大学物理试卷06-1-A
- 格式:doc
- 大小:318.00 KB
- 文档页数:6
刚体力学1、(0981A15)一刚体以每分钟60转绕z 轴做匀速转动(ωϖ沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ϖϖϖϖ 157.0 125.6 94.2++=v (B) j i ϖϖϖ 8.18 1.25+-=v (C) j i ϖϖϖ 8.18 1.25--=v (D) k ϖϖ 4.31=v [ ]2、(5028B30)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有(A)A =B . (B) A >B . (C) A <B . (D) 开始时A =B ,以后A <B . [ ] 3、(0148B25)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4、(0153A15)一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]5、(0165A15)均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、(0289A10)关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]7、(0291B25)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]8、(0292A15) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]9、(0499A15)如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 (A) 为41mg cos . (B) 为21mg tg (C) 为mg sin . (D) 不能唯一确定. [ ] 10、(0646A15)两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A >B ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ] m 2m 1 OAθB11、(5265B25)有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]12、(5401B25)有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]13、(0500C50)如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 (A) 为 41mg cos . (B)为21mg tg . (C) 为 mg sin . (D) 不能唯一确定. [ ]14、(5641B30)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. [ ]15、(0126A20)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 310. (B) ()3/10. A θB(C) 30. (D) 3 0. [ ]16、(0132A20)光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 17、(0133A20) 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 18、(0137A30)光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l 32v . (C) l 43v . (D) lv 3. [ ] 19、(0197A15)O v v 俯视图 ϖ21 v ϖ 俯视图一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]20、(0228A20)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]21、(0230B30)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]22、(0247A15)如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]23、(0294A15)刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. O(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]24、(0677A15)一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]25、(0772A20)如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为 (A) 20. (B) 0. (C) 21 0. (D)041 . [ ] 26、(5030B30)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]27、(5640B25)一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变. O d d l(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大. [ ]28、(5643A20)有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ ]二、填空题:1、(0110A15)一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s , 再转60转后角速度为ω2=30πrad /s ,则角加速度β =_____________,转过上述 60转所需的时间Δt =________________. 2、(0111A10) 利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为 0.1m 的轮子,真空泵上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450rev/min ,则真空泵上的轮子的边缘上一点的线速度为__________________,真空泵的转速为____________________.3、(0290A10)半径为r =1.5 m 的飞轮,初角速度0=10 rad · s -1,角加速度 =-5 rad · s -2, 则在t =___________时角位移为零,而此时边缘上点的线速度v =___________. 4、(0302A10)可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度 为________________.5、(0645A10)绕定轴转动的飞轮均匀地减速,t =0时角速度为0=5 rad / s ,t =20 s 时角速度为 = 0.80,则飞轮的角加速度=______________,t =0到 t =100 s0.1m 0.29m时间内飞轮所转过的角度=___________________.6、(0977A15)一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t=________;由静止到10 rev/s时圆盘所转的圈数N=________.7、(0980B25)一飞轮作匀减速转动,在5 s内角速度由40rad·s1减到10rad·s-1,则飞轮在这5 s内总共转过了________________圈,飞轮再经______________的时间才能停止转动.8、(0982A10)半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________,法向加速度a n=_______________.9、(0983A15)半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8 rad·s-1,则主动轮在这段时间内转过了________圈.10、(0146A15)一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒是否作匀角加速转动?________________.理由是__________________________________________________________________________________________________________________________________.11、(0147A15)决定刚体转动惯量的因素是________________________________________________________________________________________________.12、(0149A20)一长为l,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m的小球,如图所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度0=____________,杆与水平方向夹角为60°时的角加速度=________________.13、(0150B25)质量为20 kg、边长为1.0 m的均匀立方物体,放在水lm F平地面上.