初二数学教学论文3篇_初二数学
- 格式:docx
- 大小:40.48 KB
- 文档页数:6
数学教研论文(5篇)数学教研论文(5篇)数学教研论文范文第1篇所谓数学活动是指把数学教学的乐观性概念作为具有肯定结构的思维活动的形式和进展来理解的。
按这种解释,数学活动教学所关怀的不是活动的结果,而是活动的过程,让不同思维水平的儿童去讨论不同水平的问题,从而进展同学的思维力量,开发智力。
那么,要想使数学教学成为数学活动的教学主要应考虑哪几个问题呢?下面谈谈笔者一些想法。
一、考虑同学现有的学问结构学问和思维是相互联系的,在进行某种思维活动的教学之前,首先要考虑同学的现有学问结构。
什么是学问结构?一般人们认为:在数学中,包括定义、公理、定理、公式、方法等,它们之间存在的联系以及人们从肯定角度动身,用某种观点去描述这种联系和作用,总结规律,归纳为一个系统,这就是学问结构。
在教学中只有了解同学的学问结构,才能进一步了解思维水平,考虑教新学问基础是否够用,用什么样的教法来完成数学活动的教学。
例如:在讲解一元二次方程[a(x)2+bx+c=0a≠0]时,争论它的解,须用到配方法,或因式分解法等等,那么上课前老师要清晰这些方法同学是否把握,把握程度如何,这样,活动教学才能顺当进行。
二、考虑同学的思维结构数学教学是数学思维活动的教学,进行数学教学时自然应考虑同学现有的思维活动水平。
心理学早已证明,思维力量及智力品质都随着青少年年龄的递增而进展,同学的思维水平在不同的年龄阶段上是不相同的。
斯托利亚尔在《数学教育学》中介绍了儿童在学习几何、代数时的五种不同水平,在这五个阶段上,同学把握学问,思索方式、方法,思维水平都有明显差异。
因此,要使数学教学成为数学活动的教学必需了解同学的思维水平。
下面谈谈与同学思维水平有关的两个问题。
1.中同学思维力量之特点我们知道,中同学的运算思维力量处于规律抽象思维阶段,尽管思维力量的几个方面的进展有所先后,但总的趋势是全都的。
初一同学的运算力量与学校四、五班级有类似之处,处于形象抽象思维水平;初二与初三同学的运算力量是属于阅历型的抽象规律思维;高一与高二同学的运算力量的抽象思维,处在由阅历型水平向理论型水平的急剧转化的时期。
初二数学勾股定理论文初二数学勾股定理论文1000字关于勾股定理勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。
也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。
1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。
实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。
这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(pythagoras,约公元前580-公元前500).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家m·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.证明方法:先拿四个一样的直角三角形。
第1篇一、引言随着我国素质教育的不断推进,数学教学也在不断改革。
初二数学教学作为初中数学教学的关键阶段,其教学质量直接影响着学生后续的学习和发展。
综合实践教学作为一种新型的教学方法,强调理论与实践相结合,有利于提高学生的综合素质。
本文将从初二数学综合实践教学的必要性、实施策略和效果评价三个方面进行探讨。
二、初二数学综合实践教学的必要性1. 培养学生的实践能力在传统的数学教学中,学生往往只关注理论知识的学习,忽视了实践能力的培养。
综合实践教学将理论知识与实际应用相结合,使学生能够在实践中掌握数学知识,提高解决问题的能力。
2. 培养学生的创新精神综合实践教学鼓励学生自主探索、合作学习,有助于培养学生的创新意识和创新能力。
在实践过程中,学生可以充分发挥自己的想象力和创造力,提出新的解题思路和方法。
3. 培养学生的团队协作能力综合实践教学强调团队合作,使学生学会与他人沟通、协作,共同完成任务。
这对于培养学生的团队精神、增强集体荣誉感具有重要意义。
4. 提高学生的学习兴趣综合实践教学以学生为主体,注重激发学生的学习兴趣。
通过实践活动,学生能够将数学知识与实际生活相结合,感受到数学的实用性,从而提高学习兴趣。
三、初二数学综合实践教学的实施策略1. 创设情境,激发兴趣教师在教学过程中,应结合实际生活创设教学情境,激发学生的学习兴趣。
例如,在讲解“平面图形的面积”时,可以引导学生观察教室、校园等场所的平面图形,思考如何计算它们的面积。
2. 突出实践,注重体验在综合实践教学过程中,教师应注重引导学生参与实践活动,让学生在实践中体验数学知识。
例如,在讲解“比例尺”时,可以组织学生进行实地测量,了解比例尺在实际应用中的作用。
3. 合作学习,共同进步教师应鼓励学生进行合作学习,共同完成实践活动。
在合作过程中,学生可以互相交流、借鉴,提高自己的实践能力。
