2020年高考数学专题训练——第48讲 不等式选讲
- 格式:docx
- 大小:1.14 MB
- 文档页数:14
专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.【答案】(1)35(,)22-(2)[2,1]-【分析】(1)分类讨论求解绝对值不等式,即可求得结果;(2)求得()f x 的值域以及224y m m =-+的值域,根据二次函数的值域是()f x 值域的子集,求参数的范围即可.【解析】(1)当1a =时,()4|1||2|4f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩ 解得312x -<<-或12x -≤≤或522x <<, 3522x ∴-<<.即不等式()4f x <的解集为35(,)22-.(2)根据题意,得224m m -+的取值范围是()f x 值域的子集.2224(1)33m m m -+=-+≥又由于()1221f x x x a a =++-≥+,()f x ∴的值域为[|21|,)a ++∞故|21|3a +≤,21a ∴-≤≤. 即实数a 的取值范围为[2,1]-.【点睛】本题考查分类讨论求解绝对值不等式,以及由绝对值三角不等式求解绝对值函数的最小值,属综合性基础题.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 【答案】(1)[]0,1(2【分析】(1)作出函数图象,数形结合即可得到答案;(2)32a b +=⇒9122a b +++=,()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭,在乘开,利用基本不等式即可. 【解析】(1)因为()3,1,12112,1,213,.2x x f x x x x x x x ⎧⎪-<-⎪⎪=-++=-+-≤≤⎨⎪⎪>⎪⎩从图可知满足不等式()2f x x ≤+的解集为[]0,1.(2)由图可知函数()y f x =的最小值为32,即32m =. 所以32a b +=,从而9122a b +++=,从而()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭()2122263391299a b a b ⎡⎡⎤+⎛⎫++=++≥+=⎢⎢⎥ ⎪++⎢⎢⎥⎝⎭⎣⎦⎣当且仅当()21212a b a b ++=++,即1114,22a b -==时,等号成立,∴1212a b +++ 【点睛】本题考查解绝对值不等式以基本不等式求最值的问题,是一道中档题.3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.【答案】(1)3;(2)证明见解析【分析】(1)根据绝对值的三角不等式求解即可. (2)根据三元的柯西不等式证明即可.【解析】(1)根据绝对值的三角不等式有()()12123x x x x ++-≥+--=. 当且仅当12x -≤≤ 时取等号.故3a =.(2)证明:由(1)有3p q r ++=.利用三元的柯西不等式有()()()22222222221119p q r p q r p q r ++=++++≥++=.故2223p q r ++≥【点睛】本题主要考查了绝对值的三角不等式与三元的柯西不等式运用,属于基础题. 4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 【答案】(1)()1,3-.(2)【分析】(1)首先将()f x 写成分段函数的形式,然后解出即可; (2)首先求出()min 1322f x f ⎛⎫==⎪⎝⎭,然后利用柯西不等式求解即可. 【解析】(1)()133,212211,2233,2x x f x x x x x x x ⎧-+≤⎪⎪⎪=-+-=+<<⎨⎪-≥⎪⎪⎩,()6f x <等价于12336x x ⎧≤⎪⎨⎪-+<⎩或12216x x ⎧<<⎪⎨⎪+<⎩或2336x x ≥⎧⎨-<⎩, 解得112x -<≤或122x <<或23x ≤<. 故不等式()6f x <的解集为()1,3-. (2)由(1)知()f x 在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 1322f x f ⎛⎫==⎪⎝⎭, 则223a b +=,故34a b +≤=(当且仅当a =b =), 即34a b +的最大值为【点睛】本题考查的是含绝对值不等式的解法和利用柯西不等式求最值,考查了分类讨论的思想,属于基础题.5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值. 【答案】(1)100,3⎡⎤⎢⎥⎣⎦;(2)15. 【分析】(1)利用零点分段法,分1x <,12x ≤≤,2x >三种情况去绝对值,解不等式;(2)利用含绝对值三角不等式求得1m =,即21a b +=,方法一,利用柯西不等式2222(2)(12)()a b a b +≤++,求得22a b +的最小值,方法二,根据12a b =-,代入22a b + ,转化为关于b 的二次函数求最值.【解析】(1)53,1()3,1235,2x x f x x x x x -<⎧⎪=-≤≤⎨⎪->⎩,原不等式可等价于5351x x -≤⎧⎨<⎩,或3512x x -≤⎧⎨≤≤⎩,或3552x x -≤⎧⎨>⎩ 解得:1003x ≤≤, 所以原不等式的解集为100,3⎡⎤⎢⎥⎣⎦(2)由(1)可知()122122f x x x x x x =-+-=-+-+-,()()122121x x x x ≥---+-=+-≥当且仅当2x =时等号成立,所以1m = 即21a b +=方法一 由柯西不等式得2222(2)(12)()a b a b +≤++2215a b ∴+≥, 当且仅当225a b ==时取等号方法二 由题意得12a b =-222222211(12)5415()555a b b b b b b +=-+=-+=-+≥当且仅当12,55a b ==时等号成立.【点睛】本题考查含绝对值不等式的解法,以及含绝对值三角不等式的应用,柯西不等式求最值,意在考查转化与化归的思想,计算能力属于基础题型. 6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.【答案】(1)图象见解析,13x x ⎧≤-⎨⎩或}1x ≥;(2)证明见解析.【分析】(1)去掉绝对值号,根据一次函数的图象与性质,即可得到函数()f x 的图象,结合图象,即可求解不等式的解集;(2)不等式()15f x x k +-≥-对任意的x ∈R 恒成立,只需()min 51k f x x -≤⎡+-⎤⎣⎦,求得3k ≥,然后利用作差法,即可证得65k k+≥. 【解析】(1)由题意,函数()31,1121,0131,0x x f x x x x x x x -≥⎧⎪=-+=+<<⎨⎪-+≤⎩,在直角坐标系中作出函数()f x 的图象,如图所示:当13x =-时,可得()2f x =,当1x =时,可得()2f x =,所以根据图象可得解不等式()2f x ≥的解集为13x x ⎧≤-⎨⎩或}1x ≥.(2)由()12222222f x x x x x x +-=-+≥--=,当且仅当()()2220x x -≤,即01x ≤≤时取等号,所以()1f x x +-的最小值为2, 由不等式()15f x x k +-≥-对任意的x ∈R 恒成立, 所以只需()min 512k f x x -≤⎡+-⎤=⎣⎦,可得3k ≥,又由()()22365650k k k k k k k k---++-==≥,所以65k k +≥.【点睛】本题主要考查了绝对值不等式的解法和绝对值不等式恒成立问题,着重考查转化思想和数形结合思想的应用,属于中档试题.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.【答案】(1)35,22⎛⎫-⎪⎝⎭(2)[]2,1- 【分析】(1)根据绝对值定义将不等式化为三个不等式组,最后求并集得结果;(2)先根据绝对值三角不等式得()f x 值域,再根据二次函数性质得值域,最后根据两个值域关系列不等式,解得结果.【解析】(1)当1a =时,()4124f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩, 解得312x -<<-或12x -≤≤或522x <<, ∴3522x -<<.即不等式()4f x <的解集为35,22⎛⎫- ⎪⎝⎭. (2)根据题意,得224m m -+的取值范围是()f x 值域的子集.()2224133m m m -+=-+≥,又由于()1221f x x x a a =++-≥+,∴()f x 的值域为)21,a ⎡++∞⎣ 故213a +≤,∴21a -≤≤.即实数a 的取值范围为[]2,1-【点睛】本题考查分类讨论求解含绝对值不等式、绝对值三角不等式、方程恒有解问题,考查综合分析求解能力,属中档题.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++(1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.【答案】(1)8,23⎛⎫- ⎪⎝⎭;(2)(]0,8. 【分析】由题意可得()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,然后分段解不等式可得答案,(2) x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥,分段求出函数()f x 的最小值,然后解出答案.【解析】由函数()321121141131x x f x x x x x x x +≥⎧⎪=-+++=+-<<⎨⎪-≤-⎩(1)当1x ≥时,()8f x <,即328x +<,得2x <,所以12x ≤<.当11x -<<时,()8f x <,即48x +<,得4x <,所以11x -<<.当1x ≤-时,()8f x <,即38x -<,得83x >-,所以813x -<≤-所以不等式()8f x <的解集为8,23⎛⎫- ⎪⎝⎭.