(整理)多孔陶瓷的制备及性能分析.
- 格式:doc
- 大小:145.50 KB
- 文档页数:16
多孔陶瓷挤出成型工艺多孔陶瓷挤出成型工艺是一种制备多孔陶瓷的方法,其主要原理是通过挤压使陶瓷粉末在模具中形成具有一定孔隙率的坯体,然后在高温下烧结成型。
以下是多孔陶瓷挤出成型工艺的详细介绍:一、原料制备多孔陶瓷挤出成型的原料主要包括陶瓷粉末、有机添加剂和溶剂。
其中,陶瓷粉末是制备多孔陶瓷的主要原料,其颗粒大小和分布对成型过程和成品质量有着重要的影响。
有机添加剂主要是为了提高陶瓷粉末的可塑性和流动性,使其更容易挤出成型。
溶剂则是为了使陶瓷粉末和有机添加剂充分混合,形成均匀的浆料。
二、挤出成型挤出成型是多孔陶瓷制备的关键步骤。
其主要流程包括浆料制备、模具设计、挤出成型和坯体切割等。
具体步骤如下:1.浆料制备:将陶瓷粉末、有机添加剂和溶剂按照一定比例混合,形成均匀的浆料。
2.模具设计:根据所需的多孔陶瓷形状和尺寸,设计相应的模具。
3.挤出成型:将浆料装入挤出机中,通过挤压将浆料挤出模具中,形成具有一定孔隙率的坯体。
4.坯体切割:将挤出成型后的坯体切割成所需的形状和尺寸。
三、烧结成型烧结成型是多孔陶瓷制备的最后一步,其主要目的是使坯体在高温下烧结成型,形成具有一定孔隙率和力学性能的多孔陶瓷。
具体步骤如下:1.预热:将切割好的坯体放入烧结炉中进行预热,使其温度逐渐升高。
2.烧结:将预热好的坯体在高温下进行烧结,使其形成致密的结构和一定孔隙率。
3.冷却:将烧结好的多孔陶瓷坯体从烧结炉中取出,进行自然冷却,待其温度降至室温后即可使用。
总之,多孔陶瓷挤出成型工艺是一种制备多孔陶瓷的有效方法,其具有制备工艺简单、成本低、成品质量高等优点,被广泛应用于过滤、吸附、隔热等领域。
纤维素纳米晶多孔陶瓷
纤维素纳米晶多孔陶瓷是一种新型的材料,它由纤维素纳米晶颗粒和多孔陶瓷基质组成。
纤维素纳米晶是一种由纤维素分子聚集形成的纳米颗粒,具有高度结晶度和纳米级的尺寸。
它具有很高的力学强度、热稳定性和抗化学腐蚀性能,同时还具有较大的比表面积和丰富的表面官能团,使得它可以用于吸附、分离和催化等应用。
多孔陶瓷是一种具有多个微孔和介孔的陶瓷材料。
这些微孔和介孔可以提供较大的比表面积和孔隙度,从而提高材料的吸附容量和分离效率。
纤维素纳米晶多孔陶瓷的制备通常通过将纤维素纳米晶颗粒与陶瓷基质混合,并经过成型和烧结等工艺步骤来完成。
这种复合材料结合了纤维素纳米晶和多孔陶瓷的优点,具有较高的力学性能、吸附性能和分离性能。
纤维素纳米晶多孔陶瓷在环境保护、能源存储和生物医学等领域有广泛的应用前景,例如用于废水处理、气体分离、催化反应和药物递送等。
多孔陶瓷材料的硬度和断裂韧度研究引言:多孔陶瓷材料以其独特的物理性质和结构特点,引起了广泛的研究兴趣。
其中,硬度和断裂韧度作为评估材料力学性能的重要指标,对于研究多孔陶瓷材料的性能具有重要意义。
本文将探讨多孔陶瓷材料的硬度和断裂韧度研究,并从材料本身的结构和制备方法等方面进行分析和讨论。
第一部分:硬度的研究多孔陶瓷材料的硬度是表征其抗压强度和抗刮痕性能的重要指标。
随着孔隙度的增大,多孔陶瓷材料的硬度逐渐降低。
这是因为孔隙的存在会导致应力集中,减弱了材料的力学性能。
研究表明,多孔陶瓷材料的硬度与孔隙度之间存在一定的正相关关系,即孔隙度越大,材料的硬度越低。
因此,在制备多孔陶瓷材料时,需要合理控制孔隙度,以提高材料的硬度和力学性能。
第二部分:断裂韧度的研究多孔陶瓷材料的断裂韧度是评估其抗裂性能的重要指标。
研究发现,多孔陶瓷材料的断裂韧度与孔隙度和孔隙分布有密切关系。
当孔隙度较低且均匀分布时,多孔陶瓷材料的断裂韧度较高。
然而,孔隙度过大或不均匀分布时,会导致应力集中和裂纹扩展,损害材料的断裂韧度。
因此,在制备多孔陶瓷材料时,需要综合考虑孔隙度和孔隙分布的影响,以提高材料的断裂韧度。
第三部分:影响硬度和断裂韧度的因素多孔陶瓷材料的硬度和断裂韧度受到多种因素的影响,主要包括材料的成分、孔隙度、孔隙分布和制备方法等。
