19. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( ) A. {y −x =4.5y −12x =1B. {x −y =4.5y −12x =1C. {x −y =4.512x −y =1D. {y −x =4.512x −y =110. 若a =999999,b =119990,则下列结论正确是( ) A. a <bB. a =bC. a >bD. ab =1第Ⅱ卷二、填空题(本大题共8小题,共32.0分) 11. 计算:0.252019×42020=______.12. 若|a +b −1|+(a −b +3)2=0,则a 2−b 2=______.13. 在括号内填写一个二元一次方程,使所成方程组{5x −2y =1( )的解是{x =1y =2,______.14. 如图所示的正方形和长方形卡片若干张,拼成一个长为(a +3b)、宽为(a +b)的矩形,需要B 类卡片______张.15. 已知x −1x =7,则x 2+1x 2=______.16. 若方程组{2x +3y =75x −y =9的解是方程3x +my =−1的一个解,则m =______.17. 对于非负整数n ,满足方程x +y +2z =n 的非负整数(x,y ,z)的组数记为a n .则a 2017的值是 .18. 若m 2−n 2=6,且m −n =3,则m +n =___. 三、解答题(本大题共7小题,共78.0分) 19. (10分)计算:(1)(15x 2y −10xy 2)÷5xy (2)(2x −1)2−(2x +5)(2x −5)20. (10分)某商场按定价销售某种商品时,每件可获利40元;按定价的八折销售该商品5件与将定价降低30元销售该商品3件所获得的利润相等,求该商品每件的进价和定价分别是多少元?21. (10分)郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?22.(10分)三个圆的位置如图所示,m,n分别是两个较小的圆的直径,m+n是最大的圆的直径.求图中阴影部分的面积.23.(12分)已知:a+b=4.(1)求代数式(a+1)(b+1)−ab值;(2)若代数式a2−2ab+b2+2a+2b的值等于17,求a−b的值.24.(12分)我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?25.(14分)学期即将结束,为了表彰优秀,班主任王老师用W元钱购买奖品.若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x.(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若王老师用这W元钱恰好能买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有).请求出所有可能的a,b值.答案1.D2.C3.A4.C5.C6.A7.B8.D9.B 10.B 11.4 12.−313.x +y =3,本题答案不唯一 14.4 15.51 16.−7 17.1019090 18.219.解:(1)原式=15x 2y ÷5xy −10xy 2÷5xy=3x −2y ;(2)原式=4x 2+4x +1−(4x 2−25) =4x 2+4x +1−4x 2+25 =4x +26.20.解:设进价为x 元,定价为y 元根据题意得:{y −x =40(80%y −x)×5=(y −30−x)×3 解得:{x =130y =170答:该商品每件的进价和定价分别是130元,170元21.解:(1)设购进大桶x 个,小桶y 个,依题意,得:{x +y =80018x +5y =7900,解得:{x =300y =500.答:该超市购进大桶300个,小桶500个. (2)设小桶作为赠品送出m 个,依题意,得:300×(20−18)+300×(8−5)+(500−300−m)(8−5−1)−5m =1550,解得:m =50.答:小桶作为赠品送出50个.22.解:若以(m +n)、m 、n 为直径的圆分别用S 圆(m+n)、S 圆m 、S 圆n 表示.由图知:S 阴影=S 圆(m+n)−S 圆m −S 圆n=π×(m +n 2)2−π×(12m)2−π×(12n)2 =π4×(m +n)2−π4×m 2−π4n 2 =π4[(m +n)2−m 2−n 2] =π4×2mn =12πmn .23.解:(1)原式=ab +a +b +1−ab =a +b +1,当a +b =4时,原式=4+1=5;(2)∵a 2−2ab +b 2+2a +2b =(a −b)2+2(a +b), 当a +b =4时, (a −b)2+2×4=17, ∴(a −b)2=9, 则a −b =3或−3.24.解:(1)设需要购买的消毒液x 瓶,酒精y 瓶,根据题意得:{x +y =4024x +20y =900,解得:{x =25y =15.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元), 节省的钱数为900−770=130(元). 答:从北国超市购买这些物品可节省130元.25.解:(1)由题意得:60(2x +3y)=40(2x +6y),化简得:x =32y .(2)60(2x +3y)÷y =360(本). 答:总共可以买360本;(3)由题意得:60(2x +3y)=30(ax +by),把x =32y 代入得:32a +b =12 解得此方程的正整数解为{a =2b =9,{a =4b =6,{a =6b =3.。