(2) 若x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥ 由()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,当1x ≥时,()325f x x =+≥,当11x -<<时,()43f x x =+>,当1x ≤-时,()33f x x =-≥所以()min 3f x =,则()2min 3log f x a =≥,可得08a <≤所以x R ∀∈,函数()2log f x a ≥恒成立,则实数a 的取值范围为(]0,8【点睛】本题考查解含绝对值的不等式,不等式恒成立求参数的范围,含绝对值的不等式关键是利用定义打开绝对值,属于中档题.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.【答案】(1){|x x <x >(2)证明见解析;【分析】(1)对x 分三类讨论去掉绝对值,解得结果再相并可得结果;(2)两边平方再作差比较可证不等式成立.【解析】(1)当x <((20x x -++++<,解得x <当3x <-((20x x ++++<, 解得x <当3x -时,原不等式化为((20x x +-++<,解得x >所以{|M x x =<x >.(2)欲证|3||mn m n +>+成立,只需证22(3)||)mn m n +>+成立.因为222222(3)|)339mn m n m n m n +-+=--+.()()2233m n =--.又由m ,n M ∈,得23m >,23n >.所以22(3)|)0mn m n +-+>,即22(3)||)mn m n +>+成立.所以|3|||mn m n +>+成立.【点睛】本题考查了分类讨论法解绝对值不等式,考查了比较法证明不等式,平方后再作差是解题关键,属于中档题.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同. (1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值.【答案】(1)1;(2)1.【分析】(1)解不等式|23|x x -<得出20(,)x mx n m n R -+<∈的解集,从而求得m ,n ;(2)根据题意,利用基本不等式求得222a b c ++的最小值.【解析】(1)当0x ≤时,不等式解集为空集;当0x >时,2323x x x x x -<⇔-<-<,即13x <<,所以1,3是方程20x mx n -+=的两根,所以10,930.m n m n -+=⎧⎨-+=⎩解得4,3.m n =⎧⎨=⎩所以1m n -=.(2)由(1)可知1ab bc ac ++=, 因为222a b ab +≥,222b c bc +≥,222a c ac +≥, 所以222222222222a b b c a c a b c +++++=++ 1ab bc ac ≥++=(当且仅当a b c === 所以222a b c ++的最小值为1.【点睛】本题考查了绝对值不等式的解法,基本不等式的应用,属于中档题.11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M .(1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 【答案】(1)M =3(2)证明见解析;【分析】(1)由f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|,结合绝对值不等式的性质和绝对值的几何意义,可得所求最大值;(2)由(1)可得3311a b +=3ab ,a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3),再由基本不等式即可得证.【解析】(1)函数f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|≤|2x ﹣1﹣2x ﹣2|﹣|﹣1+1|=3,当x =﹣1时,f (x )取得最大值3,即M =3;(2)证明:正数a ,b 满足3311a b+=3ab , 故a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3)13=(1+13333a b b a++)13≥()43=,当且仅当a =b = 故a 4b +ab 443≥.【点睛】此题考查了绝对值不等式,利用基本不等式证明不等式,属于中档题.12.(2020·福建省高三)已知函数()1f x x a x =-+-.(1)当0a =时,求不等式()1f x ≤的解集A .(2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 【答案】(1){|01}A x x =≤≤(2)12 【分析】(1)将0a =代入,则|||1|1x x +-,再利用绝对值不等式的性质即可得解;(2)问题等价于1122x a --在[0x ∈,1]上恒成立,由此建立关于a 的不等式组,解出即可. 【解析】(1)当0a =时,()|||1|f x x x =+-,即解不等式|||1|1x x +-,由绝对值不等式知,|||1||(1)|1x x x x +---=,当且仅当(1)0x x -时取等号,因此()1f x 的解集{|01}A x x =;(2)由A B ⊆,即[0x ∈,1],不等式3()||2f x x -恒成立, 即3||12x a xx -+--,整理得1||2x a -, 故1122x a --在[0x ∈,1]上恒成立, 则1212a x a x ⎧-⎪⎪⎨⎪+⎪⎩在[0x ∈,1]上恒成立,得1212a a ⎧⎪⎪⎨⎪⎪⎩, 故12a =. 【点睛】本题考查含绝对值、参数的不等式有解问题与基本不等式的应用,考查运算求解能力、推理论证能力,考查化归与转化思想等,属于中档题.13.(2020·福建省高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ; (2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.【答案】(1){}03I x x =<<;(2)见解析.【分析】(1)采用分类讨论的方法,求出各段的范围,然后取并集,可得结果.(2)根据不等式2++≥≤a b a b ,化简式子,可证明该结果. 【解析】(1)当1x ≤时,原不等式化简为323-<x ,即01x <≤;当12x <≤时,原不等式化简为13<,恒成立,即12x <≤;当2x >时,原不等式化简为233x -<,即23x <<. 综上,原不等式的解集{}03I x x =<<.(2)当a ,b ,c I ∈时,a ,b ,c ,3a -,3b -,3c -均为正数, 令111111111333=+++++---T a b b c c a则≤T ()()()33394444+-+-+-≤++=a b b c c a T . 当且仅当32===a b c 时,取等号 【点睛】本题考查绝对值不等式的解法以及基本不等式的应用,熟练使用分类讨论的方法(或零点分段法),同时善于观察,识记基本不等式的使用条件:一正,二定,三相等,属中档题.14.(2020·山西省高三)已知函数()2f x x =. (1)求不等式()1f x >的解集;(2)若正数,,a b c 满足24923a b c f ⎛⎫++=+ ⎪⎝⎭,求149a b c ++的最小值. 【答案】(1)22,3⎛⎫- ⎪⎝⎭;(2)1963. 【分析】(1)化简后根据绝对值中的零点将()f x 转换为分段函数,再求解即可.(2)代入可得()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,再根据柯西不等式求最小值即可. 【解析】(1)化简得321x x -->①当0x ≤时,()()323f x x x x =---=+,由()1f x >即31x +>,解得2x >-,又0x ≤,所以20x -<≤;②当03x <<时,()33f x x =-,由()1f x >,即231x ->,解得23x <,又02x <<,所以203x <<; ③当3x ≥时,()3f x x =--,不满足()1f x >,此时不等式无解;综上,不等式()1f x >的解集为22,3⎛⎫- ⎪⎝⎭. (2)249233a b c f ⎛⎫++=+= ⎪⎝⎭, 所以()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭∵,,0a b c >,∴由柯西不等式:上式((22222213⎡⎤⎛⎛⎡⎤⎢⎥=++⋅++ ⎢⎥⎣⎦⎢⎥⎝⎝⎣⎦((213⎡≥⨯⨯⎢⎣()2119614933=++=. 当且仅当314a b c ===时,等号成立. 所以149a b c ++的最小值为1963. 【点睛】本题主要考查了绝对值不等式的求解、柯西不等式求最小值的问题,属于中档题.15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>.(1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+. 【答案】(1){}02x x <<;(2)详见解析.【分析】(1)在1x <-,11x -≤<,1x ≥三种情况下,分别解不等式,最后取并集即可;(2)()f x x a x b a b =-++≥+,结合()f x 的值域为[)3,+∞,可知3a b +=.因此有()()1221a b a b ++≥=⇒++≥⎪⎩()()2218411a b a b ⎧++≥⎪⎨≥⎪+⎩,从而证明出题设不等式. 【解析】(1)当1a b ==时,不等式为112x x x -++<+,当1x <-时,不等式化为2223x x x -<+⇒>-,此时不等式无解; 当11x -≤<时,不等式化为220x x <+⇒>,故01x <<;当1x ≥时,不等式化为222x x x <+⇒<,故12x ≤<.综上可知,不等式的解集为{}02x x <<. (2)()f x x a x b a b =-++≥+,当且仅当x a -与x b +异号时,()f x 取得最小值a b +,∵()f x 的值域为[)3,+∞,且0a >,0b >,故3a b +=.()122a b ++≥=(当且仅当12a b =+=时取等号), ∴()2218a b ++≥.