系杆拱桥计算书
- 格式:doc
- 大小:2.71 MB
- 文档页数:42
满堂支架计算书一、工程概况1、主拱肋截面采用宽9.6m,高1.3m的单箱三室普通钢筋混凝土箱型断面,顶、底板厚度均为22cm,腹板厚度均为35cm,拱脚根部段为2m长的实体段。
拱肋混凝土标号为C40,混凝土数量共计426.7m³,钢筋数量共计182994.5kg。
2、支架采用满堂式碗扣脚手架,平面尺寸为58m*9.6m。
其立杆在桥墩处横距为60cm、纵距60cm;其余横距为60cm、纵距为90cm、横杆步距为120cm组合形式布置纵横向均设置斜向剪力撑,以增加整个支架的稳定性。
3、拱盔采用φ48(d=3.5mm)钢管,钢管壁厚不得小于3.5 mm(+0.025mm)弯制。
4、底模采用15mm竹胶板,竹胶板后背10*8木方,木方横桥向布置,布置间距30cm控制。
二、满堂支架计算书1、支架荷载分析计算依据《公路桥涵施工技术规范》(JTG/F50-2011)《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)《路桥施工计算手册》其他现行规范。
2、荷载技术参数a.新浇钢筋混凝土自重荷载25KN/㎡b.振捣混凝土产生的荷载2.0KN/㎡(JTG_TF50-2011 公路桥涵施工技术规范P182)c.施工人员、材料、机具荷载2.5KN/㎡(JTG_TF50-2011 公路桥涵施工技术规范P182)d.模板、支架自重荷载2.5KN/㎡e.风荷载标准值采用0.6KN/㎡f.验算倾覆稳定系数2(JTG_TF50-2011 公路桥涵施工技术规范P182)3、荷载值的确定进行支架设计时,所采用的荷载设计值,取荷载标准值分别乘以下述相应的荷载分项系数,然后组合而得;本工程满堂支架采用碗扣式脚手架搭设,其立杆在桥墩处横距为60cm、纵距60cm;其余横距为60cm、纵距为90cm、横杆步距为120cm组合形式布置,其上设可调顶托,上铺钢管和方木形成模板平台,支架承载最不利情况为拱板混凝土浇注完毕尚未初凝前底板范围内的杆件承载。
16m空腹式拱桥计算书设计计算书一、设计资料(一)设计标准设计荷载:汽车-20级,挂车-100,人群荷载3KN/m2 净跨径:L0=16m净矢高:f0=2.28m桥面净宽:净6.5+2*(0.25+1.5m人行道)(二)材料及其数据拱顶填土厚度h d=0.5m,γ3=22KN/m3拱腔填料单位重γ=20KN/m3腹孔结构材料单位重γ2=24KN/m3主拱圈用10号砂浆砌号60块石,γ1=24KN/m3,极限抗压强度R j a=9.0MP a,弹性模量E=800R a j。
(三)计算依据1、交通部部标准《公路桥涵设计通用规范(JTJ021-89)》,人民交通出版社,1989年。
2、交通部部标准《公路砖石及混凝土桥涵设计规范(JTJ022-85)》,人民交通出版社,1985年。
3、《公路设计手册-拱桥》(上、下册),人民交通出版社,1994年。
4、《公路设计手册-基本资料》,人民交通出版社,1993年。
二、上部结构计算(一)主拱圈1、主拱圈采用矩形横截面,其宽度b0=10.0m,主拱圈厚度d=mkl01/3=6*1.2*16001/3=84.2cm,取d=85cm。
假定m=1.988,相应的y1/4/f=0.225,查《拱桥》附表(Ⅲ)-20(9)得Ψj=33003′32″,sinΨj=0.54551, cosΨj=0.83811 2、主拱圈的计算跨径和矢高L=l0+dsinΨj=16+0.85*0.54551=16.4637mf=f0+d/2-dcosΨ/2=2.28+0.85/2-0.85*0.83811/2=2.3488j3、主拱圈截面坐标将拱中性轴沿跨径24等分,每等分长Δl=l/24=0.6860m,每等分点拱轴线的纵坐标y1=[《拱桥》(上册)表(Ⅲ)-1值]f,相应拱背曲面的坐标y′1=y1-y上/cosΨ,拱腹曲面相应点的坐标y″1=y1+y下/cosΨ,具体位置见图1-1,具体数值见表1-1。
某跨度150m的下承式钢管砼系杆拱桥拱肋吊装和扣索索力计算鉴定文件X X X大桥综合施工技术拱肋吊装和扣索索力计算项目完成单位:拱肋吊装和扣索索力计算1.工程概况XX大桥横跨广深、广九电气化高速铁路及深圳火车北站站场共29股轨道,全长386.37m,其主桥为跨度150m(净跨148m)的下承式钢管砼系杆拱桥,矢跨比为1/4.5,拱轴系数为1.167,拱顶距地面高约43m。
主拱结构为两片四肢格构桁式截面,高3.0m,宽2.0m。
每段拱肋四根弦管设对接内衬套,合拢段的弦管中设有可移式内衬套,每片拱肋分7段悬拼,最大吊重约37t,两片拱肋的横向中心线距离18.5m,桥面为预应力钢—砼叠合板组合梁结构,宽23.5m。
