改进粒子群算法的目标函数变化分类动态优化
- 格式:doc
- 大小:27.00 KB
- 文档页数:7
多目标粒子群算法多目标粒子群算法(MOPSO)是一种基于进化计算的优化方法,它可以有效解决多目标优化问题。
其主要概念是基于多面体搜索算法,把多个粒子看作无人机,它们可以在多目标函数中进行搜索,以寻找最优解。
MOPSO算法把多目标优化问题转换为一个混合非线性规划问题,它使用了动态的样本技术和非均匀的采样方法,用于构建联合募集框架。
MOPSO算法可以并行运行,利用可伸缩的进化引擎,将不断改进和优化多目标优化问题解。
MOPSO算法是一种满足Pareto最优性的多目标优化方法,其主要目标是寻找Pareto最优解。
MOPSO算法的初始参数是状态空间中的多个初始粒子的位置,该算法借助粒子群优化技术和多面体搜索算法,利用迭代搜索算法来求解Pareto最优解。
在MOPSO算法中,粒子的位置由这两种方法的结合来确定:(1)“随机探索”,即每个粒子随机移动以发现新的解;(2)“最优探索”,即每个粒子尝试移动到种群最优解所在的位置。
通过这种不断进化的搜索机制,可以找到更好的解,以维持每个粒子的最优性,从而获得更好的最终结果。
MOPSO算法的另一个优点是,它可以检测和处理多维度的优化变量和不同方向的最优性,它可以从多个维度上考虑多目标优化问题,用于生成更多更好的解决方案。
MOPSO算法也可以克服粒子群算法中的参数空间收敛,从而更有效地解决多目标优化问题。
此外,为了提高算法效率,MOPSO也可以使用分布式粒子群优化技术,从而改善算法的运行效果。
总之,多目标粒子群算法是一种非常有效的多目标优化方法,它可以有效解决多目标优化问题,并在分布式环境下改善算法的运行效率。
由于它能够以不同的方式处理多个变量和多个优化目标,MOPSO算法已经被广泛应用于各种复杂的多目标优化问题中。
粒子群算法、多目标粒子群算法、的关系
粒子群算法(PSO)是一种优化算法,其灵感来源于鸟群的行为。
多目标粒子群算法(MOPSO)是在PSO基础上发展出来的多目标优化算法。
它们之间有以下关系:
1. PSO是MOPSO的基础
MOPSO是在PSO算法基础上发展而成的,因此PSO算法可以看作是MOPSO的基础。
PSO算法是单目标优化算法,即优化过程中只考虑一个目标函数的优化。
而MOPSO算
法则是多目标优化算法,它能够同时考虑多个目标函数的优化。
在MOPSO算法中,每个粒
子都有多个适应度值,称为解的评价指标。
3. MOPSO涉及到Pareto前沿思想
MOPSO算法是建立在Pareto优化理论的基础上的。
通过Pareto前沿思想,它能够找到一组最优解,这些最优解在所有评价指标上都是最优的,而且它们之间是非支配的。
4. MOPSO使用非支配排序技术和拥挤度算子
为了提高MOPSO算法的搜索效率和优化结果的多样性,MOPSO引入了非支配排序技术
和拥挤度算子。
非支配排序技术可以将所有解分为几个等级,拥挤度算子则能够增加解的
多样性,以保证搜索空间较为均匀地被覆盖。
在求解真实问题时,PSO和MOPSO都有很广泛的应用领域。
PSO通常用于单目标优化问题、动态优化问题和基于约束的优化问题等。
MOPSO则更多地应用于多目标优化问题领域,如飞行器设计、供应链优化、水资源管理等。
优化算法的分类优化算法是一种用于找到问题的最优解或近似最优解的方法。
在计算机科学和运筹学领域,优化算法被广泛应用于解决各种实际问题,例如机器学习、图像处理、网络设计等。
优化算法的分类可以根据其基本原理或应用领域进行划分。
本文将介绍一些常见的优化算法分类。
1. 传统优化算法传统优化算法是指早期开发的基于数学原理的算法。
这些算法通常基于确定性模型和数学规则来解决问题。
以下是一些常见的传统优化算法:(1) 穷举法穷举法是一种朴素的优化算法,它通过遍历所有可能的解空间来寻找最优解。
穷举法的优点是能够找到全局最优解(如果存在),缺点是搜索空间过大时会非常耗时。
(2) 贪婪算法贪婪算法是一种启发式算法,它通过每一步选择当前状态下最优的决策,从而逐步构建最优解。