有一拉力F 作用在该物体一顶边的中点,且与包含该顶边的物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该立方体翻转90°,则拉力F 不能小于___________________.14、(0152A20)一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =________________, 此时该系统角加速度的大小=________________. 15、(0240A15)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的 制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.16、(0243A15)如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 / 4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B 点的切向加速度a t =_____________,法向加速度a n =_____________.17、(0244A15)一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N · m ,轮子对固定轴的转动惯量为J =15 kg · m 2.在 t =10 s 内,轮子的角速度由=0增大到=10 rad/s ,则M r =_____________. 18、(0543A10) 如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS=l ,则系统对O O '轴的转动惯量为____________.19、(0546B30) 一长为l 、重W 的均匀梯子,靠墙放置,如图.梯子下端连一劲度系数为k 的弹簧.当梯子靠墙竖直放置时,弹簧处于自然长度.墙和地面都是光滑的.当梯子依墙而与地面成角且处于平衡状态时, m 2m O θ A R B R A ' R P S R Q R O ′ A B θ(1) 地面对梯子的作用力的大小为__________________.(2) 墙对梯子的作用力的大小为________________________.(3) W 、k 、l 、应满足的关系式为______________________. 20、(0551A15)一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到 =2.0 rad/s 时,物体已转过了角度=_________________. 21、(0552A15)一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的 角速度ω=-0ω,则0ω=________________.22、(0553A15)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后, 物体停止了转动.物体的转动惯量J =__________.23、(0559A20)一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O轴的转动惯量J =____________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =______________;角加速度________________. 24、(0647A10)如图所示,一轻绳绕于半径r = 0.2 m 的飞轮边缘,并施以F =98 N 的拉力,若不计轴的摩擦,飞轮的角加速度等于39.2 rad/s 2,此飞轮的转动惯量为___________________________.25、(0675A10)一可绕定轴转动的飞轮,在20 N ·m 的总力矩作用下,在10s 内转速由零 均匀地增加到8 rad/s ,飞轮的转动惯量J =______________.26、(0676A10)一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J =21MR 2.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承 O 60° m 2m F间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________. 27、(0683A20)如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J.若不计摩擦,飞轮的角加速度=_______________.28、(0684A20)半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体.绳的质量可以忽略,绳与定滑轮之间无相对滑动.若物体下落的加速度为a , 则定滑轮对轴的转动惯量J =______________________. 29、(0685A20)如图所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m CR 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度a =________________________. 30、(5031C45)转动着的飞轮的转动惯量为J ,在t =0时角速度为0.此后飞轮经历制动过程.阻力矩M 的大小与角速度的平方成正比,比例系数为k (k 为大于0的常量).当031ωω=时,飞轮的角加速度= ___________.从开始制动到031ωω=所经过的时间t =__________________. 31、(5402A20)一根均匀棒,长为l ,质量为m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于__________,初角加速度等于__________.已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml .32、(5642B25) 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为,则杆转动时受的摩擦力矩的大小为________________. 33、(0125B30)mCAB一飞轮以角速度绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为 前者的二倍.啮合后整个系统的角速度=__________________. 34、(0139A15)定轴转动刚体的角动量(动量矩)定理的内容是__________________________ _____________________________________________________________________, 其数学表达式可写成_________________________________________________. 动量矩守恒的条件是________________________________________________. 35、(0144B25)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )36、(0229A20) 有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度2=__________________________. 37、(0235B35)长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v ϖ射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度=__________________________.38、(0236B30)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入 后棒的角速度=_____________________.39、(0248A10)0v ϖAO2l /3 mmml 0v ϖ俯视图力矩的定义式为______________________________________________.在力 矩作用下,一个绕轴转动的物体作__________________________运动.若系统所 受的合外力矩为零,则系统的________________________守恒. 40、(0296A20)一转台绕竖直固定光滑轴转动,每10 s 转一周,转台对轴的转动惯量为1200 kg ·m 2.质量为80kg 的人,开始时站在台的中心,随后沿半径向外跑去,问当 人离转台中心2m 时,转台的角速度为__________________. 41、(0305A10)长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直 下垂,一子弹水平地射入杆中.