又∵()1a b ++≥12a b =+=时取等号),∴()41a b +≤,∴()411a b +≥, ∴()224(1)91a b a b +++≥+, ∴()224281a b b a b +++≥+. 【点睛】本题主要考查了绝对值不等式的解法,考查了基本不等式的应用,属于中档题. 16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>.(1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->【答案】(1){0x x ≤或4}3a x ≥;(2)见解析 【分析】(1)首先根据题意得到()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,再对a 分类讨论解不等式即可.(2)首先根据函数()f x 的单调性得到22a b +=,再利用柯西不等式证明即可.【解析】(1)()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,①当x a <-时,由33x a a -+≥,解得x a <-;②当a x a -≤≤时,由33x a a -+≥得0a x -≤≤;③当x a >时,由33x a a -≥得43a x ≥. 综上可得不等式()3f x a ≥的解集为{0x x ≤或4}3a x ≥. (2)由()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,可知:当x a ≤时,()f x 为减函数,当x a >时,()f x 为增函数.所以当x a =时,()f x 取到最小值2a ,所以22a b =-,即22a b +=.== 当12a =,1b=时取等号.≤【点睛】本题第一问考查绝对值不等式的解法,第二问考查不等式的证明,熟练掌握柯西不等式为解题的关键,属于中档题.17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证【答案】(1)证明见解析(2)证明见解析【分析】(1)先根据绝对值不等式求得|1||2|x x ---的最大值,从而得到1a b c ++≥,再利用基本不等式进行证明;(2)利用基本不等式222a b ab +≥变形得222()2a b a b ++≥,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【解析】(1)∵|1||2||12|1x x x x ---≤--+=,∴1a b c ++≥.∵222a b ab +≥,222b c bc +≥,222c a ac +≥,∴222222222a b c ab bc ac ≥++++,∴2222222333222()1a b c a b c ab bc ac a b c ++≥+++++=++≥, ∴22213a b c ++≥. (2)∵222a b ab +≥,()2222222()a ba ab b a b +≥++=+,即222()2a b a b ++≥||()22a b a b ≥+=+.)2b c ≥+)c a ≥+.)a b c ≥++≥【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 【答案】详见解析【分析】由x ,y ,z 均为正数,运用柯西不等式和不等式的性质,即可得证;【解析】因为x ,y ,z 均为正数,所以1x +,1y +,1z +均为正数,由柯西不等式得()()()214191111(123)36111x y z x y z ⎛⎫++≥++=⎪+++++++⎡⎭⎤⎣⎦+⎝, 当且仅当222(1)4(1)9(1)x y z +=+=+时,等式成立.因为11131112x y z ++≤+++, 所以2(1)4(1)9(1)36243x y z +++++≥⨯=, 所以4910x y z ++≥.【点睛】本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 【答案】(1)1,13⎡⎤⎢⎥⎣⎦;(2)5【分析】(1)分段去不等式中的绝对值再求解即可. (2)根据(1)可得1m =,再根据柯西不等式求解最大值即可. 【解析】(1)不等式f (x )≤﹣1即|2x ﹣1|﹣|x +1|≤﹣1,可得11211x x x ≤-⎧⎨-++≤-⎩或1121211x x x ⎧-⎪⎨⎪---≤-⎩<<或122111x x x ⎧≥⎪⎨⎪---≤-⎩, 解得:无解或13≤x 12<或12≤x ≤1, 综上可得13≤x ≤1,即所求解集为[13,1];(2)由(1)可得a +b =1(a ,b >0),由柯西不等式可得(2≤(32+42)(a +b ),即为(2≤25,可得≤5,当且仅当a 925=,b 1625=时取得等号,则5.【点睛】本题主要考查了绝对值不等式的求解以及柯西不等式的运用,属于中等题型. 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 【答案】(1){3x x ≤-或}1x ≥-;(2)2.【分析】(1)可知所求不等式为122x x x -++≥-,然后分2x -≤、21x -<<、1x ≥三种情况解该不等式,即可得出原不等式的解集;(2)利用绝对值三角不等式可得()min 22f x a b =+=,然后将所求代数式变形为2222442222a b a b b a b a b a ⎛⎫⎛⎫+=+++- ⎪ ⎪⎝⎭⎝⎭,利用基本不等式可求得2242a b b a +的最小值. 【解析】(1)根据题意得原不等式为122x x x -++≥-.当2x -≤时,则有122x x x ---≥-,解得3x ≤-,此时3x ≤-; 当21x -<<时,则有122x x x -++≥-,解得1x ≥-,此时11x -≤<; 当1x ≥时,则有122x x x -++≥-,解得13x ≥,此时1x ≥. 综上所述,不等式()2f x x ≥-的解集为{3x x ≤-或}1x ≥-; (2)()222f x x a x b x a x b a b =-++≥---=+, 当且仅当()()20x a x b -+≤时等号成立,0a >,0b >,函数()y f x =的值域为[)2,+∞,即22a b +=.()2222224442222222a b a b a b a b b a b a b a b a ⎛⎫⎛⎫⎛⎫∴+=+++-=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22222a b ≥=+-=,当且仅当21a b ==时取等号,因此,2242a b b a+的最小值为2.【点睛】本题考查绝对值不等式的求解,同时也考查了利用基本不等式求最值,涉及绝对值三角不等式的应用,考查计算能力,属于中等题.21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 【答案】(1)12x x ⎧<⎨⎩或52x ⎫>⎬⎭;(2)见解析 【分析】(1)利用|1||2|x x -+-的几何意义,表示数轴上的x 对应点到1和2对应点的距离之和,分析即得解.(2)把||||||()a b a b a f x ++-≥,转化为()||||||a b a b f x a ++-≤,利用绝对值的性质求得||||||a b a b a ++-得最小值即得解.【解析】(1)由()2f x >,即|1||2|2x x -+->.而|1||2|x x -+-表示数轴上的x 对应点到1和2对应点的距离之和,而数轴上满足|1||2|2x x -+-=的点的坐标为12和52, 故不等式|1||2|2x x -+->的解集为15{|}22x x <>或.(2)证明:要证||||||()a b a b a f x ++-≥,只需证()||||||a b a b f x a ++-≤,∵||||||2||a b a b a b a b a ++-≥++-=,当且仅当()()0a b a b +-≥时取等号,∴||||2||a b a b a ++-≥由(1),当R x C M ∈时,()2f x ≤∴||||()||a b a b f x a ++-≤∴原命题成立..【点睛】本题考查了绝对值不等式得解集及不等式证明,考查了学生综合分析,转化与划归,逻辑推理得能力,属于中档题.22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥.【答案】()16+;()2证明见解析.【分析】()1根据a ,b ,c 是正实数,且21a b c ++=,可得()1111112a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,然后利用基本不等式求出111a b c++的最小值即可;()2由柯西不等式可得()()()22222221122a b c a b c ++++≥++,再结合21a b c ++=,即可证明22216a b c ++≥成立. 【解析】()121a b c ++=,∴()11111122b a c a b ca b c a b c a b a⎛⎫++=++++=+++ ⎪⎝⎭ 246a c bc b c+++≥+当且仅当a b ==时,等号成立.又由21a b c ++=,∴a b ==,c =时,等号成立,即111a b c++的最小值为6+. ()2由柯西不等式可得()()()222222211221a b c a b c ++++≥++=即2221 6a b c ++≥当且仅当112a b c==时,等号成立.又由21a b c ++=,∴13c =,16a b ==时,等号成立.∴22216a b c ++≥成立.【点睛】本题考查利用综合法证明不等式,基本不等式和柯西不等式的运用,考查转化思想,属于中档题. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.【答案】(Ⅰ)4,23⎡⎤-⎢⎥⎣⎦(Ⅱ)(],2-∞. 【分析】(Ⅰ)分区间讨论,去掉绝对值号即可求解;(Ⅱ)由题意可转化为11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,根据绝对值不等式可求出11112x x x x x x++-++-≥=,即可求解. 【解析】(Ⅰ)若2k =,不等式()5f x ≤可化为215x x +-≤. 