贪婪算法的优势是简单快速,但它可能无法找到全局最优解,因为它只考虑了当前最优的选择。
(3) 动态规划动态规划是一种基于最优子结构和重叠子问题性质的优化算法。
它将原问题拆分为一系列子问题,并通过保存子问题的解来避免重复计算。
动态规划的优点是可以高效地求解复杂问题,例如最短路径问题和背包问题。
(4) 分支界限法分支界限法是一种搜索算法,它通过不断分割搜索空间并限制搜索范围,以找到最优解。
分支界限法可以解决一些组合优化问题,如旅行商问题和图着色问题。
2. 随机优化算法随机优化算法是基于概率和随机性的算法,通过引入随机扰动来逐步寻找最优解。
以下是一些常见的随机优化算法:(1) 模拟退火算法模拟退火算法模拟了固体物体冷却过程中的原子运动,通过逐步减小随机扰动的概率来搜索最优解。
模拟退火算法可以通过接受劣解来避免陷入局部最优解。
(2) 遗传算法遗传算法模拟了生物进化过程,通过遗传操作(如交叉和变异)来搜索最优解。
遗传算法通常包括种群初始化、选择、交叉和变异等步骤,能够自适应地搜索解空间。
(3) 蚁群算法蚁群算法模拟了蚂蚁在寻找食物时的行为,通过蚂蚁之间的信息交流和挥发性信息素来搜索最优解。
在simulink中使用粒子群优化算法在Simulink中使用粒子群优化算法粒子群优化算法(Particle Swarm Optimization, PSO)是一种常用的全局优化算法,它模拟了鸟群或鱼群的行为,通过不断迭代寻找最优解。
在Simulink中,可以利用粒子群优化算法来解决一些复杂的优化问题。
Simulink是一种基于图形化编程的工具,可以用于建模、仿真和分析动态系统。
它提供了丰富的模块库,包括数学运算、信号处理、控制系统等模块,可以方便地搭建系统模型。
而粒子群优化算法可以用于调节模型中的参数或寻找最优的控制策略,从而提高系统性能。
在Simulink中使用粒子群优化算法,首先需要定义一个目标函数。
目标函数是需要优化的参数与系统性能之间的关系,可以是一个简单的数学公式,也可以是一个复杂的系统模型。
然后,需要定义待优化的参数范围和约束条件。
这些参数范围和约束条件将作为算法的搜索空间,PSO算法将在这个空间中搜索最优解。
接下来,需要在Simulink中搭建一个系统模型,该模型包含待优化的参数。
这些参数可以是系统的控制参数、模型的初始条件等。
然后,将目标函数与系统模型进行关联,从而实现对目标函数的求解。
在Simulink中使用粒子群优化算法,通常需要借助于优化工具箱或者自定义函数。
优化工具箱提供了一些常用的优化算法,包括粒子群优化算法。
使用优化工具箱可以简化算法的实现过程,并提供了一些常用的优化函数和工具。
自定义函数则可以根据具体的问题进行灵活的调整和优化。
在进行优化之前,需要设置一些算法的参数。
这些参数包括粒子数、迭代次数、惯性权重、加速系数等。
这些参数的设置将直接影响到算法的搜索性能和收敛速度。
合理地设置这些参数可以提高算法的效果,从而得到更优的结果。
一旦设置好了参数,就可以运行优化算法了。
在每一次迭代中,粒子将根据当前的位置和速度进行更新,并根据目标函数的值来调整搜索方向。
通过不断地迭代,粒子群优化算法将逐渐靠近最优解,并最终找到最优解。
粒子群优化算法的发展历程粒子群优化算法的发展历程可以追溯到1995年,Kennedy和Eberhart首次提出了粒子群优化算法(PSO)。
下面是按时间线写的一份粒子群优化算法发展史,直至2023年:1995年:Kennedy 和Eberhart 提出了一种新的优化算法,即粒子群优化算法(PSO)。
该算法基于对鸟群、鱼群等动物群体的社会行为的研究,通过模拟群体中个体的行为模式来进行优化搜索。
PSO算法最初是用来解决复杂函数优化问题的,它采用了速度-位置模型作为基本框架,将每个解看作是搜索空间中的一只鸟,其飞行方向和速度取决于其自身的历史信息和群体信息。
1996年:Kennedy 和Eberhart 对PSO算法进行了改进,引入了惯性权重w来调整粒子的飞行速度,从而提高了算法的全局搜索能力。
改进后的PSO算法称为标准粒子群优化算法(Standard PSO,SPSO)。