不同成分的陶瓷材料具有不同的硬度和断裂韧度,其中质量较轻的陶瓷材料常具有较低的硬度和较高的断裂韧度。
此外,孔隙度和孔隙分布对多孔陶瓷材料的力学性能起着重要作用。
合理控制孔隙度和孔隙分布,可显著提高材料的硬度和断裂韧度。
制备方法也是影响材料性能的关键因素,其中压制和烧结工艺是常用的制备方法之一,可增强材料的致密度和力学性能。
第四部分:材料应用和进一步研究多孔陶瓷材料以其特殊的物理性质和结构特点,广泛应用于过滤、吸附、隔热等领域。
如陶瓷膜材料可应用于水处理和气体分离等领域,多孔陶瓷材料可应用于高温隔热领域。
多孔陶瓷材料的热传导性能研究多孔陶瓷材料是一种具有特殊结构和性质的材料,在许多领域中得到广泛应用。
其中,热传导性能是多孔陶瓷材料最重要的性质之一。
本文将探讨多孔陶瓷材料的热传导性能研究,从分子尺度到工程应用,深入分析其影响因素及应用前景。
首先,热传导性能是多孔陶瓷材料的关键性能之一。
多孔陶瓷材料是由微米级颗粒形成的孔隙结构组成,孔隙结构对热传导性能起到了重要的影响。
孔隙的存在会导致热传导路径的中断和散射,因此多孔陶瓷材料的热传导性能通常比固体陶瓷材料低很多。
研究多孔陶瓷材料的热传导性能,有助于深入了解其内在机制,提高材料的性能和应用。
其次,在研究多孔陶瓷材料的热传导性能时,需要考虑多种因素的影响。
第一,孔隙结构对于热传导性能的影响是至关重要的。
孔隙的大小、形状、分布等都会影响热传导路径的长度和散射程度,从而影响材料的热传导性能。
第二,材料的成分也会对热传导性能产生影响。
不同的成分会影响材料的晶格振动、能量传递等,从而改变热传导性能。
第三,温度也是影响多孔陶瓷材料热传导性能的重要因素。
随着温度的升高,热传导过程中的湮灭散射会变得更加重要,从而影响热传导性能。
在多孔陶瓷材料的热传导性能研究中,近年来涌现出了许多新的研究方法和技术。
例如,基于纳米技术的多孔陶瓷材料制备具有特定孔隙结构和分布的样品,进而研究其热传导性能。
此外,计算模拟方法也被广泛应用于多孔陶瓷材料的热传导性能研究中,通过模拟材料的结构和热传导机制,揭示了许多新的现象和规律。
这些新的研究方法和技术的出现,为深入研究多孔陶瓷材料的热传导性能提供了新的思路和手段。
最后,多孔陶瓷材料的热传导性能研究具有重要的工程应用前景。
首先,在能源和环境领域,多孔陶瓷材料可以作为隔热材料用于节能和保温。
其次,多孔陶瓷材料在催化剂、储能、传感器等领域中的应用也与热传导性能息息相关。
因此,深入研究多孔陶瓷材料的热传导性能,对于提高材料的性能和应用具有重要意义。
总之,多孔陶瓷材料的热传导性能研究具有重要的科学意义和工程应用前景。
浅谈多孔陶瓷08 化本黄振蕾080900029摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学关键词:多孔陶瓷制备应用发展0. 引言多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。
多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。
多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料和传感器材料等方面得到广泛的应用[ 2]。
因此, 多孔陶瓷材料及其制备技术受到广泛关注。
1 多孔陶瓷材料的制备方法1. 1 挤压成型法挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。
一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。
其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。
目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。