为安全、优质、快速的安装主拱肋,经过优化比选,施工上采用缆索吊机和扣索的方案进行空中无支架悬拼拼装。
2.施工工艺流程根据现场情况并考虑操作简便,经过反复论证,本桥决定采用单肋悬拼合拢的方法。
即完成7段拱肋的安装合拢后,移动索鞍再安装另七段拱肋,两片拱肋全部合拢后最后安装中间风构。
单肋合拢采用每上一段即进行接头焊接(拱脚段最后才焊接),其施工工艺流程图(图1)如下:3.拱肋悬拼施工3.1各分段长度及质量另:第一、二段扣点装置重8KN,第三段扣点装置重10KN,各大段接头处的吊蓝等施工荷载考虑12KN。
3.2拱脚铰支的安装在拱肋悬拼过程中,为调整线型,拱脚段及预埋钢板要预先设置铰支,本桥的铰支型式如下图:通过扣索的张拉、松放、调整标高,轴线调整及横向稳定是通过侧缆风来完成。
3.3各大段的联接根据设计,各大段的接头先采用16棵M24A的螺栓联接,然后待标高、轴线调整到位后,即进行接头环缝的焊接,最后在每根主管外用4块δ=12mm的钢围板进行接头处的外包施焊固结,然后才安装下一段。
3.4合拢段的安装合拢段设计长度为22m,为保证能够快速、顺利的进行合拢,本段在工厂制作时,两边端头比设计各加长50cm,以待准确测量实际合拢段的长度后在现场进行划线,切割余量,然后进行合拢。
等截面悬链线圬工拱桥计算一. 设计资料(一) 设计标准1.设计荷载公路二级,人群荷载3kN/㎡。
2.跨径及桥宽净跨径l 0=40m ,净失高m f 8= ,净失跨比5100=l f 。
桥面净宽为净7+2×(0.25+0.75m 人行道),m B 9= 。
(二) 材料及其数据中国范文网【/】详细出处参考:/post/215.html 还有海量相关文章1.拱上建筑拱顶填料厚度,m h d 5.0=,包括桥面系的计算厚度为0.736m ,平均重力密度31/20m kN =γ。
拱上护拱为浆砌片石,重力密度32/23m kN =γ。
腹孔结构材料重力密度33/24m kN =γ。
主拱拱腔填料为砂、砾石夹石灰炉渣黄土,包括两侧侧墙的平均重力密度4γ=kN/3m 2.主拱圈M10砂浆砌MU40块石,重力密度33/24m kN =γ。
轴心抗压强度设计值cd f =2323/1012.42.1/1044.3m kN m kN ⨯=⨯⨯。
抗剪强度设计值MPa f vd 073.0=。
弹性模量MPa E m 073.0=。
拱圈设计温差为C 15± 3.桥墩地基土为中等密实的软石夹沙、碎石,其容许承载力[0σ]=500kN/㎡。
基础与地基间的滑动摩擦系数取5.0=μ。
(三)设计依据1.交通部部标准《公路桥涵设计通用规范》,(JTG D60-2004)2004年。
简称《桥规1》;2.交通部部标准《公路圬工桥涵设计规范》(JTG D61-2005)2005年,人民交通出版社,《简称桥规2》;3.交通部部标准《公路桥涵地基与基础设计规范》,人民交通出版社,简称《桥规3》;4.《公路设计手册-拱桥》上下册,人民交通出版社,1978。
简称《拱桥》。
二、主拱圈计算(一)确定拱轴系数拱轴系数m 值的确定,一般采用“五点重合法”,先假定一个m 值,定出拱轴线,拟定上部结构各种几何尺寸,计算出半拱恒载对拱桥截面形心的弯矩j M ∑和自拱顶至4l 跨的恒载对4l跨截面形心的弯矩4l M ∑。
桥面板计算书该系杆拱采用纵铺桥面板式地桥道系结构,根据跨径采用预制矩形实心板,将其直接置于吊杆横梁之上;为减少伸缩缝,纵铺地桥面板做成结构连续(先简支后连续),其受力在自重时为简支,二期横载及活载作用下为连续,预制时负弯矩筋伸出端部,安装时两端钢筋相连,现浇湿接头混凝土.最外侧为宽 2.5m 地桥面板,里侧为宽 2m 地桥面板,横梁长宽均为 1.2m ,桥面板尺寸为 2.5 ×5m2 和 2 ×5m2.图 1. 具体尺寸示意图一.桥面板荷载计算1.连续板:下承式刚架系杆拱地桥面板是支承在一系列纵横梁之上地多跨连续单向板,板搭接在纵横梁上,三者整体连接在一起形成一个整体,因此各纵横梁地不均匀下沉和桥面板本身地抗扭刚度必然会影响到桥面板地内力,所以桥面板地实际受力情况是十分复杂地.通常我们采用简便地近似方法进行计算,即把纵横梁之间地桥面板看作单向板来计算.桥面铺装采用最薄处8cm 和最厚处 12cm 地混凝土三角垫层,上加2cm 厚地沥青混凝土面层 .混凝土垫层容重为25 KN/m3,沥青混凝土容重取为23KN/m3,在纵向取1m 宽地板条计算 .1.12.55m2地中桥面板1.1 .1 恒载内力:以纵向梁宽为 1.0m 板梁计算 :净跨径l1.9m,板宽 t 0.25m。