七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是..该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是 A .同位角相等. B .邻补角一定互补. C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置. 11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 .15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 . 19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23的值为 .EC第9题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (222.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ; (2)写出两个图中与∠O 互补的角; (3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下: ∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________), ∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________). ∴∠ =∠C (__________________________). 又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分)29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)E第27题七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF ∥AD ,AD ∥BC (已知),∴EF ∥BC .(平行于同一条直线的两条直线互相平行)………………6分 ∴∠FEC =∠ECB .(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分 25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分 341082376x y x y +=⎧⎨+=⎩……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分) 27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分 ∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分 ∴∠1=∠2.(同角的补角相等)……………………………4分 ∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分 28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分 (3)连接AA 1、CC 1; ∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=.答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分 (3)设租用45座客车m 辆,60座客车n 辆,依题意得 4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分 当0,4m n ==时,租车费用为:30041200⨯=(元); 当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元); ∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥,∴2210(24)0a b a b ++=+-=且 . ∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12 △ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分(3)OPD DOE∠∠的值不变,理由如下:∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90° ∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPDDOE∠=∠.……………………………12分。
七年级数学下册第一次月考质量分析与总结
漾头中学 娇丽
1.试卷结构:选择题、填空题、计算题、解答题、应用题五种题型.
2.试卷容:
通过对七(1)班考生进行试卷分析统计数据如下(人数49人):
通过对七(2)班考生进行试卷分析统计数据如下(人数37人):
二、试卷特点
这份试卷从整体上来分析,题型清晰、简洁,把握好了由简单到
稍难的循序渐进的过程,既照顾到差生,又能从中挑选出尖子生,起
到了一举两得的功效。对于解题的过程考察了学生的计算能力,对概
念理解能力,分析问题及逻辑推理能力。
平均分 及格率 及格人数 80分以上 最高分 最低分
59.4 63.3% 31 6 92 8
平均分 及格率 及格人数 60分以上 最高分 最低分
26.5 0.03% 1 1 60 0
1. 注重对数学基础点的考查。这些试题大部分都是从教科书的
例题、习题中选取后进行适当变式生成的,较好地体现了数学学业考
试的基本定位。而且从整体试卷来看,凡属考查难点的容,在命题上