1998年:Shi 和Eberhart 对SPSO算法进行了进一步改进,提出了带有动态调整惯性权重的粒子群优化算法(Dynamic PSO,DPSO)。
该算法根据搜索过程中的误差信息动态调整惯性权重w,从而更好地平衡了全局搜索和局部搜索能力。
2000年:Miranda 和Fonseca 提出了自适应粒子群优化算法(Adaptive PSO,APSO)。
该算法通过引入适应度函数来动态调整惯性权重w和学习因子c1和c2,从而提高了算法的搜索效率。
2002年:Liu 和Storey 提出了混合粒子群优化算法(Hybrid PSO,HPSO),将遗传算法的交叉和变异操作引入到PSO算法中,增强了算法的局部搜索能力。
2004年:Keller 提出了一种基于分解的粒子群优化算法(Decomposition PSO),将多目标优化问题分解为多个单目标优化问题,并分别进行求解,取得了较好的效果。
2006年:Cliff 和Farquharson 提出了一种自适应粒子群优化算法(Self-Adaptive PSO),该算法通过分析搜索过程中的误差信息和学习因子c1和c2的变化情况,动态调整惯性权重w 和其他参数,提高了算法的搜索效率。
改进粒子群算法的目标函数变化分类动态优化作者:苏玉孔国利来源:《现代电子技术》2017年第07期摘要:由于优化问题的目标函数和约束条件都随着时间而改变导致其最优值也发生改变,提出一种基于改进粒子群算法的目标函数变化分类动态优化算法。
首先对动态优化问题进行定义,明确问题的研究对象,提出对目标函数随时间变化程度分类的思想,通过对变化的函数进行监测的方法将其分为剧烈变化、中等程度变化和弱变化三种类型,并针对不同的强度变化对粒子群算法采用不同的改进策略,最后将不同的策略融入计算。
通过采用移动多峰问题进行测试,结果表明,提出的改进粒子群优化算法能监测目标函数变化,并能随时跟踪到最优解,平均离线误差相对于标准粒子群算法更小,性能更稳定。
关键词:粒子群算法;动态优化;目标函数时变分类;移动峰问题中图分类号: TN911.1⁃34; TP301.6 文献标识码: A 文章编号: 1004⁃373X(2017)07⁃0175⁃04Dynamic optimization of objective function changing classification based on improved particle swarm optimizationSU Yu, KONG Guoli(College of Information Engineering, Zhongzhou University, Zhengzhou 450001,China)Abstract: The objective function and constraint condition for the optimization problem are changed with time, and may change its optimal value. A dynamic optimization of the objective function changing classification based on improved particle swarm optimization is proposed. The dynamic optimization problem is defined to determine the study object of the problem. The classification thought that the objective function is changed with the time varying degree is put forward. The varying function is divided into the types of drastic change, medium grade change and weak change with the