美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。
我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。
例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型的多孔陶瓷。
其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T烧成T制品。
多孔陶瓷材料的制备及其应用丁正平摘要:多孔材料由于其孔结构所具有的性能,在工业和社会生产中作用显著,本文第一章简述了多孔材料的分类、与传统材料的差别、制备的一般方法、评价体系以及应用。
多孔材料主要分为两大类多孔陶瓷和多孔金属材料。
多孔陶瓷由于既具有陶瓷的一般性质又具有独特的多孔结构,因而既具有一般陶瓷的性质,比如:耐热性能、稳定的化学性能、一定的强度;同时具有孔结构的渗透性能、吸声性能等等,因而在很多方面具有应用。
本文综述了多孔陶瓷的几种制备方法、性能表征、以及几个方面的应用。
关键词:多孔陶瓷制备应用目录1.多孔材料 (1)1.1多孔材料的概念 (1)1.2多孔材料的分类 (1)1.3多孔材料的性能特点 (2)1.4一般多孔材料的制备方法 (3)1.5成品的评价系统 (3)1.6多孔材料的应用 (3)2.多孔陶瓷 (4)2.1概述 (4)2.2性能特点 (4)2.3多孔陶瓷制备方法 (4)2.4性能及表征 (10)2.5 多孔陶瓷的应用 (14)2.6 前景与展望 (16)参考文献 (18)1多孔材料1.1 多孔材料的概念多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。
这些支柱或者平板通常被称为固定相,起到支撑整个材料的作用,材料的力学性能主要取决于固定相的性能,孔洞中填充的物质称之为流动相,根据填充物物理状态的不同,又可以细分为气相和液相,气相的较为常见,整个多孔材料就是由固定向和流动相组成。
典型的孔结构有:一种是由大量多边形孔在平面上聚集形成的二维结构;由于其形状类似于蜂房的六边形结构而被称为“蜂窝”材料;更为普遍的是由大量多面体形状的孔洞在空间聚集形成的三维结构, 通常称之为“泡沫”材料。
根据功能材料的要求,多孔材料的具备以下两个要素:一是材料中必须包含大量的空隙;二是材料必须被用来满足某种或者某些设计要求已达到所期待的某种性能指标,多孔材料中的空隙相识设计者和使用者所希望得到的功能相,为材料的性能提供优化作用[1]。
添加造孔剂法制备多孔陶瓷及其强度与孔径控制一、本文概述多孔陶瓷作为一种具有独特结构和性能的新型无机非金属材料,在过滤、分离、吸附、催化、载体、隔热、降噪、生物医疗等众多领域表现出广阔的应用前景。
其中,孔径大小及其分布、孔的数量、形状和连通性等孔结构参数对多孔陶瓷的性能起着决定性的作用。
因此,如何制备具有理想孔结构的多孔陶瓷材料成为了研究的关键。
添加造孔剂法作为一种制备多孔陶瓷的常用方法,通过引入造孔剂在陶瓷基体中形成孔洞,从而实现对多孔陶瓷孔结构的调控。
本文旨在探讨添加造孔剂法制备多孔陶瓷的工艺流程、影响多孔陶瓷强度和孔径的关键因素,以及如何通过调整制备参数实现对多孔陶瓷强度和孔径的有效控制,为多孔陶瓷的制备和应用提供理论指导和技术支持。
二、添加造孔剂法制备多孔陶瓷的原理添加造孔剂法制备多孔陶瓷是一种常见且有效的制备工艺,其基本原理是在陶瓷原料中加入一定数量的造孔剂,这些造孔剂在陶瓷烧结过程中会燃烧或分解,从而留下大量孔洞,形成多孔结构。
造孔剂的选择和添加量是影响多孔陶瓷孔结构和性能的关键因素。
造孔剂的种类应具有良好的热稳定性,能够在陶瓷烧结温度范围内不发生化学反应或分解,以保证孔洞的均匀性和稳定性。
常用的造孔剂包括炭黑、石墨、有机物等。
造孔剂的添加量决定了多孔陶瓷的孔隙率和孔径大小。
添加量过多,会导致陶瓷体积收缩过大,强度降低;添加量过少,则孔洞数量不足,影响多孔陶瓷的性能。
