石墨烯及石墨烯光催化复合材料简介
- 格式:doc
- 大小:34.50 KB
- 文档页数:5
1、石墨烯的介绍1.1石墨烯的发现回顾石墨烯的发展史,从理论上对其特性的预言到实验上的成功制备经历了近60年的时间,它的发展史是一部符合科学发展规律的发展史。
早在1947年菲利普·华莱士(Philip Wallace)就开始研究石墨烯的电子结构,麦克鲁(J.W.McClure)在1956年推导出了相应的波函数方程[1]。
但那个时期由于受到早期朗道(L.D.Landau)和佩尔斯(R.E.Peierls)[2]提出的准二维晶体材料由于其自身的热力学不稳定性,在常温常压下会迅速分解的理论的影响,石墨烯的研究只是停留在理论上。
后来实验物理学家们虽经过几次实验上的探索,但很遗憾他们离石墨烯的发现仅一步之遥。
直到2004年安德烈·盖姆和康斯坦丁·诺沃肖罗夫[3]以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料——“石墨烯(graphene ) ”。
石墨烯的发现打破了禁锢人们几十年的理论——热力学涨落不允许二维晶体在有限温度下自由存在,震撼了整个物理界。
他们因此也获得2008年诺贝尔物理学奖的提名。
1.2 石墨烯的结构石墨烯是指紧密排列成二维蜂巢状晶体点阵的单层碳原子,又名“单层石墨片”。
一般认为1-10层是二维石墨烯。
在单层石墨烯中,每个碳原子通过sp2杂化与邻近的三个碳原子形成十分牢固的σ键,构成稳定的六边形。
每个碳原子贡献剩余一个p z轨道电子形成垂直于晶面方向的大π键,π电子可以自由移动,赋予石墨烯优异的导电性能[4]。
石墨烯还是构筑其他维度碳材料的基本单元。
它可以团聚成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨[5]。
1.3 石墨烯的性能1.3.1 石墨烯的物理性能石墨烯具有优异的力学性能。
它是已知材料中强度和硬度最高的晶体材料。
其断裂强度(强度极限)为42N/m2,抗拉强度和弹性模量分别为130Gpa和1.0TPa[6]如果将普通钢换算成和石墨烯一样的厚度,其二维强度极限为0.084~0.40 N/m2。
石墨烯量子点的制备及光催化应用摘要:石墨烯量子点作为新的零维(0D)材料被提出,因其自身量子约束、边缘效应以及环境友好等特点,引起了世界范围内学术界和工业界的广泛关注。
笔者综述了石墨烯量子点(GQDs)不同的制备方法。
GQDs具有良好的水溶性,边界富含含氧官能团等优点。
关键词:石墨烯量子点;氧化劈裂法;水热或溶剂法石墨烯量子点是一种0D石墨烯材料,其特征是原子薄的石墨化平面(通常为1层或2层,厚度小于2纳米),横向尺寸通常小于10纳米。
与其他碳基材料如富勒烯、石墨烯等相比,由于其特殊的边缘和量子约束效应,GQDs表现出不同的化学和物理性质,展现了较好的光学特性,打破了石墨烯在光学应用中的零带隙限制。
荧光性质是GQDs最重要的特征,与传统半导体的量子点相比,GQDs具有荧光性质稳定、低毒、水溶性好等优点,具有生物相容性的优势。
1 石墨烯量子点制备1.1氧化劈裂法氧化劈裂法又称氧化切割,是应用最广泛的一种切割方法。
SHEN等[1]提出,将微米级的二维氧化石墨烯薄片切成小块加入HNO3中,结果表明,制备的GQDs具有上转换荧光性质。
ZHOU等[2]提出了一种调节氧化石墨烯横向尺寸的简单、可控的方法。
改法合成的GQDs在重金属离子的电化学传感方面表现出增强的性能。
在以此基础上,CHUA等[3]以富勒烯为起始原料制备了非常小的GQDs(2-3 nm)。
产物表现出较强的发光性能,表明GQDs在光电子和生物标记方面的潜力。
LU等[4]开发了一个简单和肤浅锅GQDs的合成方法。
合成的GQDs具有良好的光稳定性、耐盐性、低毒性和良好的生物相容性。
1.2 水热或溶剂法水热或溶剂热法是制备GQDs的一种简单、快速的方法。
PAN等[5]首次以氧化石墨烯为原料,采用水热法制备了粒径分布为5~13nm的GQDs。
TIAN等[6]报道了一种在二甲基甲酰胺(DMF)环境中应用过氧化氢一步溶剂热法合成GQDs的方法,该方法在整个制备过程中不引入任何杂质,如图2所示。
石墨烯-多金属氧酸盐复合材料的制备及性能研究摘要:本文以石墨烯为载体,采用水热法制备出一种石墨烯/多金属氧酸盐复合材料。
通过扫描电子显微镜、透射电子显微镜、X射线衍射、热重分析等多种手段对其结构和性能进行表征和研究。
结果表明,该复合材料具有优异的催化性能、电催化性能和光催化性能,并且表现出良好的循环稳定性。
研究结果对于复合材料的制备和应用具有一定的指导意义。
关键词:石墨烯;多金属氧酸盐;复合材料;催化性能;电催化性能;光催化性能一、简介石墨烯作为一种极具潜力的材料,其应用领域广泛,例如电化学能源存储、催化剂、电极、生物传感和光电子等方面。
为了提高石墨烯的性能和应用范围,研究者们不断探索其与其他纳米材料复合的方法。
多金属氧酸盐作为一种种蓝色晶体,具有很高的光学透过性和光催化活性,因此与石墨烯的复合有望进一步提高石墨烯的催化性能、电催化性能以及光催化性能。
本文中,我们采用水热法制备出了一种石墨烯/多金属氧酸盐复合材料,并对其结构和性能进行了详细的研究和表征,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和热重分析(TGA)等多种手段。
此外,我们还评估了该复合材料的催化性能、电催化性能和光催化性能,并研究了其循环稳定性。
二、实验材料:石墨烯、多金属氧酸盐、乙二胺、丙二醇等。
制备:将石墨烯溶于去离子水中,加入适量的多金属氧酸盐,加入乙二胺和丙二醇作为还原剂和表面活性剂,搅拌后加热至100℃反应2小时,离心、洗涤干燥即可。
表征:使用SEM和TEM观察其形貌和结构;使用XRD研究其晶体结构和晶格参数;使用TGA研究其热稳定性。
性能研究:使用循环伏安法、线性扫描伏安法等测试其电催化性能;使用紫外可见光谱、荧光光谱、电化学阻抗谱等测试其光催化性能。
三、结果与讨论SEM和TEM图像显示出制备的复合材料呈现出片状结构,并且石墨烯与多金属氧酸盐表面紧密贴合。
XRD图谱表明,复合材料中多金属氧酸盐的晶格参数与其单质相同,同时石墨烯的存在也对多金属氧酸盐的晶体结构起了一定的修饰作用。
石墨烯是什么用途石墨烯是一种由碳原子构成的二维蜂窝状晶格结构材料,它是由一层厚度仅为一个原子的石墨片剥离而来的。
石墨烯的独特结构和性质使其具有广泛的应用前景,特别是在电子学、能源领域、生物医学、材料科学等领域。
首先,石墨烯在电子学领域有着巨大的应用潜力。
由于石墨烯具有高电子迁移率、高载流子流动速度和高热导率等优异的电学性能,被认为是下一代微电子器件的理想材料。
它可以用于制造高速晶体管、快速电子器件、高频电路和柔性电子器件等。
此外,由于石墨烯是有机材料,可以与有机分子相结合,具有制备新型有机太阳能电池等光电器件的潜力。
其次,石墨烯在能源领域也有重要的应用价值。
石墨烯具有优异的导电性和热导率,可以用作电池、超级电容器和储氢材料等能量存储和转换器件。
此外,石墨烯还可以用于制备太阳能电池、光催化材料和储能材料等,可以提高能量的转化效率和储存密度,并推进清洁能源的开发和利用。
此外,石墨烯还在材料科学领域发挥着重要作用。
石墨烯具有出色的力学性能,是最轻、最坚硬的材料之一,同时又具有良好的柔性和延展性。
因此,石墨烯可以用于制备高强度和轻质复合材料、纳米复合材料和柔性薄膜等。
此外,石墨烯还可以用于制备高性能的传感器、滤膜、分离膜和纳米材料等,可以解决环境污染和能源危机等重大问题。