当0x <时,()215x x ---≤,即43x ≥-,∴403x -≤<; 当01x ≤<时,()215x x --≤,即4x ≤,∴01x ≤<; 当1x ≥时,()215x x +-≤,即2x ≤,∴12x ≤≤.故不等式的解集为4,23⎡⎤-⎢⎥⎣⎦.(Ⅱ)关于x 的不等式()122f x x x ≤+++在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,即1221k x x x x ≤+++--在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∴11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∵11112x x x x x x++-++-≥=,等号在1x +,1x -同号时等号成立,所以,所求实数k 的范围是(],2-∞.【点睛】本题主要考查了含绝对值不等式的解法,不等式恒成立求参数取值范围,分类讨论思想,转化思想,属于中档题.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1.(Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)每个式子通分后把1用a b c ++代换后分子应用基本不等式可证结论;(Ⅱ)变形111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,三个分式中分子a b c ++提取出来并变为()()()12b c a c a b ⎡⎤+++++⎣⎦,即原不等式左边()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭,再用柯西不等式可证得结论.【解析】(Ⅰ)1111111118a b c b c a c a b a b c a b c a b c ---+++⎛⎫⎛⎫⎛⎫---=⋅⋅=⋅⋅≥=⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当“a=b=c ”时取等号; (Ⅱ)111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭22113333222≥+-=⨯-=, 当且仅当“a =b =c ”时取等号.【点睛】本题考查用基本不等式和柯西不等式证明不等式成立,解题关键是要凑出基本不等式和柯西不等式的形式,然后才可得出结论,掌握基本不等式和柯西不等式是解题.25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 【答案】(1)1,2⎛⎫-∞ ⎪⎝⎭;(2)[)1,+∞.【分析】(1)去绝对值,转化为分段函数,解不等式即可;(2)函数()y g x =与()y f x =的图象有公共点,则方程()()f x g x =有解,利用参变量分离法得出224m x x =-+-有解,利用绝对值三角不等式可求得m 的取值范围.【解析】(1)当()0f x >时,即21x x ->+. 当2x ≥时,则21x x ->+,此时x ∈∅; 当2x <时,则21x x ->+,解得12x <,此时12x <. 综上所述,实数x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭; (2)因为函数()421g x x x m =---+-与函数()y f x =的图象有公共点, 则42121x x m x x ---+-=---有解.即224m x x =-+-有解,由绝对值三角不等式得()24242x x x x -+-≥---=,所以22m ≥,m 1≥. 所以当()y g x =与()y f x =的图象有公共点时,实数m 的取值范围为[)1,+∞.【点睛】本题考查解绝对值不等式,以及函数图象有交点的问题,考查绝对值三角不等式以及分类讨论思想的应用,属于中档题.26.(2020·四川省高三三模)已知函数()||f x x a =-. (1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1)(0,1)(1,)⋃+∞;(2){1}.【分析】(1)将1a =代入,通过讨论x 的范围,去掉绝对值,解各个区间上的x 的范围,取并集即可; (2)问题转化为||1x a x -≤-+,求出x 的范围,得到关于a 的不等式组,解出即可. 【解析】(1)1a =时,111|1|(1)|1|x x x x x +>⇔+>-≠-111x x x >⎧⇔⎨+>-⎩或111x x x <⎧⎨+>-⎩,解之得:1x >或01x <<∴不等式的解集为(0,1)(1,)⋃+∞ (2)不等式的解集为M ,且1,12M ⎡⎤⊆⎢⎥⎣⎦,依题意不等式21x x a x -+-≤在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴210x -≥,∴|21|()21||x f x x x x a x -+≤⇔-+-≤||111x a x x x a x ⇔-≤-+⇔-≤-≤-+112a a x ≤⎧⎪∴⎨+≤⎪⎩,当1a >时,M 为∅,显然不满足1,12M ⎡⎤⊆⎢⎥⎣⎦; 当1a ≤时,1,2a M +⎛⎤=-∞ ⎥⎝⎦1,12M ⎡⎤⊆⎢⎥⎣⎦,112a +∴≥即1a ≥,1a综上,a 的取值范围为{1}.【点睛】本题主要考查了解绝对值不等式问题,考查分类讨论思想,属于中档题. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 【答案】(1){}15x x -<<;(2)73,44⎡⎤-⎢⎥⎣⎦【分析】(1)根据分类讨论的方法,讨论2x -≤,122x -<<,12x ≥三种情况,分别求解,即可得出结果;(2)根据题意,先得到A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R ,根据绝对值三角不等式,分别求出A ,B ,再由集合间的关系,即可求出结果. 【解析】(1)因为()2f x <,2,2122,x x x ≤-⎧⇔⎨-+++<⎩或12,22122,x x x ⎧-<<⎪⎨⎪-+--<⎩或1,22122x x x ⎧≥⎪⎨⎪---<⎩2,1,x x ≤-⎧⇔⎨>⎩或12,21,x x ⎧-<<⎪⎨⎪>-⎩或1,25x x ⎧≥⎪⎨⎪<⎩ x ⇔∈∅或112x -<<或15152x x ≤<⇔-<<, 所以()2f x <的解集为{}15x x -<<.(2)因为存在1x ,2x ∈R ,使得()()12f x g x =-成立,所以A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R . 因为()1212222f x x x x x =--+=--+ 11222x x x =-+--+ ()150222x x ⎛⎫≥---+=- ⎪⎝⎭,当且仅当12x =时,“=”成立, 所以52A y y ⎧⎫=≥-⎨⎬⎩⎭.因为()()2221g x x m x -=--++()222121x m x m ≤---+=-+, 当且仅当()()22210x m x -+≤时,“=”成立, 所以{}21B y y m =≤-+ 所以5212m -+≥-,即5212m +≤,即552122m -≤+≤, 解得7344m -≤≤,所以m 的取值范围为73,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查绝对值不等式的解法,以及绝对值三角不等式求函数的最值问题,属于常考题型. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围.【答案】(1)(,3)-∞;(2)()()03-∞⋃+∞,,. 【分析】(1)函数()f x 写成分段函数的形式,分类讨论不等式的解集取并集即可;(2)方程2()f x x ax=+有两个不等实数根等价于2211x x x a x-+---=有两个不等实数根,利用基本不等式求出当x <0时23x x--+的范围,然后数形结合求出a 的取值范围. 【解析】(1)321()21|1|1x x f x x x x x -≤⎧=---=⎨>⎩,,,∵()3f x <,∴3231x x -<⎧⎨≤⎩或31x x <⎧⎨>⎩,∴1x ≤或13x <<,即3x <,∴不等式的解集为(,3)-∞;(2)方程2()f x x ax =+,即221|1|x x x ax ---=+,显然0x =不是方程的根,故2211x x x a x-+---=,令[)()()211211()23001x x x x x g x x x x x ⎧-∈+∞-+---⎪==⎨--+∈-∞⋃⎪⎩,,,,,, 当x <0时,22333x x x x ⎛⎫--+=-++≥ ⎪-⎝⎭,当且仅当x = 作出()g x 的图象,如图所示:∵方程2()f x x ax =+有两个不等实数根,∴由图象可知()()03a ∈-∞⋃+∞,,. 【点睛】本题考查绝对值不等式的解法、根据方程的根的个数求参数的取值范围、分段函数的图象与性质,属于中档题.29.(2020·贵州省高三)设函数()16f x x x a =++--.(1)当2a =时,求不等式()0f x ≤的解集;(2)若()23f x a ≥-,求a 的取值范围.【答案】(1)5722x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)4,3⎛⎤-∞- ⎥⎝⎦. 【分析】(1)分类讨论x 的值,解不等式()0f x ≤即可;(2)利用绝对值三角不等式得出()min f x ,再解不等式()min 23f x a ≥-,即可得出a 的取值范围.【解析】(1)当2a =时,()|1||2|6f x x x =++--当1x <-时,()(1)(2)625f x x x x =-+---=--当12x -≤≤时,()1(2)63f x x x =+---=-当2x >时,()12627f x x x x =++--=-则()25,13,1227,2x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩()0f x ≤等价于1250x x <-⎧⎨--≤⎩或1230x -≤≤⎧⎨-≤⎩或2270x x >⎧⎨-≤⎩ 解得5722x -≤≤,则不等式()0f x ≤的解集为5722x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)要使()23f x a ≥-,只需()min 23f x a ≥-即可.