都适当降低要求,并且都控制了试题的难度,注意贴近学生的思想实
际、心理特征和思维特点,避免过高要求和繁难人为编造的计算题。
这样的命题方式有利于引导老师和学生扎扎实实的讲透和学好“双
基”容,夯实基础,为学生的全面可持续发展提供可靠保证;注重对
重点知识的考查,关注学生的“数感”、“对概念理解能力”、“计算能力”
“应用知识”的形成。不但增加了试卷的亲和力,而且在一定程度上能
激发学生的解题欲望,体现了《数学课程标准》的理念。
2.体现对数学思考的考查。这类题培养学生的计算,思维能力
以及证明的思路是否合理。这些试题给考生创造探索思考的机会与空
间,体现对数学本质理解的考查,有利于促进学生的数学思维、数学
观念与数学素养的全面提高。
4.注重数学学科知识部的联系,在数学知识的交汇处命题。试
题体现了能力立意,以《课标》规定的知识为载体,知识与能力并重。
三、答题情况
1.选择题。对于同样的题目换成另一种方式或者定理逆用去考
查的时候很多同学无从下手,从中可以体现出平时学生对于题型见识
不够多,碰到没见到的题目就措手不及,也体现了学生对概念理解不
够透彻。
2. 填空题。好些同学对同底数幂的乘法,积的乘方,幂的乘方
等辨别不清楚,对公式掌握不牢固。
3. 计算题。大部分同学都拿到了满分,部分同学因为粗心丢分,
部分同学因为上册的知识没掌握牢固而丢分(例如:不会去括号,不
会合并同类项等),老师在今后的教学过程中,会相应的复习以前学
过的容,并加强计算能力的训练。
3. 解答题及应用题。这两个题型的丢分率较高,说明同学们的
逻辑推理能力还有待提高,缺乏对知识的融汇暖通。
四、教学总结
1.研读课程标准,以新课程理念统帅教学工作
平时教学要研读数学课程标准,将数学课程标准所倡导的教学理
念落实到自己的教学中。平时教学应该采用“3361”课改模式,锻
炼学生自主创新能力,老师少讲,学生多练。
2.抓好基础,搞好核心容的教学
学生的基础永远是学生发展的前提,是学生能力提高的先决条
件。因此,任何忽视学生数学基础的行为都是不值得提倡的,是必须
克服的。教学中要立足于把已学的知识弄懂弄通,真正让学生形成良
好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学
素质。
在复习阶段,教师不能随意扩大知识围,任意提高复习题的难度,
要抓住基础,掌握其中精髓,重视数学思想方法,为获得好的教学成
绩提供保障。
3.以学生为主体,着眼于能力的提高
以学生为主体是获得好的教学效果的根本保障,任何超越学生发
展年龄特征的操之过急的教学行为都是不适宜的,任何包办代替学生
学习的行为都是不适当的,任何以过多的模仿练习为主要模式、剥夺
学生自身的思考和活动以达到提高学习成绩的做法都是不值得提倡
的。学生的发展,对知识的掌握,经验的积累,乃至解题答题能力的
提高,都必须建立在学生的身体力行之上,教学只是学生发生这种作
用或变化的“催化剂”。平时教学,应该注意培养学生有个性的发展,
培育学生的创新意识和精神。
在教学中,教师要注意给学生更多的空间与自由支配的时间,让
学生根据自身情况,安排一些学习和活动。这样,既可减轻师生的负
担,又可调动学生学习的积极性,让学生在自主学习中主动探索,积
累经验,提高能力,从而达到提高教学的有效性目的。
4.联系实际,重视数学应用的教学
数学教学应该联系学生的实际和国家与当地社会发展的情况展
开。学生一方面应该积极主动地联系自己身边的实际问题来学习数
学,另一方面应该有意识地用自己所学的数学知识解决自己所遇到的
问题、用数学的思想方法分析和看待一些问题,从而培养并发展自己
用数学的意识和用数学的能力,真正提高自己的数学素养。
5.按照课程标准的要求组织练习教学
数学教学中,应当有意识地精选一些典型例题和习题进行思维训
练。激发学生的学习积极性,向学生提供充分从事数学活动的机会,
暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解
题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常
性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简
化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题
多种解法的比较与反思过程。让学生在自主探索和合作交流的过程中
真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛
的数学活动经验。练习教学既是巩固学生学习成果的手段,也是促进
学生发展的手段,为了培养和发展学生的能力和个性,激发学习的兴
趣,教师应该从学生实际出发提供一些有利于学生通过自主发挥来解
决的习题,如用开放题、探索题、操作题、阅读理解题等形式设计一
些具有思考性、挑战性和实际意义的问题,作为平时练习教学的题目。
无论何时的练习教学均应处理好学生独立练习与学生合作练习之间
的关系,要重视通过学生合作练习来培养学生独立解决问题的能力。
6.教要面向全体学生,学要积极主动
在平时教学中,教师一定要面向全体学生,努力实现让不同程度
的学生得到不同层次发展的教学目标。重视培优,更应关注补差。课
堂教学中,要根据本班的学情,选择好教学容,合理地确定教学的起
点和进程。课外要多给学习有困难的学生开“小灶”,满腔热情地关心
每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和
发展。教师要积极指导学生制定自己的学习计划,主动开动脑筋、大
胆探索、讨论与交流,特别是遇到困难时,先要努力克服,自己努力
但不能解决时要及时请教,保障学生顺利实现自己的学习目标。