计算跨径 L 1 =L 0 +t=1.9+0.25=2.15mL2L0 b 2.5m L min(L1, L2 ) 2.15m每延M 上恒载:g10.02 1 230.46kN m , g2=0.1 1 25=2.5kN m桥面板:g3 =0.25 1 25=6.25kN m g= g1 +g2+ g3 =9.21kN m计算M og:M og1/ 8gL2 5.322KN m计算Q og: L L0 1.9m Q og 1 gL08.7495kN21.1.2 活载内力:①弯矩计算当加载两个车轮时,影响线竖标值之和较一个车轮在中心时小,故弯矩计算只考虑一个车轮加载地情况 .由图中三角关系可求得:y1车轮分布及弯矩影响线图轴重: P 140 kN后轮着地长度a20.2m宽度b20.6m a1a2 2 H0.2 2 0.120.44mb b1b2 2 H0.6 2 0.12 0.84ma a1l / 30.44 2.15 3 1.16m d 1.4m荷载分布宽度不会有重叠,所以板地有效工作宽度:a a1l0.44 2.15 1.16 m2l31.43m33故取a 1.43m冲击系数:0.3M 0 p y(1) Pl b 1 则车辆荷载弯矩为:8a2110.3140 0.84 27.52KN m2.15281.43则总弯矩为:(1) 基本组合:M 0 1.2M 0g 1.4M 0 p 1.2 5.322 1.4 27.52 44.9144kN m(2) 短期组合:M 0 1.0M 0 g0.7 M 0 p 1.0 5.322 0.7 27.52 20.14kN m11.3(3) 长期组合:0.4 0.4 M 0 1.0M 0gM 0 p 1.0 5.32227.52 13.79kN m11.3故M44.9144kN m支点弯矩:M 支0.7M 0 0.7 44.9144 31.44kN m跨中弯矩(板厚与横梁地高度比小于1 4):M c 0.5M 0 0.5 44.9144 22.46kN m②剪力计算荷载有效分布宽度及剪力影响线车轮一:距离x10a a a1 t 0.44 0.25 0.69m 2l 1.43m则3故取 a a 1.43 m由图中几何关系可求得y10.779矩形部分荷载地合力:AP P140b12a48.95kN 2ab1 2 1.43车轮一地荷载剪力为:V sp11Ay 1 0.3 48.95 0.77949.57kN 车轮二:距离x 1.3m则a a1t 0.440.250.69ma x a2x0.69 2 1.3 3.29m 2l 1.43m 3取 a 0.69 m , a 1.43 ma a 1.430.69x0.37m则22根据图中几何关系求得:,y1 0.779 , y2 0.935荷载有效分布宽度及剪力影响线矩形部分荷载地合力为:P P100A1 pb1b134.97kN2ab12a 2 1.43三角形部分荷载地合力为:P21001.43 0.692 A2 a a1.43 0.698.26 kN8aa b180.84车轮二地荷载剪力为:V sp21A1 y1A2 y2 1 0.3 34.97 0.779 8.26 0.93545.45kN 即车辆荷载剪力为:V sp V sp1V sp249.57 45.4595.02kN则总剪力为:(1)基本组合:V 1.2V sg 1.4V sp 1.2 8.7495 1.4 95.02 143.53kN(2)短期组合:V 1.0V sg0.7V sp 1.0 8.74950.795.02 59.91kN 1 1.3(3)长期组合:V 1.0V sg 0.4V sp 1.08.74950.495.02 37.99kN 1 1.31.22.05m2地中桥面板1.2 .1 恒载内力:以纵向梁宽为 1.0m板梁计算 :净跨径l1.4m,板宽 t 0.25m。
42m拱桥计算书二零一三年十月三十一日1工程概况本桥位于莲花湖湿地公园三期范围内。
拱桥净跨径为42m。
桥面布置为:(人行道)+7m(车行道)+(人行道)=11m。
采用钢筋混凝土箱梁截面。
荷载等级采用公路-Ⅱ级。
1.1主要设计规范1、《公路桥涵设计通用规范》(JTG D60—2004)2、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)1.2采用材料标准1、普通钢筋:采用HRB400(Ⅲ级)热轧螺纹钢和HPB300(Ⅰ级)钢筋,其技术标准应符合国家标准 GB13013-91和GB1499-98的规定。
2、混凝土:主梁采用C40混凝土。
下部结构待添加。
1.3设计计算主要内容连续梁拟定施工方案为满堂支架现场浇筑,对施工过程及成桥运营阶段正常使用及极限承载能力验算。
本桥按照普通钢筋混凝土构件设计,结构重要性系数取。
2纵向计算纵向计算模型计算程序采用桥梁博士进行计算,版本号为V3.1.0。