又()1616f x x x a a =++--≥+-,且当()()10x x a +-≤时等号成立.∴()min 1623f x a a =+-≥-,则123a a +≥+当230a +≤,即32a ≤-时,123a a +≥+恒成立 当230a +>,即32a >-时,()22123a a +≥+,得231080a a ++≤ 故423a -≤≤-,从而3423a -<≤- 综上,4,3a ⎛⎤∈-∞- ⎥⎝⎦. 【点睛】本题主要考查了分类讨论解绝对值不等式以及求绝对值不等式中参数的范围,属于中档题. 30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m .(1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b +++的最小值. 【答案】(1)2m =;(2)45【分析】(1)由绝对值三角不等式可得()()222f x x x x x ≥+--=+≥,即可得解;(2)由柯西不等式可得()222221112(11)12a b ab ⎛⎫++++≥+ ⎪++⎝⎭,结合222a b +=即可得解. 【解析】(1)由题意()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立,故2m =;(2)由题意222a b +=, 由柯西不等式得()222221112(11124)a b a b ⎛⎫++++≥+⎪++⎭=⎝, 当且仅当232a =,212b =时,等号成立, ∴222211441235a b a b +≥=++++, 故221112a b +++的最小值为45. 【点睛】本题考查了绝对值三角不等式与柯西不等式的应用,属于中档题.31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+.(1)求不等式()1f x <的解集;。
【最新】数学高考《不等式选讲》专题解析一、141.若,则不等式的解集为 A .B .C .D .【答案】D 【解析】 【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。
【详解】 因为成立,所以,又,所以,,故选:D 。
【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题。
2.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞U B .(][),31,-∞-+∞U C .(][),13,-∞-+∞U D .(][),04,-∞+∞U【答案】B 【解析】 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。
【详解】根据绝对值三角不等式,得1(1)()1x x a x x a a ++-≥+--=+∴()1f x x x a =++-的最小值为1a +()2f x ≥Q 恒成立,∴等价于()f x 的最小值大于等于2,即12a +≥ ∴12a +≥或12a +≤-,1a ≥或3a ≤-,故选B 。
【点睛】本题主要考查了绝对值三角不等式的应用及如何在恒成立条件下确定参数a 的取值范围。
3.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2B .3C .4D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.4.已知()f x 是定义域为R 的偶函数,当0x „时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x „时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-.由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.5.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C 【点睛】本题主要考查基本不等式:)0,0a b ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.6.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.7.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v ==≥==≥= 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.8.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.9.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.10.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。
【高考复习】2020年高考数学(理数) 不等式选讲 大题1.已知f(x)=|2x-1|+|ax-5|(0<a<5).(1)当a=1时,求不等式f(x)≥9的解集;(2)若函数y=f(x)的最小值为4,求实数a 的值.2.设函数f(x)=|x-1|.(1)求不等式f(x)≤3-f(x-1)的解集;(2)已知关于x 的不等式f(x)≤f(x +1)-|x-a|的解集为M ,若⎣⎢⎡⎦⎥⎤1,32⊆M ,求实数a 的取值范围.3.已知函数f(x)=|2x-1|+|x +1|.(1)解不等式f(x)≤3;(2)记函数g(x)=f(x)+|x +1|的值域为M ,若t∈M,证明:t 2+1≥3t+3t.4.设函数f(x)=|x-a|+⎪⎪⎪⎪⎪⎪x +2a (a≠0,a∈R). (1)当a=1时,解不等式f(x)≤5;(2)记f(x)的最小值为g(a),求g(a)的最小值.5.已知函数f(x)=|x-m|,m<0.(1)当m=-1时,求解不等式f(x)+f(-x)≥2-x;(2)若不等式f(x)+f(2x)<1的解集非空,求m的取值范围.6.设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.7.设f(x)=|x|+2|x-a|(a>0).(1)当a=1时,解不等式f(x)≤4;(2)若f(x)≥4,求实数a的取值范围.8.已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,存在实数x使f(x)<2成立.(1)求实数m的值;(2)若α≥1,β≥1,f(α)+f(β)=4,求证:4α+1β≥3.9.已知函数f(x)=|2x+1|,g(x)=|x|+a.(1)当a=0时,解不等式f(x)≥g(x);(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.10.已知函数f(x)=|x+1|.(1)若∃x0∈R,使不等式f(x0-2)-f(x0-3)≥u成立,求满足条件的实数u的集合M;(2)已知t为集合M中的最大正整数,若a>1,b>1,c>1,且(a-1)(b-1)(c-1)=t,求证:abc≥8.答案解析1.解:(1)当a=1时,f(x)=|2x-1|+|x-5|=⎩⎪⎨⎪⎧6-3x ,x<12,x +4,12≤x<5,3x -6,x≥5,∴f(x)≥9⇔⎩⎪⎨⎪⎧x<12,6-3x≥9或⎩⎪⎨⎪⎧12≤x<5,x +4≥9或⎩⎪⎨⎪⎧x≥5,3x -6≥9.解得x≤-1或x≥5,即所求不等式的解集为(-∞,-1]∪[5,+∞).(2)∵0<a<5,∴5a>1,则f(x)=⎩⎪⎨⎪⎧-++6,x<12,-+4,12≤x≤5a ,+-6,x>5a.∵当x<12时,f(x)单调递减,当x>5a时,f(x)单调递增,∴f(x)的最小值在⎣⎢⎡⎦⎥⎤12,5a 上取得, ∵在⎣⎢⎡⎦⎥⎤12,5a 上,当0<a≤2时,f(x)单调递增,当2<a≤5时,f(x)单调递减, ∴⎩⎪⎨⎪⎧0<a≤2,min =f ⎝ ⎛⎭⎪⎫12=4或⎩⎪⎨⎪⎧2<a≤5,min =f ⎝ ⎛⎭⎪⎫5a =4.解得a=2.2.解:(1)因为f(x)≤3-f(x-1),所以|x-1|≤3-|x-2|, 即|x-1|+|x-2|≤3, 则⎩⎪⎨⎪⎧ x<1,3-2x≤3或⎩⎪⎨⎪⎧ 1≤x≤2,1≤3或⎩⎪⎨⎪⎧x>2,2x -3≤3, 解得0≤x<1或1≤x≤2或2<x≤3,所以0≤x≤3, 故不等式f(x)≤3-f(x-1)的解集为[0,3].(2) 因为⎣⎢⎡⎦⎥⎤1,32⊆M , 所以当x∈⎣⎢⎡⎦⎥⎤1,32时,f(x)≤f(x+1)-|x-a|恒成立, 而f(x)≤f(x+1)-|x-a|⇔|x-1|-|x|+|x-a|≤0⇔|x-a|≤|x|-|x-1|,因为x∈⎣⎢⎡⎦⎥⎤1,32,所以|x-a|≤1,即x-1≤a≤x+1, 由题意,知x-1≤a≤x+1对于x∈⎣⎢⎡⎦⎥⎤1,32恒成立,所以12≤a≤2, 故实数a 的取值范围为⎣⎢⎡⎦⎥⎤12,2. 3.解:(1)依题意,得f(x)=⎩⎪⎨⎪⎧-3x ,x≤-1,2-x ,-1<x<12,3x ,x≥12,于是f(x)≤3⇔⎩⎪⎨⎪⎧x≤-1,-3x≤3或⎩⎪⎨⎪⎧-1<x<12,2-x≤3或⎩⎪⎨⎪⎧x≥12,3x≤3,解得-1≤x≤1.故不等式f(x)≤3的解集为{x|-1≤x≤1}.(2)证明:g(x)=f(x)+|x +1|=|2x-1|+|2x +2|≥|2x -1-2x-2|=3, 当且仅当(2x-1)(2x +2)≤0时取等号,∴M=[3,+∞).t 2+1≥3t +3t 等价于t 2-3t +1-3t≥0,t 2-3t +1-3t =t 3-3t 2+t -3t =-2+t.∵t∈M,∴t-3≥0,t 2+1>0,∴-2+t ≥0,∴t 2+1≥3t+3t.4.解:(1)当a=1时,f(x)=|x-1|+|x +2|,故f(x)=⎩⎪⎨⎪⎧2x +1,x>1,3,-2≤x≤1,-2x -1,x<-2.