在生物医学领域,石墨烯也被广泛应用。
石墨烯具有优异的生物相容性和生物安全性,可以作为药物传递系统、生物传感器和光学成像剂等。
石墨烯还可以用于制备生物传感器、基因传递系统和组织工程等,可以促进疾病的早期诊断、药物的靶向输送和组织的再生修复。
总之,石墨烯作为一种新型的纳米材料,具有许多独特的物理、化学和生物学性质,因此在电子学、能源领域、生物医学、材料科学等多个领域具有广泛的应用前景。
未来,石墨烯的研究和开发将继续推动科学技术的发展和社会的进步。
石墨烯的吸附性能在环境保护中的应用
石墨烯具有出色的吸附性能,被广泛应用于环境保护领域。
本文将重点介绍石墨烯在
水污染、空气污染和土壤污染等方面的应用。
石墨烯在水污染治理方面起到了重要的作用。
石墨烯具有高度的表面积和孔隙结构,
使其具有出色的吸附能力。
它可以吸附水中的重金属离子、有机物和微量有害物质,有效
净化水质。
石墨烯被广泛应用于废水处理中,可以高效吸附重金属离子,如铅、镉和铜等。
研究表明,石墨烯与金属离子之间通过静电作用和吸附作用结合,形成稳定的复合物,有
效去除了水中的有害物质。
石墨烯在空气污染治理中也发挥了重要的作用。
石墨烯具有优异的吸附和催化性能,
可以吸附和分解大气中的有害气体。
石墨烯基复合纳米材料被广泛研究,它能够吸附和降
解VOCs(挥发性有机化合物)和NOx(氮氧化物)等大气污染物。
石墨烯基光催化材料也
被用于净化有害气体。
石墨烯在光催化氧化反应中具有高光电化学转化效率,可以将有害
气体转化为无害物质,如二氧化碳和水。
石墨烯具有出色的吸附性能,在环境保护中的应用潜力巨大。
石墨烯在水污染治理、
空气污染治理和土壤污染修复等方面发挥着重要作用。
随着对石墨烯技术的进一步研究和
发展,相信石墨烯会在环境保护中起到更大的作用,为改善环境质量做出更大的贡献。
石墨烯红外吸收
摘要:
一、石墨烯的基本介绍
二、石墨烯的红外吸收特性
三、石墨烯红外吸收的应用领域
四、我国在石墨烯红外吸收方面的研究进展
五、石墨烯红外吸收的未来发展趋势与挑战
正文:
石墨烯是一种由单层碳原子构成的二维晶体材料,自2004 年被发现以来,因其具有许多独特的物理和化学性质,被广泛认为是一种具有巨大潜力的材料。
石墨烯具有高导电性、高强度、低密度、良好的热传导性以及独特的红外吸收特性。
石墨烯的红外吸收特性在红外光探测、热管理、光催化和生物传感等领域具有广泛的应用前景。
由于石墨烯的低维限制,其能带结构具有强的量子限制效应,使得石墨烯在红外波段具有很高的吸收系数,这使得石墨烯成为红外光探测领域的理想材料。
此外,石墨烯的高热传导性使其在热管理领域具有广泛的应用,例如在散热器件、热电器件等方面有着巨大的潜力。
我国在石墨烯红外吸收方面的研究取得了显著的进展。
我国科研团队已经成功制备出了高质量的石墨烯材料,并在红外吸收性能上取得了国际领先的研究成果。
此外,我国在石墨烯红外吸收的应用研究方面也取得了突破,包括石墨烯红外探测器、石墨烯热管理器件等。
尽管石墨烯红外吸收在许多领域具有巨大的应用潜力,但目前仍面临着一些挑战,如石墨烯的制备工艺、红外吸收性能的优化、应用技术的研发等。
石墨烯的多功能应用石墨烯是一种由碳原子构成的二维晶格结构材料,具有许多独特的物理和化学性质,被誉为21世纪最具潜力的材料之一。
石墨烯的发现引起了科学界的广泛关注,其在各个领域的多功能应用也成为研究的热点之一。
本文将介绍石墨烯的多功能应用,包括在电子学、光学、生物医药、能源领域等方面的应用。
一、电子学领域石墨烯在电子学领域有着广泛的应用前景。
由于石墨烯具有优异的电子传输性能,可以用于制备高速、高频的电子器件。
石墨烯场效应晶体管是其中的一个重要应用,可以实现超高频的工作,有望取代硅材料成为下一代电子器件的主要材料。
此外,石墨烯还可以用于柔性电子器件的制备,可以制备出柔性、透明的电子产品,如柔性显示屏、可穿戴设备等,为电子产品的发展带来新的可能性。
二、光学领域石墨烯在光学领域也有着重要的应用。
石墨烯具有优异的光学性能,可以吸收几乎所有波长的光线,并且具有很高的光学透明度。
这使得石墨烯在光学器件中具有广泛的应用前景,如用于制备光学传感器、光学调制器等。
此外,石墨烯还可以用于制备超薄光学器件,如超薄透镜、超薄偏振器等,为光学器件的微型化和集成化提供了新的途径。
三、生物医药领域石墨烯在生物医药领域的应用也备受关注。
石墨烯具有优异的生物相容性和生物吸附性,可以用于制备生物传感器、药物载体等。
石墨烯纳米材料可以作为药物的载体,用于癌症治疗、基因传递等领域。
此外,石墨烯还可以用于制备生物成像材料,如石墨烯氧化物可以作为生物荧光探针,用于生物成像和诊断。
四、能源领域石墨烯在能源领域的应用也具有重要意义。
石墨烯具有优异的导电性和光催化性能,可以用于制备高效的光催化剂、电催化剂等。
石墨烯基复合材料可以用于制备超级电容器、锂离子电池等高性能能源储存器件。
此外,石墨烯还可以用于制备太阳能电池、燃料电池等新型能源器件,为可再生能源的开发和利用提供了新的途径。
综上所述,石墨烯作为一种具有多功能应用潜力的材料,正在各个领域展现出其独特的优势和应用前景。
石墨烯及其衍生物的制备与应用石墨烯是一种新型的纳米材料,由于其独特的结构和优异的性能,被广泛应用于电子、光电和能源等领域。
石墨烯是由碳原子组成的单层蜂窝状晶体结构,并具有极高的比表面积、电导率和热导率,是继碳纳米管之后的又一种碳纳米材料。
石墨烯的制备方法多种多样,包括化学气相沉积、机械剥离、石墨氧化还原等。
其中,机械剥离法是最古老也是最常用的一种方法,主要是通过石墨烯的层层剥离来制备石墨烯。
这种方法需要特殊的材料和设备,且制备过程需要严格的环境控制和操作技巧。
另外,化学气相沉积技术、化学还原法、水热法、溶液剥离法、微波加热法等也是制备石墨烯的常用方法。
除了石墨烯本身之外,其衍生物也是研究领域的一个热点。
石墨烯衍生物指的是通过对石墨烯进行功能化、改性等处理而形成的材料。
其中,氧化石墨烯是最常见和广泛应用的衍生物之一,可通过氧气、硫酸、硝酸等一系列化学处理来制备。
此外,氨化石墨烯、氯化石墨烯、磷化石墨烯等也是石墨烯衍生物的重要类型。
石墨烯及其衍生物在电子、能源和材料科学等领域具有广泛的应用前景。
在电子领域,石墨烯由于其极高的电导率和运动速度被广泛用于半导体、透明电极、传感器等领域。
在能源领域,石墨烯具有优异的光催化性能,可以用于光催化制氢、太阳能电池等。
同时,石墨烯也可以作为电池、超级电容器的电极材料,具有极高的储能效果。
石墨烯还被广泛应用于材料科学领域。
石墨烯的高比表面积使其可以作为催化剂载体、吸附材料等,大大提高了其特定表面积的催化效率。
此外,石墨烯的高强度、高模量等特性也使其成为一种优秀的结构材料。
例如,在航空航天、汽车等领域,石墨烯可以被用作强度增强材料、防撞材料、隔热材料等。
总的来说,石墨烯及其衍生物是一种新型的功能材料,具有极高的应用价值和研究意义。
未来,随着技术的不断进步和研究的深入,石墨烯和其衍生物的应用领域将会更加广泛,更加深入。