计算模式为平面杆系:平面杆系计算模型如下图所示:图纵向计算模型计算参数普通钢筋:采用HRB400,弹性模量为;混凝土:C40混凝土弹性模量取;外部环境:相对湿度取80%,成桥温度暂定为15摄氏度。
施工过程模拟该桥施工方案为满堂支架现浇,计算模拟为一次落架,施工荷载暂不考虑。
设计荷载车辆荷载,设计荷载为公路-Ⅱ级,计算中设计车道数按两车道取,车道横向折减系数为,纵向折减系数为,冲击系数为;偏载系数取(直接荷载)。
常年温差,拟定成桥温度为150C,参照《公路桥涵设计通用规范》(JTGD60—2004)该桥位于严寒地区,故常年温差升温取250C,降温取250C。
(间接荷载)梯度温度:参照《公路桥涵设计通用规范》(JTG D60—2004)第4.3.10条,T度温度荷载:升温:T1=14c o,T2=c o;降温T1=-7c o,T2=c o。
(间接荷载)收缩徐变:施工过程中按照时间轴计算,最终收缩徐变值轴取成桥后十年。
中小跨径圬工拱桥计算书一、设计概况:1.技术标准:(1)桥面宽:净—11m+2×0.5m防撞栏杆(2)设计载荷:公路—Ⅰ级(双车道7.5m),人群3kN/m2(3.5m)2. 设计计算要点(1)拱圈按弹性无铰拱进行内力计算,不考虑拱上结构与主拱圈的联合作用;(2)拱圈计算未考虑墩台位移影响;(3)活荷载的作用效应采用影响线加载法计算;(4)主拱圈封拱后的计算温差采用±25℃。
3.计算程序:二、结构模型:全跨等分96段积分注:恒+汽K=1恒+汽+人K=2恒+汽+人+T1 K=3恒+汽+人+T2 K=4对15个设计项目分别计算如下:跨径30m、矢跨比1/5(单位:kN.m制)1. 输入文件:主拱厚H1=0.8Y上YON=0.4Y下YUN=0.4截面积FE1=9.28FE2=0 FE3=0 FE=9.28F0=9.28拱脚GJDX=0.561拱脚GJDY=0.571主拱净跨L0=30主拱净矢高F0=6拱轴系数M=2.814计算跨径L=30.56078计算矢高F=6.1151端腹拱起拱位置DL=0.6腹拱净跨L2=3腹拱净矢高F2=1腹拱拱圈厚H2=0.3横墙宽B2=0.8半跨腹拱数N=2拱圈宽B=11.6横墙实体厚BZ=11.6主拱顶填料厚HS=0.5腹拱顶填料厚HSO=0.5桥面纵坡I=0 竖曲线半径R=1切线长RIT=0横墙零星体积V0=0横墙挖空最低高度HMIN=10计算截面号差III=2 主拱圈单重C1=24横墙单重C2=24腹拱圈单重C3=24腹拱圈间填料单重C4=23主拱实腹段路面单重C5=23 实腹段路面单重C6=23主拱实腹段路面单重C7=23悬臂人行道重Q=0弹性模量E*10^7=0.73 线胀系数ALFA/10^5=.8人群荷载RN=10.5温升T1=25温降T2=-25 温变折减KT=0.7公路-IHP=1双车道KP=2公路一级DJ=12. 输出文件:……………………………………………………………………………………………………………拱轴线长S=33.7951#横墙高Y0=2.202 2#横墙边缘高Y0=0.4012#横墙高Y0=0.240实腹段填料高HH=1.540恒载推力HG=9780 恒载垂直压力VG=8413恒载弯矩MG=263活载推力HAX=1726 活载垂直压力HYV=1024活载弯矩HYM=997控制截面0~4 I=1~4I=0 恒载系数1~1.2II=1或II=2II=2控制计算弯矩+M取J=1,-M取J=2J=1见注K=1~4K=3全拱最小超强系数,截面强度/组合效应KMIN=1.665I=2 II=1 J=1 K=4 全拱最大偏心矩EMAX=0.212容许偏心矩YE=0.24 EE=-1.438E-02 AC=9.28截面极限强度KJNN=27752 F1=0.996 截面最大组效应KNN=170003. 结论:EMAX=0.212<YE=0.24(安全)KNN=17000<KJNN=27752(安全)2。
K0+870.516 大桥(1-65m箱型拱桥)1、计算模型2、稳定计算过程及其结论采用Midas梁单元模型,考虑恒载及汽车活载的最不利作用,其中汽车活载分别按集中活载作用在跨中及约1/8拱顶对应的简支梁跨中。
稳定分析结果显示,上述两种工况下失稳模态一阶均表现为拱圈横向失稳,说明拱桥横向尺寸相对较小。
求得稳定系数分别为23.74及23.7,见下图,说明拱桥横桥向稳定满足设计要求。
一阶模态,拱圈横向失稳(考虑活载不利作用,车道集中荷载作用在1/8截面)一阶模态,拱圈横向失稳(考虑活载不利作用,车道集中荷载作用在拱顶截面)3.内力分析过程采用Midas梁单元模型,内力计算考虑恒载及活载的不利组合;实际拱桥受力中,由于拱上立柱(腹拱)简支梁板的两端均存在裂缝,拱上建筑与拱圈的联合作用下降,因此为消除拱上建筑对拱圈的约束作用,温度内力单独施加在裸拱上;冲击系数根据桥梁的自振频率(拱圈竖向反对称振动)按规范计算;分承载能力极限状态及正常使用极限状态分别进行验算。