因此,合理控制造孔剂的添加量是制备多孔陶瓷的关键。
在制备过程中,造孔剂与陶瓷原料混合均匀后,通过成型和烧结工艺形成多孔陶瓷。
成型过程中,造孔剂颗粒随机分布在陶瓷基体中,形成初步的孔结构。
在烧结过程中,造孔剂燃烧或分解,形成大量孔洞,同时陶瓷基体发生致密化,形成最终的多孔陶瓷。
通过调整烧结温度和保温时间等工艺参数,可以进一步控制多孔陶瓷的孔结构和性能。
烧结温度过高或保温时间过长,可能导致孔洞坍塌,降低多孔陶瓷的孔隙率和比表面积;烧结温度过低或保温时间过短,则可能导致陶瓷基体致密化不足,影响多孔陶瓷的强度。
挤出成型制备多孔陶瓷的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!多孔陶瓷材料广泛应用于过滤、隔热和吸附等领域,其制备工艺对其性能具有重要影响。
文章编号:1000-2278(2003)01-0040-06多孔陶瓷的制备、性能及应用:(Ⅰ)多孔陶瓷的制造工艺朱新文 江东亮 谭寿洪(中国科学院上海硅酸盐研究所)摘 要多孔陶瓷的制备方法很多,其成孔机理主要有机械挤出、颗粒堆积、成孔剂、发泡、多孔模板、凝结结构成孔。
本文根据成孔机理的不同综述了多孔陶瓷的制备工艺最新研究进展。
关键词:多孔陶瓷,成孔机理,制备工艺,多孔模板中图法分类号:TQ174.6+53.4 文献标识码:BPROCESSING ,PROPERTIES AND APPLICATION OFPOROUS CERAMICS :(Ⅰ)PROCESSING OF POROUS CERAMICSZhu Xinwen Jiang Dongliang Tan Shouhong (Shanghai Institute of Cera mics ,Chinese Academy of Science )AbstractVarious techniques have been developed to produce porous ceramics by means of different mechanisms of pore for mation such as extrusiion ,particle stacking ,pore for mer ,foaming ,porous template and porous gelled structure .The latest progress in the processing techniques of porous cera mics was reviewed by the different mechanism of pore for mation in the present paper .Keywords porous ceramic ,pore formation mechanism ,pr ocessing ,por ous templates1 前 言多孔陶瓷具有低密度、高渗透率、抗腐蚀、良好的隔热性能、耐高温和使用寿命长等优点,是一种新型功能材料。
真空浸渍多孔陶瓷真空浸渍多孔陶瓷是一种制备高性能陶瓷材料的重要方法。
通过将陶瓷材料置于真空环境中,利用毛细作用和压力差来使陶瓷材料充分浸渍,从而提高陶瓷材料的性能和应用范围。
在真空浸渍多孔陶瓷的制备过程中,首先需要选择合适的陶瓷材料。
常见的陶瓷材料有氧化铝、氧化锆、氧化硼等。
这些材料具有高熔点、高硬度、优良的耐磨性和耐腐蚀性,是制备多孔陶瓷的理想选择。
接下来,将选定的陶瓷材料加工成所需形状,可以采用压制、注射成型等方法。
然后将加工好的陶瓷材料置于真空环境中。
在真空环境中,陶瓷材料表面的气体分子会被抽出,形成较低的气体压力。
同时,真空环境下的压力差会使液体进入陶瓷材料的孔隙中。
为了实现陶瓷材料的充分浸渍,还可以通过调节真空度和浸渍时间来控制浸渍效果。
较高的真空度和较长的浸渍时间有助于提高陶瓷材料的浸渍率和浸渍深度。
真空浸渍过程中,液体通过毛细作用进入陶瓷材料的孔隙中。