中国环境科学 2016,36(3):735~740 China Environmental Science g-C3N4/石墨烯复合材料的制备及光催化活性的研究尹 竞,廖高祖*,朱冬韵,卢 平,李来胜(华南师范大学化学与环境学院,广东广州 510006)摘要:以三聚氰胺和氧化石墨烯颗粒为原料,通过研磨负载、氮气气氛下煅烧的方法制备了石墨相氮化碳/石墨烯(g-C3N4/rGO)复合光催化剂.主要采用TEM、XRD、PL等对其进行表征,研究了其在模拟太阳光下对罗丹明B(RhB)的光催化性能.PL分析结果显示,相比单一的g-C3N4,g-C3N4/rGO的光生电子-空穴对的复合几率大大降低.光催化结果表明,和单一g-C3N4相比,首次使用研磨负载、氮气保护气氛下煅烧制备的g-C3N4/rGO(2%)光催化反应180min后对RhB的降解率提高了43.2%.这是因为石墨烯为g-C3N4提供了电子转移场所,实现光生电子-空穴的有效分离,从而提高了光催化效率.本文还考察了添加叔丁醇(TBA)和三乙醇胺(TEOA)后对g-C3N4/rGO光催化的影响,实验结果表明:光生空穴是g-C3N4/rGO光催化体系中的主要活性物质之一.关键词:石墨相氮化碳;石墨烯;光催化中图分类号:X52文献标识码:A 文章编号:1000-6923(2016)03-0735-06Preparation and photocatalytic activity of g-C3N4/rGO composite. YIN Jing, LIAO Gao-zu*, ZHU Dong-yun, LU Ping, LI Lai-sheng (School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China). China Environmental Science, 2016,36(3):735~740Abstract:Graphitic carbon nitride/reduced graphene oxide (g-C3N4/rGO) composite was synthesized by grinding and calcination process. Then it was characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), and photoluminescence spectra (PL). The photocatalytic activity of g-C3N4/rGO was evaluated by degrading rhodamine B (RhB) under simulated solar light irradiation. The results of PL analysis demonstrated that the recombination of photo-generated electrons and holes was inhibited compared with pure g-C3N4. The results of photocatalytic degradation of RhB showed that the removal efficiency of RhB with g-C3N4/rGO(2%) composite in 180min was improved by 43.2% compared with pure g-C3N4, which was attributed to the facilitated electrons transfer in g-C3N4/rGO composite. The main oxidative species was also detected by addition of TBA and TEO A in the photocatalytic process. The result suggested that holes were mainly responsible for the degradation of RhB in g-C3N4/rGO photocatalytic system.Key words:g-C3N4;graphene;photocatalytic半导体光催化在解决能源短缺和环境污染等方面表现出巨大的潜力,受到各国政府的高度重视[1].在大多数半导体中,TiO2因光催化活性高、稳定性好、安全无毒、价格低廉等优点,被广泛用于光催化技术研究[2].然而,TiO2的禁带较宽(约3.2eV),限制了对可见光的利用;而且高的光生电子空穴复合率导致较低的光量子效率[3].因此,开发新型、高效的光催化剂成为光催化技术发展的必然需求.近年来,一种新型的、可见光下响应的非金属材料g-C3N4,由于禁带宽度(约2.7eV) 较窄、化学稳定性好、制备方法简便等优点受到广泛的关注[4-6].但是单一g-C3N4的光生电子和空穴的复合率较高[7-8],导致其光催化的效果并不理想.为了抑制光生电子-空穴对的复合,可以将g-C3N4与其他材料复合,利用二者的协同作用来提高其光催化活性[9].石墨烯是一种新型的二维单层碳原子材料,是由二维蜂窝状晶格紧密堆积组成的单层碳原子组成,由于具有优异的电学性能,巨大的比表面积和良好的电子迁移能力而受到广泛关注[10-12].石墨烯具有类似的碳原子网状和SP2杂化结构,使其最适合与g-C3N4形成复合材料[13].研究发收稿日期:2015-06-15基金项目:国家自然科学基金(21207042)* 责任作者, 讲师, liaogaozu@736 中国环境科学 36卷现易通过氧化天然石墨-分散-化学还原的步骤可以得到石墨烯(rGO)[14].文献报道[13,15-16],通过g-C3N4的前驱物与GO溶液混合处理,然后高温煅烧的方式得到g-C3N4/rGO复合材料.本文以三聚氰胺和氧化石墨烯颗粒为原材料,通过直接研磨负载、氮气保护气氛下煅烧的合成方法制备了石墨相氮化碳-石墨烯(g-C3N4/rGO)复合光催化剂.主要采用TEM、XRD、PL等对光催化剂进行表征,研究了其在模拟太阳光下对罗丹明B(RhB)的光催化降解性能.还考察了添加叔丁醇(TBA)和三乙醇胺(TEOA)后对g-C3N4/rGO光催化罗丹明B体系的影响.1实验部分1.1试剂与仪器高锰酸钾、浓硫酸、叔丁醇(TBA)、三乙醇胺(TEOA)等试剂均为分析纯,石墨粉(含碳量≥99.9%)、过氧化氢(30%)均购自广州化学试剂公司,罗丹明B(CP,天津市大茂化学试剂厂);无水乙醇(AR,天津市致远化学试剂有限公司);三聚氰胺(99%,上海凌峰化学试剂有限公司).500W氙灯(北京纽比特科技有限公司);气氛保护程控箱式炉(杭州卓驰仪器有限公司, QSXL-1008);超声波清洗仪(宁波新芝生物科技股份有限公司);分光光度计(V5000型上海元析仪器有限公司);X射线粉末衍射仪(德国Bruker, BRUK ER D8ADV ANCE);傅立叶红外光谱仪(美国热电尼高力,Nicolet 6700);UV-Vis漫反射光谱(日本,U-3010,HITACHI);透射扫描电镜(日本,JEM-2100JEOL);荧光光谱分析仪(日本, HitachiF-4600fluorescence spectrometer).1.2实验方法1.2.1氧化石墨烯(GO)的制备以石墨粉为原材料,采用改进的Hummers方法制备氧化石墨烯.在冰水浴条件下,将一定量的石墨粉缓慢分散到23mL浓硫酸中,再缓慢加入一定量的高锰酸钾,搅拌直至全部溶解.在密封条件下超声6h.然后缓慢加入46mL 去离子水继续搅拌至溶液变黄,静止15min,接着缓慢加入140mL去离子水和10mL 30%的H2O2的混合溶液,边加边搅拌,溶液变成亮黄.静置一夜后抽滤,并用2%的盐酸溶液清洗,最后用去离子水洗涤几次.