4. 拓展延伸,提升素养教师应引导学生将所学知识应用于实际生活,拓展延伸,提升学生的综合素质。
中学数学教学论文五篇【篇一】摘要:随着教育改革的不断深入,新时代教师和学生都对教育有着更高的期望,在探索教育发展中,深度学习逐渐受到教育工作者的重视。
文章通过阐述数学深度学习的必要性,剖析高中数学教学深度学习的影响,并提出促进数学深度学习的高中教学策略,旨在促进教师改变以往高中数学的教学方式,引导学生进行数学深度学习,促进高中数学教学领域改革。
关键词:深度学习;数学;教学随着课程改革的不断推进,深度学习成为素质教育下一种新的教育理念。
在数学课程教学中,为进一步提升教学质量和教学效果,深度学习模式逐步成为师生关注的焦点。
在数学的深度学习中有利于培养学生的理性思维,更有利于培养学生注重学习本身及知识间的关联性和层次性 [1]。
因此,文章以深度学习理论为基础,对高中深度学习的现状及影响高中数学深度学习的因素进行了详细的论述和分析,并提出促进数学深度学习的高中教学策略,以期促进深度学习在高中数学教学中的应用。
一、数学深度学习的必要性(一)深度学习可以提高学生的学习能力深度学习作为新课程倡导的一种学习方式,更注重培养学生的自主学习意识,更突出数学学习内容的联系性,更有利于提高学生的学习能力,从而激发学生学习的主动性和积极性,促进学习兴趣的养成,提高学习效率,学生逐步转变学习方式,培养学生数学自学、乐学的能力,进行数学深度学习能更好的适应时代的发展和进步,从而促进学生综合素质的全面发展。
(二)深度学习可以提高解决问题的能力随着时代的发展,学生具备深度学习的能力更有利于培养自身对问题的独特思考,形成独特的见解,实现思维习惯的养成。
而数学深度学习一定程度上促进了学生深度思考和反复实践的过程。
学生进行深度学习更有利于培养学生进行独立思考,在学习中发现问题、解决问题的能力,使学生逐步形成自主学习、自主思考、自主解决的学习习惯,从而提高解决问题的能力。
(三)深度学习促进学生全面发展随着我国教育逐步向素质教育转变,培养适应社会发展和全面发展的创新型人才,需要教师树立正确的教师观,转变以往教学模式,更新教学观念,紧跟教学改革的发展方向。
第1篇摘要:本文针对当前初中数学教学中存在的问题,分析了问题产生的原因,并提出了相应的对策。
通过优化教学策略、改进教学方法、加强师生互动等方面,提高初中数学教学质量,促进学生全面发展。
关键词:初中数学;教学问题;对策;教学质量一、引言初中数学教学是基础教育阶段的重要组成部分,对于培养学生的逻辑思维能力、空间想象能力和创新精神具有重要意义。
然而,在当前初中数学教学中,仍存在诸多问题,影响了教学质量的提升。
本文旨在分析初中数学教学中存在的问题,探讨相应的对策,以期为提高初中数学教学质量提供参考。
二、初中数学教学中存在的问题1.教学目标不明确部分教师对教学目标的认识不够清晰,缺乏对教学目标的深入研究。
在制定教学计划时,往往过于注重知识的传授,而忽视了学生的能力培养。
2.教学方法单一在数学教学中,部分教师仍采用传统的讲授法,过分依赖黑板和粉笔,缺乏创新和灵活性。
这种单一的教学方法难以激发学生的学习兴趣,不利于学生主动参与课堂活动。
3.师生互动不足在课堂教学中,部分教师与学生之间的互动较少,导致学生参与度不高,课堂氛围沉闷。
此外,教师对学生的个别差异关注不够,难以满足不同学生的学习需求。
4.评价方式单一当前初中数学教学评价方式主要以考试为主,过分强调结果,忽视了过程评价。
这种评价方式容易导致学生产生焦虑心理,不利于学生的全面发展。
5.教学资源匮乏部分学校数学教学资源匮乏,如教学设备、图书资料等,导致教师难以开展丰富多彩的教学活动,影响教学质量。
三、初中数学教学对策1.明确教学目标教师应深入理解课程标准,明确教学目标,将知识与能力培养相结合。
在制定教学计划时,注重培养学生的逻辑思维能力、空间想象能力和创新精神。
2.改进教学方法教师应采用多样化的教学方法,如探究式教学、合作学习、项目式学习等,激发学生的学习兴趣,提高课堂参与度。
同时,注重利用多媒体技术,丰富教学手段,提高教学效果。
3.加强师生互动教师应积极与学生互动,关注学生的个体差异,开展个性化教学。
数学初⼆论⽂范⽂3篇初中数学论⽂:康托尔与集合论康托尔是19世纪末20世纪初德国伟⼤的数学家,集合论的创⽴者。
是数学史上最富有想象⼒,最有争议的⼈物之⼀。
19世纪末他所从事的关于连续性和⽆穷的研究从根本上背离了数学中关于⽆穷的使⽤和解释的传统,从⽽引起了激烈的争论乃⾄严厉的谴责。
然⽽数学的发展最终证明康托是正确的。
他所创⽴的集合论被誉为20世纪最伟⼤的数学创造,集合概念⼤⼤扩充了数学的研究领域,给数学结构提供了⼀个基础,集合论不仅影响了现代数学,⽽且也深深影响了现代哲学和逻辑。
1.康托尔的⽣平1845年3⽉3⽇,乔治·康托⽣于俄国的⼀个丹麦—犹太⾎统的家庭。
1856年康托和他的⽗母⼀起迁到德国的法兰克福。
像许多优秀的数学家⼀样,他在中学阶段就表现出⼀种对数学的特殊敏感,并不时得出令⼈惊奇的结论。
他的⽗亲⼒促他学⼯,因⽽康托在1863年带着这个⽬地进⼊了柏林⼤学。
这时柏林⼤学正在形成⼀个数学教学与研究的中⼼。
康托很早就向往这所由外尔斯托拉斯占据着的世界数学中⼼之⼀。