毛细作用是液体在纳米尺度孔隙中的表现,液体在孔隙中受到表面张力的作用,形成液体柱。
随着液体柱的增长,液体会进一步渗透到孔隙中,最终充满整个陶瓷材料。
真空浸渍多孔陶瓷的制备过程中,还可以添加一些助剂来改善浸渍效果。
常用的助剂有表面活性剂、分散剂等。
这些助剂可以改变液体的表面张力和粘度,促进液体在陶瓷材料中的渗透和分布。
真空浸渍多孔陶瓷制备出的陶瓷材料具有许多优良性能。
首先,多孔结构可以增加陶瓷材料的比表面积,提高材料的吸附性能。
其次,多孔结构还可以降低陶瓷材料的密度,提高材料的强度和韧性。
此外,真空浸渍多孔陶瓷还可以通过改变浸渍液的成分和浸渍条件来调控陶瓷材料的孔隙结构和性能,实现对材料性能的精确调控。
真空浸渍多孔陶瓷在众多领域中有着广泛的应用。
在能源领域,多孔陶瓷材料可以作为电池隔膜、燃料电池电解质等关键部件,提高电池的性能和寿命。
在环境领域,多孔陶瓷材料可以作为吸附剂、过滤器等,用于废水处理、空气净化等方面。
在医疗领域,多孔陶瓷材料可以用于骨修复、人工关节等医疗器械。
多孔陶瓷定义作为一种具有特殊性质的材料,多孔陶瓷在现代科技发展中起到了很重要的作用。
多孔陶瓷是指不同大小、形状和数量的孔隙结构均匀分布在材料内部,具有高孔隙度和大表面积的陶瓷制品。
本文将从多孔陶瓷的定义、制备方法、组成材料、分类及其应用等方面加以介绍。
一、多孔陶瓷的定义多孔陶瓷是一种孔结构合理、孔隙度高、孔径范围广、形态复杂、性能多样、制备方法多种多样的特种陶瓷材料。
与传统陶瓷材料相比,多孔陶瓷具有以下几个特点:(1)多孔结构:具有不同大小、形状和数量的孔隙结构均匀分布在材料内部。
(2)高孔隙度:孔隙体积占整个多孔陶瓷体积的百分比很高,通常在20%以上,能够提高其吸附、分离、传输等性能。
(3)大表面积:多孔陶瓷表面积由于孔隙的存在,相对于其它陶瓷材料而言,表面积较大,所以在很多领域被广泛应用。
(4)化学稳定性:多孔陶瓷的材料组成不易被化学物质破坏,具有很好的化学稳定性和生物相容性。
(5)机械强度高:虽然多孔陶瓷具有很高的孔隙度,但制备过程中可以控制孔径和孔隙度,所以其机械强度并不比致密陶瓷材料低。
二、多孔陶瓷的制备方法多孔陶瓷的制备方法主要包括以下几种:(1)泡沫陶瓷加工法:根据泡沫多孔体的原理,将泡沫塑料通过真空成型获得泡沫型芯坯,然后涂上涂料后通过真空包封,再经高温焙烧,将泡沫烧成多孔瓷体。
(2)模板法:以有机多孔体或无机材料得到的多孔体为模板,在其表面沉积制作陶瓷瓷体的材料,焙烧时模板被热解或燃尽,从而形成多孔陶瓷。
(3)凝胶注模法:以纳米凝胶成的水基体系,通过注模成型,经过干燥、烘焙、烧结等工序形成多孔瓷体。
(4)发泡陶瓷法:利用一定的发泡剂在干模压制的过程中加入,通过高温焙烧,发泡剂分解为气体从微孔中释放,从而形成多孔瓷体。
(5)凝胶浸渍法:将多孔材料浸泡在陶瓷材料的溶液中,通过静态或动态方式使溶液充盈材料毛细空隙,接着进行干燥、烧结等加工流程,最终形成多孔陶瓷。
三、多孔陶瓷的组成材料多孔陶瓷的组成材料可以分为有机材料和无机材料两类。
文献综述多孔陶瓷的制备工艺及应用肖燕(湖南大学外国语学院 201213010322)摘要:多孔陶瓷因其独特结构和优异性能近年来成为陶瓷材料领域的一个研究热点,本文综述了多孔陶瓷制备技术的发展以及其应用。
关键词:多孔陶瓷应用制备工艺1.前言多孔陶瓷又称微孔陶瓷、泡沫陶瓷,是一种新型陶瓷材料,是以刚玉砂、碳化硅、堇青石等优质原料为主料、配以添加剂经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料。
多孔陶瓷一般可按孔径大小分为3类:微孔陶瓷(孔径小于2nm)、介孔陶瓷(孔径为2~50nm)及宏孔陶瓷(孔径大于50nm)。
若按孔形结构及制备方法,其又可分为蜂窝陶瓷和泡沫陶瓷两类,后者有闭孔型、开孔型及半开孔型3种基本类型。