最后将滤出物在真空干燥6h,即得到氧化石墨烯.1.2.2石墨相氮化碳(g-C3N4)的制备将5g三聚氰胺放入坩埚中盖好盖子,放入氮气气氛保护程控箱式炉中,按2.2℃/min的升温程序加热到550℃反应4h得到黄色的产物.即为石墨相氮化碳(g-C3N4).1.2.3g-C3N4/rGO的制备取5g三聚氰胺和不同量的GO颗粒,在研钵中加入少量乙醇后研磨均匀,烘干去除无水乙醇后转移到带盖的坩埚中,然后放入氮气气氛保护程控箱式炉中按2.2℃/min的升温程序加热到550℃反应4h.最后得到的固体研磨成粉末状即为g-C3N4/rGO.将制备的不同rGO量的g-C3N4/rGO复合物标记为g-C3N4/rGO (n%),n是最初加入的GO与三聚氰胺的质量百分比.1.2.4g-C3N4/rGO光催化实验用500W氙灯为模拟太阳光光源,通过降解罗丹明B溶液(RhB,10mg/L)来评价催化剂的活性.具体操作如下:0.1g催化剂分散在200mL的RhB溶液中,光照前暗态下搅拌30min,达到吸附脱附平衡.间隔一定时间取一定量溶液过0.45µm的有机滤膜后检测波长554nm处测定吸光度.500w氙灯78321 654图1 实验装置示意Fig.1 Schematic of experimental apparatus1.磁力搅拌器2.转子3.光化学反应器4.灯罩5.500W氙灯6.镇流器7.循环水泵8.自来水2结果与讨论2.1g-C3N4/rGO的形貌分析图2 为GO、g-C3N4和g-C3N4/rGO的TEM3期尹 竞等:g-C3N4/石墨烯复合材料的制备及光催化活性的研究 737图片.从图2(a)中可以看出GO呈现二维薄纱状结构,表面具有褶皱和卷曲.这些皱褶则可以形成众多的纳米孔道和孔穴,从而使得石墨烯具有大的比表面积.图2(b)可看到g-C3N4为明显层状堆垛结构.相比g-C3N4, g-C3N4/rGO(2%)复合物显然具有更紧密的层状堆垛结构(图2c).这是因为经过聚合作用后,石墨烯层被夹杂在g-C3N4层中间,形成一种类似三明治的结构[16].abc图2 GO(a)、g-C3N4(b)和g-C3N4/rGO(c)的TEM图Fig.2 TEM images of GO (a), g-C3N4(b), g-C3N4/rGO (c)2.2g-C3N4/rGO的XRD分析图3为GO、g-C3N4和g-C3N4/rGO(2%)的XRD谱图.从GO的谱图可以看出,在2θ= 9.23°处存在一个较强的衍射峰,该峰是单层石墨烯氧化物平面内的空间特征衍射峰,对应的是GO的(001)晶面.另外,在2θ =18.5°处有一个较弱的衍射峰, 可能是未被完全氧化石墨的(002)衍射峰导致的[17].在g-C3N4的谱图中,出现了两个峰, 2θ = 13.30°处的弱峰归属于g-C3N4的(100)晶面,是由平面结构内的堆垛单元所引起.2θ=27.40°处的较强峰对应的是g-C3N4的(002)晶面,是由芳香环的堆垛所形成.而g-C3N4/rGO(2%)复合光催化剂的衍射图谱几乎与g-C3N4的谱图完全一致,引入rGO没有影响g-C3N4的晶型和结构.10203040 50 60 强度2θ(°)GOg-C3N4g-C3N4/rGO图3 GO、g-C3N4和g-C3N4/rGO的XRD图Fig.3 XRD patterns of GO, g-C3N4and g-C3N4/rGO 2.3g-C3N4/rGO的FT-IR分析图4为GO、g-C3N4和g-C3N4/rGO(2%)的FT-IR谱图.可以看出, GO位于1031、1154、1615和1715cm−1的特征吸收峰分别归属于C–O 伸缩振动,C–O–C振动,边缘COOH基团中C=C 骨架振动和O=C–OH伸缩振动.在3000~3700cm-1范围内较宽的吸收峰,对应的是GO边缘–OH伸缩振动峰,GO吸附的H2O对此峰也有贡献[8].对于单一g-C3N4,在803cm−1处归属于g-C3N4三嗪环的骨架振动特征峰,在1200~1650cm-1之间的吸收带归属于g-C3N4中杂环上C–N和C=N的振动特征峰.而对于g-C3N4/rGO(2%),只有g-C3N4的特征峰在g-C3N4/rGO谱图上可以看到,却没有GO的C–O、C=O和O=C–OH振动峰,说明GO被还原为rGO[13].738 中 国 环 境 科 学 36卷1000 1500 2000250030003500透射率(%)波数(cm -1)GOg-C 3N 4g-C 3N 4/rGO图4 GO 、g -C 3N 4和g -C 3N 4/rGO 的FT -IR 谱图 Fig.4 FT -IR spectrum of GO, g -C 3N 4and g -C 3N 4/rGO2.4 g -C 3N 4/rGO 的紫外-可见漫反射光谱 图5为g -C 3N 4和g -C 3N 4/rGO(2%)的紫外-可见漫反射光谱.可以看出,相比于g -C 3N 4,g -C 3N 4/rGO(2%)复合物的吸收边带发生了红移,这说明引入rGO 后,提高了g -C 3N 4/rGO(2%)复合材料可见光的利用率.其原因是在热反应过程中,GO 表面的含氧基团(如−OH, −COOH )使得g -C 3N 4和rGO 之间形成了C -O -C 化学键[13]. 另外,C 原子的存在减少光的反射,导致在可见光区域有广泛的背景吸收[3]. 300 400 500600700 8000.00.2 0.4 0.60.81.0 1.21.4吸光度波长(nm)g-C 3N 4g-C 3N 4/rGO 图5 g -C 3N 4和g -C 3N 4/rGO 的UV -Vis DRS 谱图Fig.5 UV–Vis DRS of g -C 3N 4and g -C 3N 4/rGO2.5 g -C 3N 4/rGO 的光致发光光谱 光致发光光谱是复合光催化剂中电子迁移和分离效率的有效表征手段.从g -C 3N 4和g -C 3N 4/rGO(2%)的光致发光光谱图(图6)中可以看出,g -C 3N 4和g -C 3N 4/rGO(2%)的出峰位置都是在460nm 附近,此峰归属于g -C 3N 4内部三嗪结构的π-π*轨道的电子跃迁.但是与g -C 3N 4相比, g -C 3N 4/rGO(2%)复合物发光特征峰的强度大大降低,说明其内部存在快速的光生载流子的迁移和分离.g -C 3N 4被光激发后,光生电子被快速地转移到rGO,加快了光生电子-空穴对的分离,从而提供了更多的空穴来参与光反应.350400450500 550 6005001000150020002500g-C 3N 4/rGO强度(a .u )波长(nm) g-C 3N 4图6 g -C 3N 4和g -C 3N 4/rGO 的PL 谱图 Fig.6 PL of g -C 3N 4and g -C 3N 4/rGO2.6 光催化活性分析 从图7可以看出,在180min 时间内,RhB 溶液的直接光解几乎为0.对于单一g -C 3N 4, RhB 的降解率大约为24.1%.而g -C 3N 4/rGO(2%)复合材料在相同时间内对RhB 的降解率达到了67.3%,与单一g -C 3N 4相比提高了43.2%.这是由于g -C 3N 4与rGO 复合后,光激发产生的电子迅速从g -C 3N 4的导带转移到rGO 上,促进了光生电子-空穴对的有效分离,从而提高了其光催化效率. 此外,根据一级动力学拟合催化反应的动力学常数,g -C 3N 4/rGO(2%)光催化降解RhB 反应的动力学常数(k = 0.0059min -1)是单一g -C 3N 4(k = 0.0015min -1)的3.93倍.