monitoring method. Different strategies are adopted for the particle swarm optimization according to the different intensity changes, and integrated for computation. The algorithm was tested with the moving multi?peak problem. The test results show that the improved particle swarm optimization can monitor the changes of the objective function, track the optimal solution momentarily, its average offline error is smaller than that of the standard particle swarm optimization algorithm, and the performance is more stable.Keywords: particle swarm optimization; dynamic optimization; time varying classification of objective function; moving peak problem0 引言由于在很多实际生产过程中遇到的优化问题都在不停变化,同时其目标函数和约束条件也会随着时间在不停的发生着变化,最终导致其问题的最优解改变[1⁃3]。
如动态旅行商问题(DTSP)[4]中旅行城市的增加或减少;车辆路径规划问题(DVRP)[5]中的交通状况;动态背包问题(DKP)[6]中物品价值或重量会改变,顾客需求等大量不确定性,这类动态特性使得目前的优化算法面临着巨大挑战。
对于这类动态优化问题,不仅需要求解最优解,并且算法能够时刻跟随最优解的变化[7]。
目前已经提出了很多研究方法,包括基于遗传算法的超级变异[8]、基于粒子群算法[9]、基于种群增量学习[10]、随机重新多样性[11]等。
此外,预测方法、多种群方法也被应用到该问题中。
由于动态优化问题千变万化,目标函数变化程度和变化类型也多种多样,因此应该根据具体的问题采取具体的措施加以解决。
本文首先对所研究问题进行表述,对目标函数的变化进行合理分类,针对不同的变化采取不同措施,使算法能有效跟踪最优解的变化。
粒子群算法是一种优秀的智能启发式算法,已被广泛使用,为此提出一种基于改进粒子群算法的目标函数变化分类动态优化算法,在算法迭代过程中根据不同的环境变化采取不同的种群多样性方法。
最后用移动峰问题测试该算法的有效性。
1 问题描述一般来说,任何动态优化问题都可以用以下定义式来表征。
定义1:记[V0×VF]和[W]分别为[n0]维、[nF]维和[M]维连续或离散矢量空间;[g]和[h]为定义不等式和等式约束的两个函数;[f]为从[V0×VF]映射到[W]上的一个函数,那么[M]个目标的参数化和多标准最小化问题定义为[12]:[minfvO∈VO=f1(vO,vF), f2(vO,vF),…, fM(vO,vF)s.t. g(vO,vF)≤0,h(vO,vF)=0] (1)上述定义问题中变量[v0]对于优化是有用的,但[vF]为强加参数,其本身与优化变量没有任何关系。
而目标函数和约束条件均受其他参数的约束。
如果只考虑时间参数,上述问题可以转化为如下定义。
定义2:记时间变量为[t;][V]和[W]分别为[n]维和[M]维连续或离散的矢量空间;[g]和[h]为定义不等式和等式约束的两个函数;[f]为从[V×t]映射到[W]上的函数,那么[M]个目标的参数化和多标准最小化问题定义为 [13]:[minfv∈V=f1(v,t),f2(v,t),…, fM(v,t)s.t. g(v,t)≤0, h(v,t)=0] (2)若上述目标函数中仅含有单个目标,则为动态单目标优化,单目标优化只有惟一最优解。