拱圈拱轴系数m=1.347,拱圈曲线长约82m,按等间距划分为100个单元,节点及单元编号从左至右依次编号。
(1)下面是恒载作用下拱圈的内力图:(2)下面是恒载和最不利活载(公路II级)作用下拱圈的内力图:ClCB2-Max(1/4截面附近拱圈下缘拉应力最不利)CLCB2-Min(拱脚截面上缘拉应力最不利)(3)下面是降温20°时的拱圈内力:降温后拱脚出现较大负弯矩(1022Kn.m)拱顶出现较大正弯矩(813Kn.m)。
(4)下面是升温20°时的拱圈内力:升温后拱脚出现较大正弯矩(1022Kn.m)拱顶出现较大负弯矩(813Kn.m)。
4内力计算及截面验算下面分别给出承载能力极限状态及正常使用极限状态下较为不利截面的拱圈的内力组合值,其中CLCB2组合中未包含温度内力,需要手动添加,CLCB2用于强度( 承载能力)验算。
CLCB5、CLCB6用于裂缝宽度(正常使用状态)验算。
大学四年的学习生活转瞬即逝,在毕业前的毕业设计对我们而言尤为重要。
它不仅仅是学校教学要求的一个重要环节,更是培养我们独立工作能力、理论联系实际的能力、严谨设计能力等能力的一个重要的手段。
通过认真的完成毕业设计,可以系统的运用所学的知识,也可以通过毕业设计来查找理论知识存在的不足。
本设计是在指导老师的悉心指导下完成的,题目是柳州市某大桥的设计,主要从桥梁方案的设计与比较,桥梁的结构内力计算,预应力筋的配置设计,预应力损失的计算,截面强度、应力验算等几个方面进行。
在桥梁方案比选时,首先根据地形地质条件,桥梁的总长,大体确定要选用的基本方案,通过比较分析,按照安全、实用、经济、美观、有利于环保的原则,确定最终的方案。
本设计考虑到水位情况、基础埋深、桥面宽度、施工方法等等因素,最终确定出桥型总体布置图,引桥采用跨径为35米和30米的预应力混凝土箱型连续梁桥,主桥采用主跨为140米的中承式钢管混凝土拱桥。
主跨拱肋采用圆端形截面,边跨拱肋采用钢筋混凝土矩形截面形式。
主跨拱肋采用钢管混凝土截面可以增强截面刚度,减少截面结构尺寸,节约混凝土的用量,进而起到减轻桥梁自重,减少了恒载的重力,在一定程度上也可以减低桥梁造价。
随着我国拱桥设计的不断发展,钢管混凝土拱肋也是目前较大跨径拱桥中最常采用的截面形式之一。
如将1989年建成的四川省第一座跨径为100米的钢筋混凝土箱型拱肋与箱型板拱定型设计相比,重力与水平推力分别减少小了48%和40%,相当于减小了下部结构圬工数量,从而降低了总造价。
另外,在外观上,考虑到该设计为城市桥梁,钢管混凝土中承式拱桥拱桥线形清晰明快,轻盈美观,增加的城市的美观性,并且施工也比较方便,本设计采用缆索吊装施工。
由于,钢管混凝土拱桥的这些优点,目前在混凝土拱桥中已被普遍采用。
其它结构的设计以及细部的处理都参照了相应的规范和手册进行。
在计算时,通过手算和桥梁迈达斯软件计算相结合,进行了截面配筋、应力计算等工作。
目 录 一、说明 ........................................................................................................................ 1 1.1 主要技术规范 .............................................................................................. 1 1.2结构简述 ....................................................................................................... 1 1.3 材料参数 ..................................................................................................... 2 1.4 设计荷载 ...................................................................................................... 3 1.5 荷载组合 ..................................................................................................... 3 1.6 计算施工阶段划分 ...................................................................................... 