从图8可以看出,模拟太阳光下照射180min 后,质量百分比为1%,2%和3%的g -C 3N 4/rGO 对RhB 的降解率分别为49.3%, 67.3%和38.7%,比单一g -C 3N 4分别高25.2%, 43.2%和14.6%.而4%的g -C 3N 4/rGO 对RhB 的降解率却只有20.8%,比单一g -C 3N 4还低3.3%.这可能是由于过量的rGO 吸收了大部分的入射可见光,影响了g -C 3N 4对光的吸收和利用.因此, 适当的rGO 负载量可以有效地提高g -C 3N 4/rGO 的光催化活性. 除了光催化活性,稳定性是光催化剂另一个需考虑的重要因素.图9是循环使用4次的g -C 3N 4/rGO(2%)光催化降解RhB 的去除率.从图9可以看出g -C 3N 4/rGO(2%)复合光催化剂经3期尹 竞等:g -C 3N 4/石墨烯复合材料的制备及光催化活性的研究 739过4次循环使用过后,180min 内RhB 的去除率只有轻微下降,展现出较好的光稳定性.-30 0 30 6090120150180C /C 0时间(min)图7 g -C 3N 4、g -C 3N 4/rGO 模拟太阳光催化降解RhBFig.7 Photodegradation of RhB by g -C 3N 4 andg -C 3N 4/rGO under simulated sunlight-30 0 30 6090120150180C /C 0时间(min)图8 不同石墨烯量(1%, 2%, 3%和4%)的g -C 3N 4/rGO光催化降解RhB 对比Fig.8 Photodegradation of RhB by g -C 3N 4/rGO withdifferent content of rGO (1%, 2%, 3% and 4 %)1 2 340.00.10.20.30.40.50.60.7降解率(%)次数图9 循环使用4次的g -C 3N 4/rGO 光催化降解RhB 的去除率Fig.9 RhB removal rate by g -C 3N 4/rGO of photocatalytic reaction for four cycles2.7 光催化机理分析为了研究g -C 3N 4/rGO 对RhB 的光催化机理,分别在光催化体系中添加叔丁醇(TBA)和三乙醇胺(TEOA)作为自由基捕获剂和空穴捕获剂.结果如图10所示,加入TBA 后,在180min 内g -C 3N 4/rGO(2%)对RhB 的降解率只下降了7%,而加入TEOA 后,180min 内,扣除吸附背景后RhB 降解率只有9.4%.这说明在g -C 3N 4/rGO 光催化RhB 体系中,光生空穴对RhB 进行氧化降解起主要作用.-30306090 120 150 1800.30.40.50.60.70.80.91.0C /C 0时间(min)图10 捕获剂对g -C 3N 4/rGO 复合物光催化活性的影响 Fig.10 Photodegradation of RhB by g -C 3N 4/rGO in thepresence of trapping agents3 结论3.1 UV -Vis DRS 谱图说明g -C 3N 4/rGO(2%)的吸收边带红移,增加了可见光利用率;光致发光光谱图结果显示,相比单一g -C 3N 4, g -C 3N 4/rGO(2%)谱图上发光特征峰的强度大大降低,说明其内部存在快速的光生载流子的迁移和分离,进而提高了g -C 3N 4/rGO 的光催化活性.3.2 在添加叔丁醇(TBA)和三乙醇胺(TEOA)后, g -C 3N 4/rGO(2%)光催化活性均有所降低.但是在添加TEOA 后光催化活性下降明显,表明在g -C 3N 4/rGO(2%)光催化体系中,光生空穴是主要活性物质.3.3 制备了4种不同石墨烯量(1%,2%,3%和4 %)的g -C 3N 4/rGO 样品,结果g -C 3N 4/rGO(2%)的光催化活性最好,表明适当的rGO 负载量可以有效地提高g -C 3N 4/rGO 的光催化活性.740 中国环境科学 36卷3.4 g-C3N4/rGO(2%)复合光催化剂经过4次循环使用过后,180min内RhB的去除率只有轻微下降,展现出良好的光稳定性.参考文献:[1] 张金水,王博,王心晨.氮化碳聚合物半导体光催化 [J]. 化学进展, 2014,26(1):19-29.[2] 冯骞,施明杰,操家顺.钒酸银改性二氧化钛制备及其可见光光催化性能研究 [J]. 中国环境科学, 2015,35(11):3317-3324.[3] 朱冬韵,廖高祖,唐仲豪,等.二氧化钛石墨烯光催化降解草酸的研究 [J]. 华南师范大学学报, 2015,47(2):67-71.[4] 冯西平,张 宏,杭祖圣. g-C3N4及改性g-C3N4的光催化研究进展 [J]. 功能材料与器件学报, 2012,18(3):214-222.[5] Liao G Z, Zhu D Y, Li L S, et al. Enhanced photocatalyticozonation of organics by g-C3N4under visible light irradiation [J].J. Hazard. Mater., 2014,280:531-535.[6] Xiao J G, Xie Y B, Cao H B, et al. g-C3N4-triggered supersynergy between photocatalysis and ozonation attributed to promoted ⋅OH generation [J]. Catal. Commun., 2015,66:10-14. [7] Peng W C, Li X Y. Synthesis of MoS2/g-C3N4as a solar lightresponsive photocatalyst for organic degradation [J]. Catal.Commun., 2014,49:63-67.[8] Liao G Z, Chen S, Quan X, et al. Graphene oxide modifiedg-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation [J]. J. Mater. Chem., 2012,22:2721-2726.[9] 张芬,柴波,廖翔,等. RGO/C3N4复合材料的制备及可见光催化性能 [J]. 无机化学学报, 2014,30(4):821-827.[10] Zhang H Q, Huang Q T, Huang Y H, et al. Graphitic carbonnitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid [J]. Electrochim. Acta., 2014,142:125-131.[11] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobilityin suspended grapheme [J]. Solid State Commun., 2008,146: 351-355.[12] Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting [J]. J.Mater. Chem., 2010,20:2801-2806.