所以在柏林⼤学,康托受了外尔斯特拉斯的影响⽽转到纯粹的数学。
他在1869年取得在哈勒⼤学任教的资格,不久后就升为副教授,并在1879年被升为正教授。
1874年康托在克列勒的《数学杂志》上发表了关于⽆穷集合理论的第⼀篇⾰命性⽂章。
数学史上⼀般认为这篇⽂章的发表标志着集合论的诞⽣。
这篇⽂章的创造性引起⼈们的注意。
在以后的研究中,集合论和超限数成为康托研究的主流,他⼀直在这⽅⾯直到1897年,过度的思维劳累以及强列的外界刺激曾使康托患了精神分裂症。
这⼀难以消除的病根在他后来30多年间⼀直断断续续影响着他的⽣活。
1918年1⽉6⽇,康托在哈勒⼤学的精神病院中去世。
2.集合论的背景为了较清楚地了解康托在集合论上的⼯作,先介绍⼀下集合论产⽣的背景。
集合论在19世纪诞⽣的基本原因,来⾃数学分析基础的批判运动。
数学分析的发展必然涉及到⽆穷过程,⽆穷⼩和⽆穷⼤这些⽆穷概念。
关于初中数学优秀论文推荐7篇初中数学包括数学学科课与数学活动课。
新的课改计划实施不久,难免有的数学教师对数学活动课概念模糊,认识不清,将数学学科课与数学活动课的教学要求、教学特点混为一谈。
本文就以初中数学论文为例提供7篇初中数学优秀论文供大家参考学习。
初中数学优秀论文范文一:论文题目:构建初中数学高效课堂的策略【摘要】要想提高初中数学教学效率,数学教师必须要改变传统的教学策略,注重激发初中生的数学学习兴趣,改变学生对数学的畏难情绪,让学生在数学课堂真正活跃起来。
探讨了如何提高初中数学教学效率,旨在为初中数学教学提供参考。
【关键词】初中数学高效课堂教学效率互动初中数学教学既要使学生掌握丰富的数学知识和数学技能,还要培养初中生的数学素养。
因此,初中数学教师要坚持“以教为主导,以生为主体”,使学生成为课堂教学的主人,改变传统“一言堂”的教学方式,激发初中生的数学学习兴趣,提高初中数学教学效率。
一、构建情境激趣,有效引入新课初中数学教师在日常教学中,需要根据实际教学内容,构建高效的课堂教学情境,激发初中生的数学学习兴趣,从而有效的引入新课,使初中生的数学思维更加活跃,从而促进课堂教学的有效开展。
比如,讲初中数学轴对称的相关知识时,我创建了教学情境: 我首先带领学生动手操作,在一张纸片上滴一滴墨水,然后将纸片对折压平,再重新打开,让学生观察两滴墨水之间的关系。
初中生的学习兴趣非常浓,都踊跃的进行尝试。
在学生操作之后,我总结出轴对称的概念: 把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点( 即两个图形重合时互相重合的点) 叫做对称点。
为了拓展初中生的思维,我鼓励学生想一想日常生活中常见的轴对称图形的例子。
二、运用信息技术,提高学习效率随着信息技术在初中校园的普及,给初中数学课带来了新的发展机遇,极大地提高了初中数学教学质量。
第1篇初中数学教学中的问题与对策研究摘要:随着新课程改革的深入推进,初中数学教学面临着诸多挑战。
本文针对当前初中数学教学中存在的问题,从教师、学生、教学方法和评价体系等方面进行分析,并提出相应的对策,以期为提高初中数学教学质量提供参考。
一、引言数学作为一门基础学科,在培养学生逻辑思维、抽象思维和创新能力等方面具有重要作用。
然而,在当前初中数学教学中,仍然存在一些问题,如教师教学观念陈旧、学生学习兴趣不高、教学方法单一、评价体系不完善等。
这些问题严重制约了初中数学教学质量的提高。
因此,探讨初中数学教学中的问题与对策具有重要的现实意义。
二、初中数学教学中存在的问题1. 教师教学观念陈旧部分教师在教学过程中仍然采用传统的灌输式教学方式,忽视学生的主体地位,导致学生学习兴趣不高,难以激发学生的创新思维。
2. 学生学习兴趣不高由于数学学科的抽象性和逻辑性,部分学生对数学学习缺乏兴趣,认为数学枯燥乏味,导致学习效果不佳。
3. 教学方法单一部分教师在教学过程中过分依赖教材,教学方法单一,缺乏创新,导致学生难以适应多样化的学习需求。
4. 评价体系不完善当前初中数学评价体系主要依赖于考试成绩,忽视了学生的学习过程和个性发展,不利于全面提高学生的数学素养。
三、初中数学教学对策1. 更新教师教学观念教师应树立以学生为本的教学理念,关注学生的个性差异,尊重学生的主体地位,激发学生的学习兴趣,培养学生的创新思维。
2. 提高学生学习兴趣教师可以通过创设情境、开展游戏、运用多媒体技术等多种方式,激发学生的学习兴趣,提高学生的学习积极性。
3. 丰富教学方法教师应结合学生的认知特点,运用多样化的教学方法,如合作学习、探究学习、问题导向教学等,提高学生的学习效果。
4. 完善评价体系建立多元化的评价体系,注重过程性评价和结果性评价相结合,关注学生的学习过程和个性发展,全面提高学生的数学素养。
四、结论初中数学教学中的问题与对策研究对于提高初中数学教学质量具有重要意义。
数学思想数学论文3篇一、遵循认知规律,渗透数学思想和方法提炼“方法”,完善“思想”。
数学思想有很多种,一道题目也可能有多种数学思想、方法来解决。
除了老师的概括、分析,学生自身对数学方法、思想的揣摩、提炼能力更为重要。
教师在数学教学中要有意识地培养学生自主学习的能力,不断完善数学思想,提炼数学方法,找到属于自己的解题思路,提高自身数学能力。