则在此过程中,_____________系 统对转轴O的_______________守恒. 42、(0542B25)质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统 对转轴的角动量(动量矩)大小为___________________. 43、(0556A20)一个质量为m 的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,沿逆时针方向爬行,它相对于地面的速率为v ,此时圆盘正沿顺时针方向转动,相对于地面的角速度为.设圆盘对中心轴的转动惯量为J .若小虫停止爬行,则圆盘的角速度为______________________________________. 44、(0649A20)如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度A 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为.若A 轮的转动惯量为J A ,则B 轮的转动惯J B =_______________.45、(0650A20)一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度 =______________.O Mm2mO lR l /3 v 俯视图46、(0651A10)地球的自转角速度可以认为是恒定的.地球对于自转轴的转动惯量J =9.8× 1037 kg ·m 2.地球对自转轴的角动量L =__________________. 47、(0678B25)一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=____________________________.(已知圆柱体绕固定轴的转动惯量J =221MR )48、(0679B25) 一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度 为=__________________. 49、(0680B25)一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度=__________________________.50、(0681B25)两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s 转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度=__________________.(已知转台对转轴的转动惯量J =21MR 2,计算时忽略转台在转轴处的摩擦). 51、(0682B25)质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l 2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5 rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度 =______________________. 52、(0773A20)如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的 __________守恒. 53、(0774A20)判断图示的各种情况中,哪种情况角动量是守恒的.请把序号填在横线上的空白处 ___________________________.(1) 圆锥摆中作水平匀速圆周运动的小球m ,对竖直轴OO '的角动量.(2) 光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴O 的角动量.(3) 绕光滑水平固定轴O 自由摆动的米尺,对轴O 的角动量.(4) 一细绳绕过有光滑轴的定滑轮,滑轮一侧为一重物m ,另一侧为一质量等于m 的人,在人向上爬的过程中,人与重物系统对转轴O 的角动量. 54、(0776B25)如图所示,有一长度为l ,质量为m 1的均匀细棒,静止平放在光滑水平桌面上,它可绕通过其端点O ,且与桌面垂直的固定光滑轴转动,转动惯量J =31m 1l 2.另有一质量为m 2、水平运动的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,碰撞时间极短.已知小滑块与细棒碰撞前后的速率分别为v和u ,则碰撞后棒绕O 轴转动的角速度=________________.三、计算题:1、(0114A20)一半径为r 的圆盘,可绕一垂直于圆盘面的转轴作定轴转动.现在由于某种原因转轴偏离了盘心O ,而在C 处,如图所示.若A 、B 是通过CO 的圆盘直径上的两个端点,则A、B两点的速率将有所不同.现在假定圆盘转动的角速度ω 是已知的,而v A 、v B 可以通过仪器测出,试通过这些量求出偏心距l .OOO Om O '(3)(2)(4)Ol m 1m 2 A u vlOC BA2、(0116A20)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间? 3、(0119B35)已知一定轴转动体系,在各个时间间隔内的角速度如下: ω=ω0 0≤t ≤5 (SI) ω=ω0+3t -15 5≤t ≤8 (SI) ω=ω1-3t +24 t ≥8 (SI) 式中ω0=18 rad /s (1) 求上述方程中的ω1. (2) 根据上述规律,求该体系在什么时刻角速度为零. 4、(0120A15)一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少? 5、(0122A20)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 6、(0112C50)质量为M 的匀质圆盘,可绕通过盘中心垂直于盘的固定光滑轴转动,转动惯量为21M r 2.绕过盘的边缘挂有质量为m ,长为l 的匀质柔软绳索(如图).设绳与圆盘无相对滑动,试求当圆盘两侧绳长之差为S 时,绳的加速度的大小. 7、(0115B40)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量).8、(0123B30) 如图所示,一圆盘形工件K 套装在一根可转动的固定轴A 上,它们的中心线互相重合,圆盘的内外直径分别为D 和D 1.该工件在外力矩作用下获得角速度,这BCAωrSMa。
中国计量学院200 6 ~ 200 7 学年第 1 学期《大学物理A(2) 》课程考试试卷( A )一、选择题(33分,每题3分)1、(4095)一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经历三个准静态过程:(1)绝热膨胀到体积为2V;(2)等容变化使温度恢复到T;(3)等温压缩到原来的体积V,则在此循环过程中[]A、气体向外放热B、气体对外作正功C、气体内能增加D、气体内能减少2、(3151)一向右传播的简谐波在t时刻的波形如图所示,BC为波密介质的反射面,波由P点反射,则反射波在t时刻的波形图为[]3、(4089)有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(都看成刚性分子的理想气体),它们的压强和温度都相等,现将5J的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递的热量是:[]A、6 J.B、5 J.C、3 J.D、2 J.4、(3356)在单缝夫琅和费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹将如何变化[ ]A、间距变大B、间距变小C、不发生变化D、间距不变,但明暗条纹的位置交替变化5、(4383) 用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:[]A、2 E K.B、2hν - E K.C、hν - E K.D、hν + E K.6、(3072)如图所示,一平面简谐波沿x轴正向传播,已知P点的振动方程为)cos(φω+=tAy,则波的表达式为[]A、}]/)([cos{φω+--=ulxtAy.中国计量学院200 6 ~200 7 学年第 1 学期《 大学物理A (2) 》课程试卷( A )第 2 页 共 5 页f )1-⋅s D 、}]/)([cos{0φω+-+=u l x t A y .7、 (3253) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从平衡位置到二分之一最大位移处所需要的时间为 [ ] A 、T /12. B 、T /8.C 、T /6.D 、T /4.8、 (3165)在相同的时间内,一波长为λ的单色光在空气中和在玻璃中比较 [ ] A 、传播的路程相等,走过的光程相等. B 、传播的路程相等,走过的光程不相等. C 、传播的路程不相等,走过的光程相等. D 、传播的路程不相等,走过的光程不相等.9、 (4146) 理想气体向真空作绝热自由膨胀. [ ]A 、膨胀后,温度不变,压强减小.B 、膨胀后,温度降低,压强减小.C 、膨胀后,温度升高,压强减小.D 、膨胀后,温度不变,压强不变.10、(3639)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是 A 在入射面内振动的完全线偏振光.B 平行于入射面的振动占优势的部分偏振光.C 垂直于入射面振动的完全线偏振光.D 垂直于入射面的振动占优势的部分偏振光. [ ]11、 (5326) 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹 [ ] A 、间隔变小,并向棱边方向平移.B 、间隔变大,并向远离棱边方向平移.C 、间隔不变,向棱边方向平移.D 、间隔变小,并向远离棱边方向平移.二、填空题(27分,每空3分)12、(4040)图示的曲线分别表示氢气和氦气在同一温度下的麦克斯韦分子速分布情况。