[13] Li Y B, Zhang H M, Liu P R, et al. Cross-Linked g-C3N4/rGONanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity [J]. Small., 2013,9:3336- 3344.[14] Li X S, Zhu Y W, Cai W W, et al. Transfer of Large-AreaGraphene Films for High-Performance Transparent Conductive Electrodes [J]. Nano Lett., 2009,9(12):4359-4363.[15] Xiang Q J, Yu J G, Jaroniec M. Preparation and EnhancedVisible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites [J]. J. Phys. Chem. C., 2011,115:7355-7363.[16] Zhang Y J, Mori T, Niu L, et al. Non-covalent doping of graphiticcarbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion [J]. Energ.Environ. Sci., 2011,4:4517-4521.[17] 傅玲,刘洪波,邹艳红,等.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究 [J]. 炭素, 2005,(4):0010-0014.作者简介:尹竞(1990-),男,安徽宿松县人,硕士研究生,主要从事水污染方面的控制研究.。
石墨烯材料的制备与性能调控石墨烯是由碳原子构成的单层二维晶体,具有极高的导电性、热导性、机械强度及化学稳定性,是一种极具发展前景的新型材料。
如何制备高质量的石墨烯,并对其性能进行调控,是目前石墨烯研究的热点之一。
一、石墨烯的制备方法目前制备石墨烯的方法有多种,如机械剥离法、化学气相沉积法、热化学气相沉积法、还原氧化石墨烯法、化学还原法等。
其中,机械剥离法是比较早期的石墨烯制备方法之一,通过用胶带等工具将石墨粉末上剥离单层石墨烯。
这种制备方法虽然简单,但是有很大的局限性,无法制备大面积的高质量石墨烯。
近年来,热化学气相沉积法、化学还原法等制备方法越来越受到重视。
热化学气相沉积法是利用热化学反应,沉积在基底上的前驱体热解生成石墨烯。
这种方法能够制备大尺寸、高质量、均一性好的石墨烯,但是需要高温高压下进行反应,成本较高。
化学还原法是将氧化石墨烯还原成石墨烯,是一种简单易行、成本相对较低的方法。
然而,化学还原过程中会产生大量的缺陷和杂质,对石墨烯的性能影响较大。
二、石墨烯的性能调控石墨烯具有优异的性能,但是也存在一些不足之处。
通过改变石墨烯的结构、形态等,可以进一步调控其性能,拓展其应用领域。
1. 修饰石墨烯表面将石墨烯表面进行功能化改性,可以使其具有不同的化学性质和表面电荷,进一步开发其在能源、光催化、传感等方面的应用。
2. 制备石墨烯复合材料将石墨烯与其他材料复合,可以充分发挥其性能优势,制备出具有特定功能的材料。
如石墨烯纳米片与聚合物复合,可以增强聚合物的力学强度和导电性能,制备出高性能聚合物复合材料。
3. 结构调控通过改变石墨烯的层数、形态等,可以更好地控制其性能。
多层石墨烯具有比单层石墨烯更好的机械强度和导电性能,可以作为柔性电子器件、储能材料等方面的应用。
而通过采用不同的方法制备出不同形态的石墨烯,如泡沫状、多孔状、纳米带状、纳米管状等,可以扩展其在光电材料、生物医药、分离纯化等领域的应用。
单层石墨烯与多层石墨烯1.引言1.1 概述概述:石墨烯,是一种由碳原子组成的二维材料,具有出色的物理与化学性质,在科学界引发了广泛的关注和研究。
作为现代材料科学中的一项重要突破,石墨烯在众多领域具有巨大的应用前景。
单层石墨烯是最简单的石墨烯结构,由单一层的碳原子排列而成,具有一系列独特且引人注目的物理特性。
首先,单层石墨烯具有优异的电导率,电子在其中可以以超高迁移速度传输,这是由于其具有高度无序的碳原子排列和特殊的电子结构。
此外,单层石墨烯还具有出色的机械强度和柔韧性,可以在拉伸时保持原子级的稳定性。
另外,它还具有非常高的热导率和光学透明性,这使得它在电子学、能源存储、传感器、生物医学和光电器件等领域具有广泛的应用前景。
与单层石墨烯相比,多层石墨烯由多个平行排列的石墨烯层构成,层与层之间通过弱的范德华力相互堆叠。
由于层与层之间的相互作用,多层石墨烯的结构和性质相较于单层石墨烯有所不同。
多层石墨烯的结构特点主要体现在其层间距和堆叠方式上,可以通过堆叠角度和相互作用强度来调控材料的性质。
此外,多层石墨烯的电子性质也因层间相互作用而发生变化,导致其具有不同的能带结构和导电性质。
因此,多层石墨烯在纳米电子器件、光电子学和催化等领域也具有广泛的应用前景。
综上所述,单层石墨烯和多层石墨烯作为石墨烯家族中的两个重要成员,在其特有的结构和性质基础上,展现了广泛的应用前景。
本文将从物理特性和应用领域两个方面对单层石墨烯和多层石墨烯进行详细介绍,同时探讨单层石墨烯的优势以及多层石墨烯的应用前景,以期更好地了解和应用这些材料在各个领域的潜力。
1.2 文章结构文章结构部分的内容如下:文章结构本文将首先介绍单层石墨烯的相关内容,包括物理特性和应用领域。
接着,我们将详细探讨多层石墨烯的结构特点和电子性质。
最后,我们将总结单层石墨烯和多层石墨烯各自的优势和应用前景。
2. 正文2.1 单层石墨烯在本节中,我们将详细介绍单层石墨烯的物理特性和应用领域。
新型石墨烯材料的研究及其应用近年来,新型石墨烯材料的研究引起了广泛的关注和热议。
石墨烯是一种单层的碳原子排成六边形晶格的材料,具有极强的力学强度和优异的电学、热学性能。
它的发现引领了二维材料研究的潮流,被认为是未来材料科学研究的重要方向之一。
本文将对新型石墨烯材料的研究和应用进行探究。
一、新型石墨烯材料的研究目前,新型石墨烯材料的研究主要围绕两个方向展开:一是改性石墨烯的研究,包括通过杂原子和杂化合物改变石墨烯的性质,从而扩展石墨烯的应用领域;二是石墨烯衍生物的研究,包括氧化石墨烯、磷化石墨烯、氮化石墨烯等,通过衍生化反应,将石墨烯的性质进行调控。
氧化石墨烯的研究是改性石墨烯中的一种重要手段。
在氧化石墨烯中,石墨烯上的一些碳原子被氧化成羟基、羰基、羧基等官能团,从而改变了石墨烯的电学、化学性质。
相比于原始石墨烯,氧化石墨烯具有更好的稳定性和加工性能,广泛应用于各个领域,如电子器件、储能材料、催化剂等。
另一个研究方向是针对石墨烯的衍生物进行研究。
石墨烯衍生物是通过化学反应将石墨烯的结构进行改变而得到的新型材料。
例如,磷化石墨烯是将石墨烯中的一些碳原子替换成磷原子而得到的材料,它的电学性能明显优于原始石墨烯。
氮化石墨烯则是将石墨烯中的一些碳原子替换成氮原子得到的进一步改性石墨烯,它的氮原子掺杂使得其具有更好的催化活性和光催化性能。
二、新型石墨烯材料的应用除了研究方向的改变,新型石墨烯材料的应用也正在发生重大的变化。
传统上,石墨烯主要应用于电子器件、热管理、机械强度等领域。
但随着石墨烯研究的深入,新型石墨烯材料的应用范围正在不断扩大。
石墨烯的优异性能使得其成为制备纳米复合材料的理想载体。