二、数学思想和数学方法的具体应用1.分类讨论思想分类讨论思想即是在数学对象不能进行统一研究时,就需要针对对象属性的相同和不同点,进行分类讨论,逐一分析和解决的数学思想。
分类讨论数学思想是初中数学基本方法之一,广泛存在于各个知识点中,把握和运用好分类讨论思想可以使知识体系条理化,解题思路更加清晰。
例1.解方程|x+2|+|3-x|=5。
[分析]绝对值问题,一定要考虑到绝对值符号内对象的正负号。
这里有两个绝对值,那就必须进行分类讨论。
首先|x+2|对应x<-2x=-2x>-xxxxxxxxx2,|3-x|对应x<3x=3x >xxxxxxxxx3,解:当x<-2时,原方程无解;当-2≤x≤3时,原方程恒成立;当x >3时,原方程无解。
综上所述,原方程的解满足-2≤x≤3的任实数。
看似复杂,但其实分类讨论后,思路很清晰,很容易做出答案,由此可见分类讨论思想对解题很有帮助。
2.数形结合思想数学结合思想把数学关系、数学文字与直观的几何图形相结合,“以形助数”“以数解形”,综合抽象思维和形象思维,使得问题简单化、具体化,容易找到解题突破点优化解题途径的思想。
把握数形结合思想不仅能提高分析问题、解决问题的能力,还能通过数形变化提高学生数学思维能力,提高数学素养。
例2.若关于x的不等式0≤x2+mx+2≤1的解集仅有一个元素,求m的值。
[分析]如图:作出y=1和y=x2+mx+2的图像。
由图形的直观性质不难看出,这个交点只能在直线上,即y=1y=x2+mx+x2只有一解,则求得:△=m2-4×1=0→m=±2。
初二数学小论文范文
数学是一门抽象而又具体的学科,它贯穿于我们生活的方方面面。
而初中数学
作为数学学科的一个重要阶段,对学生的数学思维能力和逻辑思维能力有着重要的影响。
下面,我将从初二数学学习的角度出发,谈一谈我对初二数学的一些见解和体会。
首先,初二数学内容相对于初一来说,更加深入和复杂。
我们不仅要学习到更
多的数学知识,还要学会将这些知识应用到实际生活中去。
比如,在初二的代数学习中,我们需要掌握更多的代数公式和运算规律,同时要学会用代数知识解决实际问题,这对我们的数学思维能力提出了更高的要求。
其次,初二数学学习需要更多的逻辑思维能力。
在初二的几何学习中,我们需
要理解更多的几何定理和证明方法,这就需要我们具备较强的逻辑思维能力。
只有通过不断的练习和思考,我们才能更好地掌握这些知识,提高自己的逻辑思维能力。
另外,初二数学学习还需要更多的实践能力。
在学习数学知识的过程中,我们
不仅要掌握书本知识,还要学会将这些知识应用到实际生活中去。
比如,在初二的数学建模学习中,我们需要运用数学知识解决一些实际问题,这就需要我们具备较强的实践能力和创新能力。
总的来说,初二数学学习是一个全面发展的过程,它不仅考验着我们的数学思
维能力,还考验着我们的逻辑思维能力和实践能力。
在学习初二数学的过程中,我们不仅要注重理论知识的掌握,还要注重实际应用能力的培养,只有这样,我们才能更好地应对未来的学习和生活挑战。
希望每位初二的同学都能够在数学学习中取得更好的成绩,为自己的未来奠定坚实的数学基础。
初二数学教学论文3篇_初二数学
一、注重概念教学理念的创新
(一)以适学情境的构建激发学生学习兴趣
在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。
具体中可引入相关的数学故事或数学趣闻等。
如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的事迹等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。
以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。
此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。
(二)注重对概念教学“形式”与“实质”关系的处理
教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。
概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。
再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如
(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进
行解答。
另外,在其他内容教学中如平行线判定或方程教学中也需注意
“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。
二、对概念教学内容的创新
现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、
以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具
体创新策略主要表现在以下两方面。
(一)把握教材整体内容与概念层次特征
(二)概念知识与实际应用的结合