多孔陶瓷的发展始于19世纪70年代,初期仅作为细菌过滤材料使用,随着控制材料的细孔结构水平的不断提高,其与玻璃纤维、金属等相比具有可控的孔结构、高的开口空隙率、均匀的透过性、机械强度高、易于再生、较低的热传导性、耐高温、抗腐蚀、使用寿命长等优良性能,给其应用开拓了广阔的前景,被广泛应用于环保、节能、化工、石油、冶炼、食品及生物医学等多个科学领域,引起全球材料科学界的密切关注。
虽然目前已有较多关于多孔陶瓷的综述文献,但近些年来在技术发展推动下,新工艺新应用不断涌现,因此有必要结合一些最新文献对多孔陶瓷的制备工艺与应用进行综述。
2.多孔陶瓷的制备工艺多孔陶瓷的性能除与组成因素相关以外,还与气孔形态、大小及分布等因素有密切关联。
从制备工艺、结构和性能角度考虑,形成气孔是多孔陶瓷制备工艺的关键步骤,也是多孔陶瓷研究的重点。
本文将从介绍目前主流制备工艺着手,重点综述新型制备工艺方面取得的进展。
2.1传统制备工艺一些研发历史较长、技术相对成熟的多孔陶瓷制备工艺已经获得了规模化的生产应用,这些工艺称为传统制备工艺,常见的有添加造孔剂法、有机泡沫浸渍法、发泡法、挤压成型技术、颗粒堆积法等。
第一章综述1.1 多孔陶瓷的概述多孔陶瓷是一种经高温烧成、体内具有大量彼此相通或闭合气孔结构的陶瓷材料,是具有低密度、高渗透率、抗腐蚀、耐高温及良好隔热性能等优点的新型功能材料。
多孔陶瓷的种类繁多,几乎目前研制生产的所有陶瓷材料均可通过适当的工艺制成陶瓷多孔体。
根据成孔方法和孔隙结构的不同,多孔陶瓷可分为三类:粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷。
根据所选材质不同,可分为刚玉质、石英质、堇青石质、莫来石质、碳化硅质、硅藻土质、氧化锆质及氧化硅质等。
多孔陶瓷材料一般具有以下特性:化学稳定性好,可制成使用于各种腐蚀环境的多孔陶瓷;具有良好的机械强度和刚度,在气压、液压或其他应力载荷下,多孔陶瓷的孔道形状和尺寸不会发生变化;耐热性好,用耐高温陶瓷制成的多孔陶瓷可过滤熔融钢水和高温气体;具有高度开口、内连的气孔;几何表面积与体积比高;孔道分布较均匀,气孔尺寸可控,在0.05~600µm范围内可以制出所选定孔道尺寸的多孔陶瓷制品。
多孔陶瓷的优良性能,使其已被广泛应用于冶金、化工、环保、能源、生物等领域。
如利用多孔陶瓷比表面积高的特性,可制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可制成各种吸音材料、减震材料等;利用多孔陶瓷的低密度、低热传导性,可制成各种保温材料、轻质结构材料等;利用多孔陶瓷的均匀透过性,可制成各种过滤器、分离装置、流体分布元件、混合元件、渗出元件、节流元件等。
因此,多孔材料引起了材料科学工作者的极大兴趣并在世界范围内掀起了研究热潮。
1.2 多孔陶瓷的制备方法多孔陶瓷是由美国于1978年首先研制成功的。
他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件质量,降低废品率,并在1980年4月美国铸造年会上发表了他们的研究成果。
此后,英、俄、德、日等国竞相开展了对多孔陶瓷的研究,已研制出多种材质、适合不同用途的多孔陶瓷,技术装备和生产工艺日益先进,产品已系列化和标准化,形成为一个新兴产业。
我国从20世纪80年代初开始研制多孔陶瓷。
多孔陶瓷首要特征是其多孔特性,制备的关键和难点是形成多孔结构。
根据使用目的和对材料性能的要求不同,近年逐渐开发出许多不同的制备技术。
其中应用比较成功,研究比较活跃的有:添加造孔剂工艺,颗粒堆积成型工艺,发泡工艺,有机泡沫浸渍工艺,溶胶凝胶工艺等传统制备工艺及孔梯度制备方法、离子交换法等新制备工艺。
1.2.1挤压成型工艺本工艺的特点是靠设计好的多孔金属模具来成孔。
将制备好的泥浆通过一种具有蜂窝网格结构的模具基础成型,经过烧结就可以得到最典型的多孔陶瓷即现用于汽车尾气净化的蜂窝状陶瓷。
此外,也可以在多孔金属模具中利用泥浆浇注工艺获得多孔陶瓷。