例如,石墨烯纳米复合材料在新能源领域中的应用是具有很大潜力的,如用石墨烯作为太阳能电池的电极材料,在电子器件制备方面具有广泛的应用前景,如石墨烯基薄膜晶体管、石墨烯场效应晶体管等。
此外,石墨烯的应用范围正在不断拓展。
例如,在生物医学领域,石墨烯因其优异的生物相容性和生物相互作用性,被广泛地应用于靶向药物输送、生物传感和成像等方面。
石墨烯的应用现状及发展石墨烯是一种由单层碳原子按照规律排列形成的新型材料,具有优异的物理和化学特性。
自2004年它被首次制备出来以来,就吸引了全世界科学家的广泛关注和研究。
当前,石墨烯的应用已经涉及到诸多领域,而且未来仍有广泛的应用前景。
在电子学方面,石墨烯的应用主要集中在电子器件和电路上。
它的高导电率和高迁移率使它成为高速电子器件的理想材料。
同时,石墨烯具有优异的热导率和机械性能,可以被制成高性能散热器、光电器件和声波器件等。
在光电学方面,石墨烯将用于制造新型的光学器件,如太阳能电池、光电二极管和光学传感器等。
由于其宽波段吸收、透明性好和灵活性等特点,石墨烯也是一种理想的柔性光学器件材料。
在能源领域,石墨烯也具有广泛应用前景。
石墨烯作为电极材料已经应用于超级电容器、锂离子电池和氢燃料电池等。
此外,石墨烯的光催化效应使其成为制造光催化剂的理想材料,被广泛用于水、空气和废水的净化处理等方面。
在生物医学领域,石墨烯的应用也有很大的前景。
石墨烯具有良好的生物相容性和生物传递性,并具有广泛的生物应用,如生物图像学、药物运输、肿瘤治疗和组织工程等。
目前,虽然石墨烯的应用不断拓展,但在其商业化方面还存在一些难题和挑战,如大规模生产、技术转移和市场需求等。
此外,石墨烯在实际应用过程中还存在薄弱环节,如环境风险和安全问题等。
因此,在推进石墨烯的商业化应用的同时,还需要注意上述问题,确保其可持续发展和应用安全。
总体来看,石墨烯的应用前景广阔,将在多个领域发挥重要作用。
随着石墨烯技术的不断提升和发展,相信其应用前景将会更加广阔。
上海理工大学科技成果——新型炭材料研究
一、石墨烯的可控制备及结构调控
包括高纯度不同石墨片层大小石墨烯的可控制备及分离技术,石墨烯的立体组装技术,如大尺寸石墨烯薄膜、石墨烯气凝胶、褶皱团状石墨烯等。
二、石墨烯自修复涂层
石墨烯的表面修饰、复合材料及自修复涂层的制备,增强基体防腐性能并具有自修复功能。
三、石墨烯基透明导电薄膜、复合导热膜及吸附材料
将石墨烯进行二维或三维组装,制备透明可导电薄膜、复合导热膜及吸附材料技术。
四、石墨烯基纳米复合材料的制备及其光催化
石墨烯基多种纳米复合材料的制备及用于光催化技术。
五、炭质多孔材料的制备及应用
炭质多孔炭材料的可控制备及用于水处理及气体吸附。
六、多种结构炭材料的制备及应用
球状、管状等多种结构纳米炭的制备及应用。
七、冶金煤焦质量控制
冶金企业配煤炼焦结构、焦炭质量研究。
国外氧化石墨烯复合材料研究现状概述及解释说明1. 引言1.1 概述本篇文章旨在介绍国外氧化石墨烯复合材料的研究现状。
随着科技的不断发展,氧化石墨烯作为一种具有特殊结构和优异性能的新型纳米材料,在多个领域得到了广泛应用与关注。
本文将首先对目前国外在氧化石墨烯复合材料方面的研究进展进行概述,并深入探讨其制备方法、性能表征以及评价等内容。
1.2 文章结构本篇文章共分为五个主要部分:引言、国外氧化石墨烯复合材料研究现状、氧化石墨烯复合材料在XXX领域的应用、挑战与前景展望以及结论与总结。
引言部分将对整篇文章内容进行简要介绍,为读者提供一个整体框架。
第二部分将详细介绍国外在该领域的近期发展情况,包括背景资料、制备方法以及性能表征与评价等方面。
第三部分则着重探讨氧化石墨烯复合材料在不同领域的应用,如应用领域A、B和C等。
接下来的第四部分将对该研究领域面临的挑战进行分析,并展望其未来发展前景。
最后,文章将在结论与总结部分对整个内容进行总结,并提出一些进一步研究方向。
1.3 目的本文旨在系统梳理国外氧化石墨烯复合材料研究现状,从背景资料到制备方法再到性能表征与评价,让读者了解目前该领域的最新进展。
同时,介绍氧化石墨烯复合材料在不同领域的应用情况,为读者呈现其广泛的应用潜力。
此外,本文还将对该研究领域面临的挑战进行探讨,并给出未来发展的展望。
通过阅读本文,读者将对国外氧化石墨烯复合材料的相关知识有一个全面而深入的了解。
2. 国外氧化石墨烯复合材料研究现状:2.1 研究背景:氧化石墨烯复合材料是一种由氧化石墨烯与其他材料组成的复合结构。
由于其优异的导电性、力学性能和化学稳定性,氧化石墨烯复合材料在许多领域中得到了广泛关注和应用。
国外学者们对氧化石墨烯复合材料进行了大量的深入研究,以探索其制备方法、性能表征及其应用领域。
2.2 材料制备方法:在国外的科学界,有许多制备氧化石墨烯复合材料的方法被提出和发展。
其中包括机械混合法、溶液浸渍法、原位聚合法等。
石墨烯及石墨烯光催化复合材料简介 1.1 前言 碳材料是地球上最普遍也是一类具有无限发展前景的材料,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构的富勒烯到二维结构的石墨烯,近几十年来,碳纳米材料一直备受关注。而三维网状结构的石墨烯自组装水凝胶的发现[1],不仅极大地充实了碳材料家族,为新材料和凝聚态领域提供了新的增长点,而且由于其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论上还是实验研究方面都已展现出了重大的科学意义和应用价值.从而为碳基材料的研究提供了新的目标和方向。 从石墨发现至今,关于石墨烯的研究已经铺满各种期刊杂志,此外,人们对石墨烯衍生物也进行了深入研究,如氧化石墨烯、石墨烯纳米带、石墨烷、磁性石墨烯衍生物等。其中对氧化石墨烯和石墨烯纳米带的研究更为深入。氧化石墨烯是单一的碳原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。由于它在水中具有优越的分散性,长久以来被视为亲水性物质,然而,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。因此,氧化石墨烯可如同界面活性剂一般存在界面,并降低界面间的能量。根据不同的碳取材来源和不同的结构,石墨烯纳米带有不同的特性,有些有金属的性质,有的具有半导体性能,从而也使得石墨烯纳米带成为未来半导体候选材料。此外,在挖掘石墨烯潜在的性能和应用方面,石墨烯的复合材料也受到了极大的关注,并且这类复合材料已在生物医学、能量储存、液晶器件、传感材料、电子器件、催化剂等领域显示出了优异的性能和潜在的应用。 总之,不断发现新的性质、衍生物、复合材料以及功能器件,极大地丰富了石墨烯的研究方向、开拓了人们的视野、拓展了石墨烯的应用领域,使得基于石墨烯的材料成为了一个充满魅力与无限可能的研究对象。
1.2石墨烯 自2004年石墨烯发现以来,由于其独一无二的电学性质,良好的化学稳定性和导热性以及优异的机械强度,迅速成为电子学、光学、材料学、生物医学、物理学、化学和储能领域的研究热点。石墨烯纳米材料更是由于其独特的孔隙结构、巨大的表面积、安全无污染、成本低廉、寿命长久等优点而被广泛的用于各能源行业。