数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,
促进实践动手能力的提高。
然而大多数学教师为防止信息丢失,对所有的
概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统
讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成
良好的知识体系。
因此,要求教师在概念知识教学中应在保证不脱离教材
的前提下,对教材内容适当取舍,使学生能够边学边用。
三、注重教学方法的创新
素质教育的推行更强调对学生创新意识的培养。
以往教学中过于陈旧
的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需
要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定
的问题情境以调动学生参与课堂积极性。
(一)对数学概念本质的揭示
概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造
成数学概念内容失去自身的层次性特征与连续性特征。
以函数的概念为例,若从字面概念定义,可引入某,y两个变量,在一定范围中y都存在与某
值相对应的确定值,此时y为某的函数,而某为自变量。
此时,教师可将
生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中
与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找
相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽
象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。
(二)对数学教学信息的概括
数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求
教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律
展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。
例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定
函数关系,且保持相互对应。
通过学生对摩天轮旋转特征的描述,找出与
时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。
因此,概念
教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够
自然掌握数学概念。
四、注重教学手段的创新
信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数
学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较
为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数
学教学效果。
(一)充分发挥多媒体教学设备的作用
在教育心理学内容中,提出学生抽象思维能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。
而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。
例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。
(二)课堂演示与实践过程的结合
多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。
例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。
教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。
一、问题探究教学模式的基本涵义与基本原则
要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程
中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.
二、在初中数学教学中有效运用问题探究教学模式的策略
初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.
1.准确把握学生实际的认知水平
任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.
2.注重培养学生课堂教学中的问题意识
3.探索课堂师生之间的情感体验模式
初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能
使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.。