①当x>1时,由2x +1≤5,得x≤2,故1<x≤2;②当-2≤x≤1时,由3≤5,得x∈R ,故-2≤x≤1; ③当x<-2时,由-2x-1≤5,得x≥-3,故-3≤x<-2. 综上,不等式的解集为[-3,2].(2)f(x)=|x-a|+⎪⎪⎪⎪⎪⎪x +2a ≥⎪⎪⎪⎪⎪⎪--⎝ ⎛⎭⎪⎫x +2a =⎪⎪⎪⎪⎪⎪a +2a⎝ ⎛⎭⎪⎫当且仅当-⎝ ⎛⎭⎪⎫x +2a ≤0时等号成立,所以g(a)=⎪⎪⎪⎪⎪⎪a +2a , 因为⎪⎪⎪⎪⎪⎪a +2a =|a|+⎪⎪⎪⎪⎪⎪2a ≥2|a|·⎪⎪⎪⎪⎪⎪2a =22,当且仅当|a|=⎪⎪⎪⎪⎪⎪2a ,即a=±2时等号成立, 所以g(a)min =2 2. 5.解:(1)设F(x)=f(x)+f(-x)=|x-1|+|x +1|=⎩⎪⎨⎪⎧-2x ,x<-1,2,-1≤x<1,=2-x ,2x ,x≥1,由F(x)≥G(x)解得{x|x≤-2或x≥0}. (2)f(x)+f(2x)=|x-m|+|2x-m|,m<0. 设g(x)=f(x)+f(2x),当x≤m 时,g(x)=m-x +m-2x=2m-3x ,则g(x)≥-m ;当m<x<m 2时,g(x)=x-m +m-2x=-x ,则-m2<g(x)<-m ;当x ≥m 2时,g(x)=x-m +2x-m=3x-2m ,则g(x)≥-m 2.则g(x)的值域为⎣⎢⎡⎭⎪⎫-m 2,+∞, 不等式f(x)+f(2x)<1的解集非空,即1>-m2,解得m>-2,由于m<0,则m 的取值范围是(-2,0). 6.解:(1)f(x)=⎩⎪⎨⎪⎧-3x ,x<-12,x +2,-12≤x<1,3x ,x≥1.y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y 轴交点的纵坐标为2, 且各部分所在直线斜率的最大值为3, 故当且仅当a≥3且b≥2时, f(x)≤ax+b 在[0,+∞)成立, 因此a +b 的最小值为5. 7.解:(1)当a=1时,f(x)=|x|+2|x-1|=⎩⎪⎨⎪⎧2-3x ,x<0,2-x ,0≤x≤1,3x -2,x>1.当x<0时,由2-3x≤4,得-23≤x<0;当0≤x≤1时,由2-x≤4,得0≤x≤1; 当x>1时,由3x-2≤4,得1<x≤2.综上,不等式f(x)≤4的解集为⎣⎢⎡⎦⎥⎤-23,2. (2)f(x)=|x|+2|x-a|=⎩⎪⎨⎪⎧2a -3x ,x<0,2a -x ,0≤x≤a,3x -2a ,x>a.可见,f(x)在(-∞,a]上单调递减,在(a ,+∞)上单调递增.当x=a 时,f(x)取得最小值a. 若f(x)≥4恒成立,则应a≥4. 所以a 的取值范围为[4,+∞). 8.解:(1)因为|x-m|+|x|≥|(x -m)-x|=|m|.所以要使不等式|x-m|+|x|<2有解,则|m|<2,解得-2<m<2.因为m∈N *,所以m=1. (2)证明:因为α≥1,β≥1,所以f(α)+f(β)=2α-1+2β-1=4,即α+β=3,所以4α+1β=13⎝ ⎛⎭⎪⎫4α+1β(α+β)=13⎝ ⎛⎭⎪⎫5+4βα+αβ≥13⎝ ⎛⎭⎪⎫5+24βα·αβ=3. 当且仅当4βα=αβ,即α=2,β=1时等号成立,故4α+1β≥3. 9.解:(1)当a=0时,由f(x)≥g(x)得|2x +1|≥|x|,两边平方整理得3x 2+4x +1≥0,解得x≤-1或x≥-13,∴原不等式的解集为(-∞,-1]∪-13,+∞.(2)由f(x)≤g(x)得a≥|2x+1|-|x|, 令h(x)=|2x +1|-|x|,则h(x)=⎩⎪⎨⎪⎧-x -1,x≤-12,3x +1,-12<x<0,x +1.x≥0,故h(x)min =(h- 12)=-12,所以实数a 的取值范围为a≥- 12.10.解:(1)由已知得f(x-2)-f(x-3)=|x-1|-|x-2|=⎩⎪⎨⎪⎧-1,x≤1,2x -3,1<x <2,1,x≥2,则-1≤f(x)≤1,由于∃x 0∈R ,使不等式|x 0-1|-|x 0-2|≥u 成立,所以u≤1,即M={u|u≤1}.(2)证明:由(1)知t=1,则(a-1)(b-1)(c-1)=1, 因为a>1,b>1,c>1,所以a-1>0,b-1>0,c-1>0,则a=(a-1)+1≥2a -1>0(当且仅当a=2时等号成立), b=(b-1)+1≥2b -1>0(当且仅当b=2时等号成立), c=(c-1)+1≥2c -1>0(当且仅当c=2时等号成立),则abc≥8(a -1)(b -1)(c -1)=8(当且仅当a=b=c=2时等号成立).。
不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。
专题 不等式选讲不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法以及数学归纳法在不等式中的应用等,命题的热点是绝对值不等式的解法,以及绝对值不等式与函数的综合问题的求解.本部分命题形式单一、稳定,是三道选考题目中最易得分的,所以可重点突破. 【知识要点】1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想; 2.绝对值三角不等式|a |-|b |≤|a ±b |≤|a |+|b |.此性质可用来解不等式或证明不等式. 3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.4.柯西不等式(1)设a ,b ,c ,d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)若a i,b i(i ∈N *)为实数,则(∑ni =1a 2i)(∑ni =1b 2i)≥(∑ni =1a i b i )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|a |·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立. 【复习要求】(1)理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:① ;b a b a +≤+② ;b c c a b a -+-≤-(2)会利用绝对值的几何意义求解以下类型的不等式:c b ax ≤+ c b ax ≥+ a b x c x ≥-+-(3)会用不等式①和②证明一些简单问题。
课时跟踪检测(十五) 不等式选讲1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎨⎧ 2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4. 则|x +a |+|x -2|≥|a +2|且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|-|x -1|.即f (x )=⎩⎨⎧ -2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1,不符合;若a >0,则|ax -1|<1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x <2a , 所以2a ≥1.故0<a ≤2.综上,a 的取值范围为(0,2].3.(2019·长春模拟)已知f (x )=|x +1|+|ax -a +1|.(1)当a =1时,求不等式f (x )≥3的解集;(2)若x ≥1时,不等式f (x )≥x +2恒成立,求a 的取值范围.解:(1)当a =1时,不等式f (x )≥3化为|x +1|+|x |≥3.若x <-1,则-x -1-x ≥3,则x ≤-2;若-1≤x ≤0,则x +1-x ≥3,无解;若x >0,则x +1+x ≥3,即x ≥1.所以不等式f (x )≥3的解集为(-∞,-2]∪[1,+∞).(2)当x ≥1时,不等式f (x )≥x +2化为x +1+|ax -a +1|≥x +2,即|ax -a +1|≥1.所以当x ≥1时,不等式|ax -a +1|≥1恒成立.由|ax -a +1|≥1,得ax -a +1≤-1或ax -a +1≥1,即a (x -1)≤-2或a (x -1)≥0.当x ≥1时,不等式a (x -1)≤-2不恒成立;当x ≥1时,若不等式a (x -1)≥0恒成立,则a ≥0.所以a 的取值范围为[0,+∞).4.(2019·洛阳模拟)已知函数f (x )=|3x +3|+|x -a |.(1)当a =2时,求不等式f (x )>4的解集;(2)若f (x )>3x +4对任意的x ∈(-1,+∞)恒成立,求a 的取值范围. 解:(1)当a =2时,f (x )=|3x +3|+|x -2|即f (x )=⎩⎨⎧ -4x -1,x ≤-1,2x +5,-1<x <2,4x +1,x ≥2,当x ≤-1时,不等式f (x )>4,即-4x -1>4,解得x <-54,所以x <-54; 当-1<x <2时,不等式f (x )>4,即2x +5>4,解得x >-12,所以-12<x <2;当x ≥2时,不等式f (x )>4,即4x +1>4,解得x >34,所以x ≥2.所以不等式f (x )>4的解集为⎝ ⎛⎭⎪⎫-∞,-54∪⎝ ⎛⎭⎪⎫-12,+∞. (2)由题意知,当x >-1时,f (x )=3x +3+|x -a |>3x +4恒成立,即|x -a |>1在(-1,+∞)上恒成立,作出函数y =|x -a |的图象(图略),由图易知,⎩⎨⎧ a <-1,|-1-a |≥1,得a ≤-2. 所以a 的取值范围为(-∞,-2].5.已知函数f (x )=|x -1|.(1)求不等式f (x )≥3-2|x |的解集;(2)若函数g (x )=f (x )+|x +3|的最小值为m ,正数a ,b 满足a +b =m ,求证:a 2b +b 2a ≥4.解:(1)当x ≥1时,x -1≥3-2x ,解得x ≥43,∴x ≥43;当0<x <1时,1-x ≥3-2x ,解得x ≥2,无解;当x ≤0时,1-x ≥3+2x ⇒x ≤-23,∴x ≤-23.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥43或x ≤-23. (2)证明:∵g (x )=|x -1|+|x +3|≥|(x -1)-(x +3)|=4,∴m =4,即a +b =4.