此外,优化过程中有可能添加新的目标或者删减目标,这也将导致问题的动态变化。
通常主要利用环境变化的频率、环境变化的强度、环境变化的可预测性和环境变化的周期性四个特征对动态环境进行描述,这四个特征也是人们构造和研究动态优化问题的依据。
此外动态优化问题还包含变化动力学,该形式还包括:线性变化、非线性变化、连续变化/非连续变化、周期性变化和随机性变化等。
2 动态优化粒子群算法2.1 环境变化的检测及分类增加种群多样性方法的前提是能准确识别出环境的变化,因此一个可靠的环境变化检测算子格外重要。
这里采取从种群中选择一定数量的子种群进行适应度值评价的方法。
这些子种群不随算法迭代更新,若目标函数或约束函数变化了,那么就说明问题也改变了,从而得到检测环境变化的计算公式如下:[ε(t)=1nj=1nfj(x,t)-fj(x,t-1)] (3)式中:[n]为重新评价个体的数目,一般为种群大小的10%。
当[ε(t)>ε2]时,说明多目标优化问题已经改变,这时就需要在新环境下开始搜索。
通常会依据目标函数变化的大小,提前給定一个固定的常数,这个常数的范围通常为[10-3≤ε2≤10-2。
]实际上对优化问题影响较大的是环境变化的强度,当检测到环境的变化较大时,那么就说明问题的本质已改变。
而如果只是高频小幅的环境变化,问题的最优解也只是在原始解附近波动。
因此根据环境变化的强度进行分类,将环境变化分为三类:剧烈变化、中等程度变化和弱变化。
根据环境变化检测算子的计算式(3),对计算结果[ε(t)]进行如下分类:[ε(t)>ε1ε2式中:[ε1]为剧烈强度变化的分界点;[ε2]为中等程度分界点。
当环境变化检测结果超过[ε1]时,即为剧烈的环境变化,此时环境变化强度较大,最优值及其位置将会偏离原始值,可以按照一定比例随机重新初始化种群来增大种群多样性;当检测结果介于[ε2]和[ε1]之间时,认为是中等强度的环境变化,此时的最优解及其位置应该在原始值附近,并不会偏离太远,若仍然按照重新初始化的方法来增加种群多样性,则会浪费计算时间,放缓了收敛速度。
可以充分利用以前的计算结果对当前最优解及次优解进行高斯分布,生成部分个体,其余个体再按照随机初始化的方法生成子种群。
当检测结果小于[ε2]时,认为是低强度的环境变化,此时环境变化范围较小,对于一般研究问题可以忽略,但对于较为精确的研究问题还应该考虑。
本文将此低强度环境变化忽略。
2.2 动态优化算法计算过程经典标准粒子群算法将每个粒子均当作[D]维解空间中的一个点,而且它们均有一个速度[v,]它会根据自身和群体的飞行经验确定自身的飞行速度,并调整飞行轨迹向最优点靠近。
同时,不同粒子借助自身的个体适应度值对该粒子评估[14]。
速度和位置更新公式如下:[vid(t+1)=ω*vid(t)+c1r1(pid-xid(t))+c2r2(pgd-xid(t))] (5)[xid(t+1)=xid(t)+vid(t+1)] (6)式中:[vid(t),][xid(t)]分别表示[t]时刻粒子[i]的飞行速度和位置;[pid]表示粒子[i]的个体历史最佳位置;[pgd]表示群体中最佳位置;[ω]表示惯性权重;[c1]和[c2]表示加速因子;[r1]和[r2]表示在[0,1]范围内的随机数。
基于标准粒子群算法设计的多种增大种群多样性机制的动态优化算法计算步骤如下:Step1:初始化种群和最优解的存储空间。
然后随机生成寻优粒子的位置、速度和一定比例的监测粒子的位置;Step2:评估种群中所有的个体,并得到所有寻优粒子的适应度值,存储当前的全局最优解,计算监测粒子的适应度值;Step3:得到前后时刻监测粒子适应度值的变化度[ε(t),]若[ε(t)>ε1,]转Step4;若[ε2Step4:随机重新初始化种群和最优解存储空间,生成寻优粒子的位置和速度,然后转至Step2;Step5:对当前最优解的粒子位置按照高斯分布生成部分种群,其余按照重新初始化随机生成寻优粒子位置和速度,并转至Step2;Step6:更新每个寻优粒子的速度和位置;Step7:判断是否达到最大迭代次数,若否转至Step2,若是则计算结束。