1.2.1 石墨烯的结构及性质 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子以SP2杂化轨道组成的二维周期蜂窝状结构,它可以翘曲成零维的富勒烯也可以卷成一维的碳纳米管或者堆垛成三维的网状石墨。石墨烯的基本结构单元是有机材料中最稳定的苯六元环,可想象为由碳原子和其他共价键所形成的原子尺寸网,它是目前最理想的二维纳米材料。理想的石墨烯结构只包括平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为SP2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。如果结构中有五边形和七边形存在,则会构成石墨烯的缺陷,12个五角形石墨烯会共同形成富勒烯 石墨烯是当今世界上已经发现的最薄、最坚硬、最具强度的物质。其厚度仅为0.35nm,杨氏模量达到1000GPa以上,具有很高的结晶度和稳定性。此外,石墨烯还具有许多其他优异的性能:如良好的导电性、较高的载流子迁移率(约2.105 cm2·V-1·s-1)、较高的热导率(约5000 W·In-1·K-1)、巨大的比表面积(理论计算值为2630 m2.g-1)、铁磁性等。石墨烯结构极其稳定,各碳原子之间排列非常紧密,并且碳原子层会随着外界条件而变化,如当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的结构使碳原子具有优异的导电性。并且它的电导率极低,电子迁移的速度非常快,常温下它的电子迁移速率比纳米碳管高,但电导率比铜或银更低,只有6-10Ω·cm。此外,石墨烯还有另外一个特征,能够在常温下观察到量子霍尔效应。即当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,通常情况下量子霍尔效应需要在低温的条件下实现,而在石墨烯中,由于其载流子异常的特性,表现地像无质量的相对论粒子,因而石墨烯的量子霍尔效应可以在室温下观察到。
1.2.2 石墨烯的制备方法 目前,制作石墨烯的方法主要有: 微机械剥离法、晶体外延生长法、过渡金属催化的化学气相沉积法、氧化还原法等。在这几种方法中,微机械剥离法比较费时、制备成本高,并且精度难以控制,只适合在实验室制备。但袁等人改进后,以石墨为原料,先采用Hummers法在不超过20℃的低温下制备氧化石墨,再通过高真空(2.533×106Pa)低温剥离法得到了高比表面积的石墨烯材料。并采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)等表征所得石墨烯,结果显示,石墨烯基本已经被还原,而且其孔道结构丰富,比表面积高达908.3m2/g。此方法操作简便,安全环保,适用于大规模生产。晶体外延生长法是指利用晶格匹配,在一个晶体结构上生长出另一个晶体,这种方法可制得较大表面积、高质量的石墨烯,但是石墨烯的生长机理并未探明,并且和微机械剥离法相比,晶体外延生长法制备的石墨烯具有很高的载流子迁移率,却观测不到量子霍尔效应。化学气相沉积法以金属为衬底,石墨烯与衬底的相互作用对石墨烯制备生长及各种性质影响非常明显,因此,可通过衬底的选择、生长温度、前驱物的量等参数对其进行调控,但过程繁琐。氧化还原法是先将石墨氧化得到层状氧化石墨,再将氧化石墨片剥离开而形成石墨烯片,但由于石墨烯单片之间有较强的范德华力,在没有任何保护剂的条件下,石墨烯之间容易产生团聚和堆砌。氧化还原法主要包括Standenmaier 法,Brodie法,Hummers 法等,其中Hummers 法受到了广泛的应用,科研工作者利用改进的Hummers 法制备不同要求的石墨烯材料。例如,黄等人利用改进的Hummers 法,以石墨粉为原料,控制合适的温度和其他实验条件制备氧化石墨,再将得到的氧化石墨置于微波炉内,用微波还原法制备了具有很高还原程度和比表面积的石墨烯。并且通过改变不同的温度发现,当高温阶段氧化温度为90℃时,氧化石墨被氧化的最完全,得到的石墨烯还原程度也最大,但该方法还处于理论研究阶段并未用于大规模工业生产。由于微机械剥离法、晶体外延生长法、气相沉积法以及氧化还原法都具有一定的局限性,难以实现石墨烯的大尺寸可控制备。所以目前急需一种可以实现石墨烯的大规模可控制备方法,光催化法还原法通过选择特定的催化金属及实验条件,满足了可控制备石墨烯的要求。
1.2.3 石墨烯的功能化 石墨烯制备技术的不断完善为石墨烯的基础研究和应用开发提供了有力保障。但是石墨烯在应用方面还面临着另一个重要的挑战,即如何实现其可控功能化,功能化是实现石墨烯分散、溶解和成型加工的最重要手段。结构完整的石墨烯表面呈惰性状态与其他介质(如溶剂等)的相互作用较弱、化学稳定性极高,并且石墨烯的片与片之间有较强的范德华力,容易产生聚集,使其在水和乙醇等常用的有机溶剂中难于分散。这给石墨烯的进一步研究和应用造成了很大的困难。为了充分发挥其优良性质,必须对石墨烯进行有效的功能化,就是利用石墨烯在制备时表面产生的基团和缺陷通过非共价、共价和掺杂等方法,改变石墨烯的表面性质。石墨烯的功能化包括石墨烯的共价键功能化和非共价键功能化。而石墨烯的共价键功能化是现今较为广泛的方法,它包括石墨烯的有机小分子功能化、聚合物功能化、石墨烯杂化等。共价键修饰的优点是在增加石墨烯的可加工性的同时,给石墨烯赋予新的功能。如Stankovich等用异氰酸酯与氧化石墨上的羧基和羟基反应,通过有机小分子功能化,得到了具有异氰酸酯功能化的石墨烯。该功能化石墨烯不仅可以在N,N-二甲基甲酰胺等多种极性非质子溶剂中实现均匀分散,而且能够长时间保持稳定。除了石墨烯共价键功能化外,还可以根据石墨烯∏键功能化、离子键功能化、氢键功能化等进行非共价键功能化。非共价键功能化的优点是能保持石墨烯本身的结构和性质。例如,Penicaud等将制备的碱金属石墨层间化合物在溶剂中剥离,利用钾离子和石墨烯上羧基离子间的作用,通过离子键功能化使石墨烯稳定均匀地分散到极性溶剂中。近年来,石墨烯的功能化已经取得了较大进展,但是要真正实现其可控功能化和产业化应用,还需进一步加以研究。
1.2.4 石墨烯的应用 石墨烯材料及其功能化材料可广泛的应用于场效应晶体管(FET)、光伏电池、超级电容器等光电功能材料与器件、聚合物纳米材料、生物医药、能源、环境等领域。如在乙二醇中机械混合石墨烯与SnO2,制备出的石墨烯化合物具有很好的放电容量,且其充放电的循环性很好,即使经过30次的充放电循环后,依旧具有很大的比容量,这种石墨烯复合材料已经逐渐被应用于光电材料行业。再如,具有生物相容性的聚乙二醇功能化石墨烯的制备,开启了石墨烯在生物医学方面的应用。这种石墨烯材料能够在血浆中保持稳定分散,并且利用∏-∏相互作用可以将抗肿瘤药物负载到石墨烯上。此外,由于石墨烯的层状结构,石墨烯化合物也被用于生物膜方面。如利用稳定的石墨烯单片为衬底,通过银镜反应制备的纳米粒子膜具有非常柔软的性质、很高的反射率还具有拉曼增强的效果,因此,这种纳米银离子膜可以加工成具有很高反射率的宏观膜。随着生物技术的不断发展,研究发现石墨烯的厚度小于DNA链中相邻碱基之间的距离以及DNA四种碱基之间存在电子指纹,因此,石墨烯有望实现直接的,快速的,低成本的基因电子测序技术,并且研究人员发现细菌的细胞在石墨烯上无法生长,而人类的细胞却不会受损,利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤。石墨烯基复合材料不但在电子器件、超级电容器以及传感器方面具有巨大应用前景,而且在环境污染控制领域具有很大应用潜力,如光催化降解有机污染物、减少噪音等。如通过重叠2层石墨烯层使之产生强电子结合,得到的新型晶体管,可以大幅度降低纳米元件特有的1/f,从而能够控制噪音。将石墨烯与半导体光催化剂结合,石墨烯的比表面积能极大地促进有机污染物的吸附,从而控制环境