又a 2b +b ≥2a ,b 2a +a ≥2b ,∴两式相加得⎝ ⎛⎭⎪⎫a 2b +b +⎝ ⎛⎭⎪⎫b 2a +a ≥2a +2b , ∴a 2b +b 2a ≥a +b =4.当且仅当a =b =2时等号成立.6.(2019·武汉调研)设函数f (x )=|x +1|.(1)若f (x )+2x >2,求实数x 的取值范围;(2)设g (x )=f (x )+f (ax )(a >1),若g (x )的最小值为12,求a 的值.解:(1)f (x )+2x >2,即|x +1|>2-2x ⇒⎩⎨⎧ x +1≥0,x +1>2-2x 或⎩⎨⎧x +1<0,-x -1>2-2x ⇒x >13,∴实数x 的取值范围是⎝ ⎛⎭⎪⎫13,+∞. (2)∵a >1,∴-1<-1a ,g (x )=⎩⎪⎨⎪⎧ -(a +1)x -2,x ∈(-∞,-1),(1-a )x ,x ∈⎣⎢⎡⎦⎥⎤-1,-1a ,(a +1)x +2,x ∈⎝ ⎛⎭⎪⎫-1a ,+∞, 易知函数g (x )在⎝ ⎛⎭⎪⎫-∞,-1a 上单调递减,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递增,则g (x )min =g ⎝ ⎛⎭⎪⎫-1a =1-1a . ∴1-1a =12,解得a =2. 7.(2019·福州模拟)已知函数f (x )=|2x +a |+3a ,a ∈R .(1)若对于任意x ∈R ,总有f (x )=f (4-x )成立,求a 的值;(2)若存在x ∈R ,使得f (x )≤-|2x -1|+a 成立,求a 的取值范围. 解:(1)解法一:因为f (x )=f (4-x ),x ∈R ,所以f (x )的图象关于直线x =2对称.又f (x )=2⎪⎪⎪⎪⎪⎪x +a 2+3a 的图象关于直线x =-a 2对称, 所以-a 2=2,所以a =-4.解法二:因为f (x )=f (4-x ),x ∈R ,所以|2x +a |+3a =|2(4-x )+a |+3a ,所以|2x +a |=|8-2x +a |即2x +a =-(8-2x +a )或2x +a =8-2x +a (舍去),所以a =-4.(2)解法一:存在x ∈R ,使得f (x )≤-|2x -1|+a 成立,等价于存在x ∈R , 使得|2x +a |+|2x -1|+2a ≤0成立,等价于(|2x +a |+|2x -1|+2a )min ≤0.令g (x )=|2x +a |+|2x -1|+2a ,则g (x )min =|(2x +a )-(2x -1)|+2a =|a +1|+2a .所以|a +1|+2a ≤0.当a ≥-1时,a +1+2a ≤0,a ≤-13,所以-1≤a ≤-13;当a <-1时,-a -1+2a ≤0,a ≤1,所以a <-1.综上,a ≤-13.解法二:由f (x )≤-|2x -1|+a 得,|2x +a |+|2x -1|≤-2a , 而|2x +a |+|2x -1|≥|a +1|由题意知,只需满足|a +1|≤-2a ,即2a ≤a +1≤-2a , 即⎩⎨⎧ 2a ≤a +1,a +1≤-2a ,所以a ≤-13.。
高中数学专题练习:不等式选讲[题型分析·高考展望]本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.常考题型精析题型一含绝对值不等式的解法例1已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.点评(1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.变式训练1(·重庆改编)若不等式|2x-1|+|x+2|≥a2+12a+2对任意实数x恒成立,求实数a的取值范围.题型二不等式的证明例2(1)已知x,y均为正数,且x>y.求证:2x+1x2-2xy+y2≥2y+3.(2)已知实数x,y满足:|x+y|<13,|2x-y|<16,求证:|y|<5 18.点评(1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.变式训练2(1)若a,b∈R,求证:|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.(2)已知a,b,c均为正数,a+b=1,求证:a2b+b2c+c2a≥1.题型三 利用算术—几何平均不等式或柯西不等式证明或求最值例3 (1)已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立;(2)已知a ,b ,c ∈(0,+∞),且a +b +c =1,求3a +1+3b +1+3c +1的最大值.点评利用算术—几何平均不等式或柯西不等式求最值时,首先要观察式子特点,构造出基本不等式或柯西不等式的结构形式,其次要注意取得最值的条件是否成立.变式训练3(·福建)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.(1)求a+b+c的值;(2)求14a2+19b2+c2的最小值.高考题型精练1.(·江苏)解不等式x+|2x+3|≥2.2.(·陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+bt的最大值.3.(·课标全国Ⅰ)若a>0,b>0,且1a+1b=ab.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.4.设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.5.设a、b、c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤13;(2)a2b+b2c+c2a≥1.6.(·课标全国Ⅱ)设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.7.(·福建)已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.8.(·课标全国Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.答案精析不等式选讲常考题型精析例1 解 (1)当a =2时,f (x )+|x -4|=⎩⎨⎧ -2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎨⎧ -2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.变式训练1 解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧ -3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5;当-2≤x <12时,y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a+2.解不等式52≥a2+12a+2,得-1≤a≤12,故a的取值范围为[-1,12].例2证明(1)因为x>0,y>0,x-y>0,2x+1x2-2xy+y2-2y=2(x-y)+1 (x-y)2=(x-y)+(x-y)+1(x-y)2≥33(x-y)21(x-y)2=3,所以2x+1x2-2xy+y2≥2y+3,(2)因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,由题设知|x+y|<13,|2x-y|<16,从而3|y|<23+16=56,所以|y|<5 18.变式训练2证明(1)当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|⇒1|a+b|≥1|a|+|b|,所以|a+b|1+|a+b|=11|a+b|+1≤1 1+1|a|+|b|=|a|+|b| 1+|a|+|b|≤|a|1+|a|+|b|1+|b|.(2)因为a2b+b≥2a,b2c+c≥2b,c2a+a≥2c,故a2b+b2c+c2a+(a+b+c)≥2(a+b+c),即a2b+b2c+c2a≥a+b+c,所以a 2b +b 2c +c 2a ≥1.例3 解 (1)方法一 因为a ,b ,c 均为正数,由算术—几何平均不等式得 a 2+b 2+c 2≥3(abc ) 23,①1a +1b +1c≥3(abc )13-, 所以(1a +1b +1c )2≥9(abc )23-.②故a 2+b 2+c 2+(1a +1b +1c )2 ≥3(abc ) 23+9(abc )23-. 又3(abc ) 23+9(abc ) 23-≥227=63,③ 所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc )23=9(abc )23-时,③式等号成立. 故当且仅当a =b =c =314时,原不等式等号成立.方法二 因为a ,b ,c 均为正数,由基本不等式得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+(1a +1b +1c )2≥ab +bc +ac +3ab +3bc +3ac ≥6 3.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.故当且仅当a =b =c =314时,原不等式等号成立.(2)方法一 利用算术—几何平均不等式 (3a +1+3b +1+3c +1)2=(3a +1)+(3b +1)+(3c +1)+23a +1·3b +1+23b +1·3c +1+23a +1·3c +1 ≤(3a +1)+(3b +1)+(3c +1)+[(3a +1)+(3b +1)]+[(3b +1)+(3c +1)]+[(3a +1)+(3c +1)]=3[(3a +1)+(3b +1)+(3c +1)]=18, ∴3a +1+3b +1+3c +1≤32,∴(3a +1+3b +1+3c +1)max =3 2.方法二 利用柯西不等式∵(12+12+12)[(3a +1)2+(3b +1)2+(3c +1)2]≥(1·3a +1+1·3b +1+1·3c +1)2∴(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3].