该类工艺的特点在于可以根据需要对孔形状和孔大小进行精确设计,对于蜂窝陶瓷最常见的网格形状为三角形、正方形。
其缺点是不能形成复杂的孔道结构和孔尺寸较小的材料。
其典型工艺流程为:粉体原料+水+有机添加剂→研磨→陈腐→挤压成型→干燥→烧结1.2.2颗粒堆积工艺在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温状况下产生液相,使骨料(大颗粒)连接起来。
孔径的大小与骨料粒径成正比,骨料粒径越大,形成的多孔陶瓷平均孔径就越大,呈线性关系。
骨料颗粒尺寸越均匀,产生的气孔分布也越均匀。
另外添加剂的含量和种类以及烧成温度对微孔体的分布和孔径大小有直接的影响。
徐振平等通过控制球状二次粒子原料的粒径,采用烧结法制备了孔径分布很窄的多孔陶瓷,提出了一种控制孔径分布的有效办法。
孙宏伟等则通过控制粉料粒径、添加剂种类和含量,用固态烧结法制得了平均孔径为0.45m、孔径分布狭窄、孔隙率为50%Al2O3陶瓷膜管。
1.2.3添加造孔剂工艺该工艺是通过在陶瓷坯料中添加占据一定空间的造孔剂,经过烧结后,造孔剂离开基体留下孔洞而形成多孔陶瓷。
在普通陶瓷工艺中,调整烧结温度和时间可以控制烧结制品的孔隙度和强度,但对于多孔陶瓷,烧结温度太高会使部分气孔封闭或消失,烧结温度太低则制品强度低。
采用添加造孔剂的方法则可避免这种缺点,使烧结制品既具有高的孔隙度又有较好的强度。
该工艺可通过优化造孔剂形状、粒径和制备工艺来精确设计制品的孔结构,但其缺点是难以获得高气孔率制品。
与普通的陶瓷工艺相比,这种工艺的关键在于造孔剂种类和用量的选择。
造孔剂的种类有无机和有机两类,通常使用的造孔剂有炭粉、锯末屑、煤粉萘、淀粉、聚乙烯醇(PV A)、聚甲基丙烯酸甲酯(PMIMA)、聚乙烯醇缩丁醛(PVB)、聚苯乙烯颗粒等。
一些熔点较高,但可溶于水、酸或碱溶液的无机盐或其它化合物如Na2SO4、CaSO4、NaCl、CaCl2等也可作为造孔剂。
该类造孔剂的特点是在基体陶瓷烧结温度下不排除,待基体烧结后,用水、酸或碱溶液浸出造孔剂而成为多孔陶瓷。
这类造孔剂特别适用于玻璃质较多的多孔陶瓷或多孔玻璃的制备。
1.2.4 有机泡沫浸渍工艺有机泡沫浸渍工艺是schwartzwalder等人于1963年发明的,该工艺是用有机泡沫浸渍陶瓷料浆、溶胶一凝胶和胶体溶液,干燥后烧掉有机泡沫,从而获得孔径范围为5伽m一lmm的开孔三维网状多孔陶瓷的一种方法。
适应这种要求的有机泡沫材料一般是经过特定工艺制作的聚合海绵,材质通常为聚氯乙烯、聚苯乙烯、纤维素等。
在实际应用中一般选用软质聚氨酷泡沫材料,因其软化温度低,能在挥发排除中避免热应力破坏,保证了制品的强度。
将具有一定三维拓扑结构的多孔聚合物浸泡在预先磨制、混好的陶瓷颗粒浆料中,经反复多次浸渍,排除多余浆料,使浆料均匀附着在前驱体网状结构中的网丝上,再烧蚀掉聚合物,留下形貌与聚合物相对应的多孔陶瓷预制体。
这种网络结构陶瓷具有高孔隙率(70%一90%)、大比表面积、小热膨胀系数、高化学稳定性和尺寸稳定性、耐高温、耐化学腐蚀及良好的强度和过滤吸附性能。
图2-1有机泡沫浸渍上艺的流程图1.2.5 发泡工艺发泡工艺是在陶瓷组分中添加有机或无机化学物质,在处理期间形成挥发性气体,产生泡沫,经干燥和烧成制成网眼型和泡沫型两种多孔陶瓷。
与泡沫浸渍工艺相比,该法更易控制制品的形状、成分和密度,并可制备出各种孔径和不同形状的多孔陶瓷,特别适合于闭孔陶瓷制品的生产。
用来做发泡剂的化学物质有:碳化钙、氢氧化钙、铝粉硫酸铝和双氧水作发泡剂;由亲水性聚氨脂塑料和陶瓷泥浆同时发泡制备多孔陶瓷;用硫化物和硫酸盐混合作发泡剂等。
发泡工艺与传统陶瓷工艺相比,多了一个干燥前发泡过程;与泡沫塑料浸渍泥浆高温处理法相比,发泡法可以更容易地制得一定形状、组成和密度的多孔陶瓷,而且还可以制备出小孔径的闭口气孔,而这是用泡沫塑料浸渍泥浆高温处理法做不到的,但其缺点在于难以控制的工艺条件和要求较高的原料。