4 1.7 有限元模型说明 .......................................................................................... 5 二、主要施工过程计算结果 ........................................................................................ 5 2.1 张拉横梁第一批预应力张拉工况 .............................................................. 5 2.2 张拉系梁第一批预应力工况 ...................................................................... 6 2.3拆除现浇支架工况 ....................................................................................... 7 2.4 架设行车道板工况 ...................................................................................... 9 2.5 张拉第二批横梁预应力束工况 ................................................................ 11 2.6 二期恒载加载工况 .................................................................................... 13 三、成桥状态计算结果 .............................................................................................. 16 3.1 组合一计算结果 ........................................................................................ 16 3.2 组合二计算结果 ........................................................................................ 17 3.3 组合三计算结果 ........................................................................................ 17 3.4 组合四计算结果 ........................................................................................ 18 3.5 组合五计算结果 ........................................................................................ 19 四、变形结算结果 ...................................................................................................... 21 五、全桥稳定性计算结果 .......................................................................................... 23 六、运营状态一根吊杆断裂状态计算结果 .............................................................. 24 6.1 各荷载组合作用下计算结果 .................................................................... 24 6.2持久状况承载能力极限状态验算 ............................................................. 27 6.3全桥稳定性计算结果 ................................................................................. 27 引江济汉通航工程系杆拱桥结构计算书 七、运营状态两根吊杆断裂状态计算结果 .............................................................. 28 7.1 各荷载组合作用下计算结果 .................................................................... 28 7.2持久状况承载能力极限状态验算 ............................................................. 31 7.3全桥稳定性计算结果 ................................................................................. 32 八、上构计算结论汇总 .............................................................................................. 33 8.1施工过程主要构件应力计算结果 ............................................................. 33 8.2成桥状态计算结果汇总 ............................................................................. 33 8.3断一根吊杆状态计算结果汇总 ................................................................. 34 8.4断两根吊杆状态计算结果汇总 ................................................................. 35 8.5各状态稳定性结果汇总 ............................................................................. 36 九、主墩墩身及承台强度验算 .................................................................................. 36 9.1 墩身强度验算 ............................................................................................ 37 9.2 承台强度验算 ............................................................................................ 39 引江济汉通航工程系杆拱桥结构计算书
第 1 页 共 42 页 一、说明 1.1 主要技术规范 ➢ 《公路桥涵设计通用规范》(JTG D60—2004)(以下简称《通用规范》) ➢ 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)(以下简称《桥涵规范》) ➢ 《斜拉索热挤聚乙稀高强钢丝拉索技术条件》 GB/T18365-2001 ➢ 《公路桥梁抗风设计规范》 JTG/T D60-01-2004 ➢ 《公路桥涵地基与基础设计规范》 JTG D63-2007
1.2结构简述 1)主桥上部构造 本桥结构形式为Lp=72m下承式钢筋混凝土简支系杆拱桥。拱肋的理论计算跨径为72m,计算矢高14.4m,矢跨比1/5,理论拱轴线方程为:Y=-14.4/1296*(X-36)2+14.4 (坐标原点为理论起拱点)。主要结构构造为: (1)拱肋 拱肋截面为矩形,高1.6m,宽1.2m,结构材料为钢筋混凝土。 (2)吊杆 每榀拱肋设13根厂制吊杆,吊杆间距为5.0m。吊杆采用PES7-55高强镀锌平行钢丝成品索,外包双层高密度聚乙烯(PE)护套,配套锚具为PESM7-55,吊杆标准强度fpk=1670MPa,破断力Nb=3535kN,吊杆张拉采用单端张拉,张拉端设于吊杆底部,固定端设于拱肋端。 吊杆力分两次张拉,第一张拉力为150KN,第二次张拉力为380KN。 (3)加劲纵梁及横梁 加劲纵梁采用预应力混凝土结构,其截面为矩形实体截面,高140cm,宽120cm。预应力钢束采用的φs15.20mm高强度低松弛钢绞线,标准强度fpk=1860Mpa,每根系梁布置10束10φs15.20mm高强度低松弛钢绞线。 全桥共设15道预应力混凝土横梁,其中有2道端横梁、13道中横梁(吊杆处横梁)。端横梁采用单箱单室截面,中横梁采用T形截面,牛腿处搁置桥面板。