又∵a +b +c =1,∴(3a +1+3b +1+3c +1)2≤18, ∴3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1时,等号成立.∴(3a +1+3b +1+3c +1)max =3 2.变式训练3 解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b .所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87.当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立.故14a 2+19b 2+c 2的最小值为87.高考题型精练1.解 原不等式可化为⎩⎪⎨⎪⎧ x <-32,-x -3≥2或⎩⎪⎨⎪⎧ x ≥-32,3x +3≥2.解得x ≤-5或x ≥-13.综上,原不等式的解集是⎩⎨⎧⎭⎬⎫x |x ≤-5或x ≥-13. 2.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎨⎧-b -a =2,b -a =4,解得a =-3,b =1. (2)-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2]=24-t +t =4, 当且仅当4-t 3=t 1,即t =1时等号成立,故(-3t +12+t )max =4. 3.解 (1)由ab =1a +1b ≥2ab ,得ab ≥2,且当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3. 由于43>6,从而不存在a ,b ,使得2a +3b =6.4.解 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2.由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.(2)由f (x )≤0得|x -a |+3x ≤0.此不等式化为不等式组⎩⎨⎧ x ≥a ,x -a +3x ≤0或⎩⎨⎧ x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧ x <a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a 2}. 由题设可得-a 2=-1,故a =2.5.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.6.(1)证明 由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2. 所以f (x )≥2.(2)解 f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是(1+52,5+212).7.(1)解 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明 由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.8.解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 23<x <2. (2)由题设可得,f (x )=⎩⎨⎧ x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).。
2020年高考理科数学《不等式选讲》题型归纳与训练【题型归纳】题型一 解绝对值不等式例1、设函数f (x )=|x -1|+|x -2|.(1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【答案】(1)(-∞,0)∪(3,+∞);(2)(-∞,1).【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0;当1≤x ≤2时,f (x )>3无解;当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,【易错点】如何恰当的去掉绝对值符号【思维点拨】用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.题型二 利用绝对值的几何意义或图象解不等式例2、(1)若不等式|x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.【答案】(1)⎣⎢⎡⎦⎥⎤-1-174,-1+174. 【解析】(1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+12a +2≤3,解得-1-174≤a ≤-1+174. 即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1-174,-1+174. 【易错点】绝对值的几何意义和如何把恒成立问题转化为最值问题【思维点拨】解含参数的不等式存在性问题,只要求出存在满足条件的x 即可;不等式的恒成立问题,可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .题型三 不等式的证明与应用例3、设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.【答案】略.【解析】[证明] (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.【易错点】不等式的恒等变形.【思维点拨】分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.【巩固训练】题型一 解绝对值不等式1.不等式|x -1|+|x +2|≥5的解集为________【答案】{x |x ≤-3或x ≥2}.【解析】原不等式等价于⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5 或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5或⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5, 解得x ≥2或x ≤-3.故原不等式的解集为{x |x ≤-3或x ≥2}.2.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围【答案】(1){x |x ≤1或x ≥4};(2)[-3,0].【解析】(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].3.设函数f (x )=|x +1|+|x -2|+a .(1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.【答案】(1)(-∞,-2]∪[3,+∞);(2)a ≥-3.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3.题型二 利用绝对值的几何意义或图象解不等式1.已知函数.(1)图中画出的图像;()123f x x x =+--()y f x =(2)求不等式的解集.【答案】(1)见解析(2). 【解析】⑴如图所示:(2)()()()()+∞⋃⋃⎪⎭⎫ ⎝⎛∞->∴><<<><≤∴<>>-≥<<<<-∴<>>-<<--≤∴<>>-≤>⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<---≤-=5,1,331,解集为1x f ,5x 或3x 1或31x 综上,5x 或3x 23,3x 或5x 解得14x ,23x 当23x 1或31x 131x 或1x 解得1,23x ,23x 1当1x ,3x 或5x 解得1,4x ,1x 当1,x f 23x x,423x 12,3x 1x 4,x f2.不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.【答案】(-∞,-3)【解析】解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于P A -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y =⎩⎪⎨⎪⎧ -3,x ≤-1,2x -1,-1<x <2,3,x ≥2,()1f x >()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.题型三不等式的证明与应用1.已知a、b、c∈R+,且a+b+c=1;求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).【答案】略.【解析】证明:因为a、b、c∈R+,且a+b+c=1,所以要证原不等式成立,即证[(a+b+c)+a][(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a][(a+b+c)-b][(a+b+c)-c],也就是证[(a+b)+(c+a)][(a+b)+(b+c)][(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).①因为(a+b)+(b+c)≥2(a+b)(b+c)>0,(b+c)+(c+a)≥2(b+c)(c+a)>0,(c+a)+(a+b)≥2(c+a)(a+b)>0,三式相乘得①式成立,故原不等式得证.2.设a、b、c、d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.【答案】略.【解析】证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.3.设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a≥1. 【答案】略.【解析】(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1.。