1.2.6溶胶—凝胶工艺溶胶—凝胶工艺主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜,也可以制备孔径在纳米级、气孔分布均匀的多孔陶瓷膜。
这种方法基本过程是:将金属醇盐溶于低级醇中,缓慢地滴入水进行水解反应,得到相应金属氧化物的溶胶,调节溶胶的pH值,纳米尺度的金属氧化物微粒就会发生聚集,形成凝胶,将凝胶干燥、热处理,就可以得到多孔陶瓷。
图2-2 溶胶—凝胶工艺流程图加水量、催化剂、溶液的pH值、化学添加剂、干燥制度以及烧成温度等都是影响溶胶一凝胶法制备多孔陶瓷材料性能的重要因素。
水在溶胶中主要发生水解反应,不同的用水量对凝胶时间影响很大;不同的催化剂,其作用机理也不同,因此在溶液中往往会产生不同结构和形态的水解产物;pH值对溶胶的形成、凝胶时间、凝胶性质以及控制醇盐水解和缩聚反应都会产生很大的影响;化学添加剂主要分为成核剂、阻核剂和干燥剂。
干燥制度对最终产品的影响也很大,由于凝胶内包裹着许多溶剂和水,干燥过程中制品会出现很大的体积收缩而导致制品开裂,并且干燥温度也影响着制品的气孔结构和大小;烧成温度影响着材料的气孔结构和性能,烧成的目的是消除凝胶中的气孔和有机体,使制品的各项性能指标满足实际需求。
尽管溶胶一凝胶法制备多孔陶瓷的原理比较清楚,但其具体工艺中的问题还很多,对外部条件要求极其严格,如溶胶的制备、浸渍、干燥等,所以制备满足要求的无裂纹的无机膜的溶胶一凝胶工艺还有待大量的研究和改进。
1.2.7冷冻干燥工艺冷冻干燥工艺的特点是将陶瓷浆料进行冷冻,使溶剂从液相变成固相,在干燥过程中通过降压使固相冰直接升华成气相而让溶剂排除,这样就留下了开口多孔结构,经烧结后可以得到多孔陶瓷。
在冷冻过程中,冰在溶剂的形成方向可以实现单向控制,因此可以获得气孔呈定向排列的多孔结构。
通过冷冻干燥制备工艺可以获得气孔率高于90%的多孔陶瓷制品, 而且气孔率可以在较大范围内实现控制。
水基浆料的使用形成了该工艺的一个最大优势就是环境友好,因为其孔结构的形成是通过冷冻干燥过程中冰的升华来完成的,其释放出来的是气态HZO,对环境不会造成任何污染。
该工艺制备多孔陶瓷可通过改变浆料的固含量来调整材料的气孔率。
1.2.8水热一热静压工艺水热一热静压工艺是在低于传统烧结温度下,通过水作为压力传递介质制备陶瓷的一种新方法。
使用这种方法也可以制备多孔陶瓷。
日本成功地应用了这种方法,将硅凝胶与质量分数为10%的水混合,置于高压釜中,压力为10一50MPa,温度为300℃,通过水蒸汽的挥发而制成多孔陶瓷,反应时间为10一18Omin。
在25MPa下处理60min,所制得的材料体积密度为0.88岁cm3,孔尺寸分布范围为30一50nm,其抗压强度高达70MPa。
通过调整压力、温度和反应时间等参数,可以得到所需的孔径、孔径分布、孔隙度以及比表面积。
1.3多孔陶瓷的性能分析1.3.1多孔陶瓷的力学性质将多孔陶瓷的力学行为进行数学分析并与它们的显微结构相联系起来是十分有益的。
这样的过程有利于预测材料性能,不仅对设计过程有帮助,也有利于发现控制形变过程的关键性参数。
完成这一理论分析的主要科学方法之一是分析一个单一的孔单元,并分析其形变行为。
为了建立多孔材料的力学行为模型,Gibson和Ashby将复杂的泡沫结构简化成。
通过简化的几何结构,对大多数的多孔材料的关键力学性质如弹性常数、拉伸、压缩强度和断裂韧性等均可推导出数学表达式。
表3-1多孔陶瓷的力学性能表达式表3-1给出的表达式表明,网眼多孔陶瓷的力学行为决定于单独孔筋的强度,因此定量测定大小对于研究这类材料的力学行为是非常重要的。
Brenzy等人用一种简单的方法测定了几种网眼陶瓷的孔筋强度。
这一方法是将一细丝拴于孔筋下,再连接于抗拉载荷上,使用每一孔筋的弯曲断裂的载荷来估计孔筋强度%。
这种测定方法对具有较大孔单元(>1唧)的材料比较实用,小于该尺寸的孔单元则难以实用。
研究表明,通过改善工艺过程,剔除显微缺陷如孔筋内的气孔、裂纹和夹杂物可以使孔筋强度得到明显提高。