人工神经网络.pdf
- 格式:pdf
- 大小:1.04 MB
- 文档页数:83
1第八章人工神经网络吉林大学地面机械仿生技术教育部重点实验室 张锐28.1 神经网络的基本概念及组成特性8.1.1 生物神经元的结构与功能特性从广义上讲,神经网络通常包括生物神经网络与人工神经网络两个方面。
生物神经网络是指由动物的中枢神经系统及周围神经系统所构成的错综复杂的神经网络,它负责对动物肌体各种活动的管理,其中最重要的是脑神经系统。
人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的软、硬件处理单元,经广泛并行互连,由人工方式建立起来的网络系统。
生物神经元就通常说的神经细胞,是构成生物神经系统的最基本单元,简称神经元。
神经元主要由三个部分构成,包括细胞体、轴突和树突,其基本结构如图所示。
1. 生物神经元的结构生物神经元结构吉林大学地面机械仿生技术教育部重点实验室 张锐3从生物控制论的观点来看,作为控制和信息处理基本单元的神经元,具有下列一些功能与特性。
2. 神经元的功能特性(1)时空整合功能神经元对于不同时间通过同一突触传入的信息,具有时间整合功能;对于同一时间通过不同突触传入的信息,具有空间整合功能。
两种功能相互结合,使生物神经元具有时空整合的输入信息处理功能。
(2)神经元的动态极化性尽管不同的神经元在形状及功能上都有明显的不同,但大多数神经元都是以预知的确定方向进行信息流动的。
(3)兴奋与抑制状态神经元具有两种常规工作状态,即兴奋状态与抑制状态。
(4)结构的可塑性突触传递信息的特性是可变的,随着神经冲动传递方式的变化,其传递作用可强可弱,所以神经元之间的连接是柔性的,这称为结构的可塑性。
吉林大学地面机械仿生技术教育部重点实验室 张锐4(5)脉冲与电位信号的转换突触界面具有脉冲与电位信号的转换功能。
(6)突触延期和不应期突触对信息的传递具有时延和不应期,在相邻的两次输入之间需要一定的时间间隔,在此期间,不影响激励,不传递信息,这称为不应期。
(7)学习、遗忘和疲劳由于结构可塑性,突触的传递作用有增强、减弱和饱和,所以,神经细胞也具有相应的学习、遗忘或疲劳效应(饱和效应)。
第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。
而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。
因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。
又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。
人工神经网络中存在两个基本问题。
第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。
确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。
第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。
具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。
这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。
当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。
本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。
9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。
人工神经元的形态来源于神经生理学中对生物神经元的研究。
因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。