大学物理课后练习六一、选择题:+1、两个同心的均匀带电球面,内球面半径为1R 、带电量1Q ,外球面半径为2R 、带电量2Q ,则在内球面里面、距离球心为r 处的P 点的场强大小E 为(A )12204Q Q r πε+;(B )1222010244Q Q R R πεπε+;(C )1204Q r πε;(D )0。
()+2、真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷。
设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为(A )04q r πε;(B )01()4q Q r Rπε+; (C )04q Q r πε+;(D )01()4q Q q r R πε++。
+3、半径为r 的均匀带电球面1,带电量为q ,其外有一同心的半径为R 的均匀带电球面2,带电量为Q ,则此两球面之间的电势差12U U -为(A )011()4qr R πε-;(B )011()4Q R r πε-;(C )01()4qQ r R πε-;(D )04q Q r πε+。
+4、半径为R 的均匀带电球面,总电量为Q ,设无穷远处电势为零,则该带电体所产生的电场的电势U 随离球心的距离r 变化的分布曲线为(A )(B )(C )(D )5、下面说法正确的是(A )等势面上,各点场强的大小一定相等;(B )在电势高处,电势能也一定高;(C )场强大处,电势一定高;(D )场强的方向总是从电势高处指向电势低处。
二、填空题:1、电荷面密度为σ的均匀带电平板,以平板上的一点O 为中心,R为半径作一半球面,如图1所示,则通过此半球面的电通量为。
+2、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和2σ-,如图2所示。
设方向向右为正,则A 、B 、C 三个区域的电场强度分别为:A E =,B E =,C E =。
3、如图3所示,2AB L =,OCD 是以B 为中心,L 为半径的半圆。
《大学物理》期末复习试卷B第6章 机械振动基础§6.1-1简谐振动 振幅 周期和频率 相位一.选择题和填空题1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A). (B) . (C) . (D) φωcos A . [ ]3.一物体作简谐振动,其振动方程为 )23cos(04.0π-π=t x(SI) .(1) 此简谐振动的周期T =__________________;2.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.§6.1-2简谐运动的能量5. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振幅为0.5 cm ,则其振动能量______________.§6.1-3旋转矢量3. 已知一质点沿y轴作简谐振动,其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是 [ ]-院系: 专业班级: 姓名: 学号:装 订 线6. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为(A) π/6. (B) π/3. (C) π/2. (D) 2π/3.(E) 5π/6. [](1) 振子在负的最大位移处,则初相为______________;(2) 振子在平衡位置向正方向运动,则初相为_____________; (3) 振子在位移为A /2处,且向负方向运动,则初相为______. 8.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________.二.计算题1. 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .3. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.§6.2简谐运振动的合成一.填空题 二.计算题 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.第7章 机械波 §7.1机械波的产生 波长 波线及波面 波速 一.选择题和填空题 1. 在下面几种说法中,正确的说法是:[ ] (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同. (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).--1. 一个沿x 轴正向传播的平面简谐波(用余弦函数表示)在t = 0时的波形曲线如图所示.(1) 在 x = 0,和x = 2,x = 3各点的振动初相各是多少?(2) 画出t = T / 4时的波形曲线.§7.2平面简谐波一.选择题1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 [ ](A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y , (SI).2.如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为[ ](A)])/(cos[0φω+-=u x t A y . (B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y . (D) })]/([cos{0φω++=u x t A y . 二.计算题1. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式.2. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.§7.3波的能量一. 选择题与填空题1. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 [ ](A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.2. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4 [ ]3. 当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ] (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大.4. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则 [ ](A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播. (C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.A B xu(C) o ',d . (D) b ,f .6. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中(A) 它的势能转换成动能.(B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D )它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小. [ ]7. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是___________.8.一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积∆S 1和∆S 2,则通过它们的平均能流之比=21P /P ___________________.§7.4 惠更斯原理 §7.5 波的干涉(A) )22cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C) )212cos(2π+π=t A y(D) )1.02cos(22π-π=t A y .[ ]3. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为(A) λk r r =-12.(B)π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ ]4.已知波源的振动周期为4.00×10-2s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________. 5. 频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为_____________. 二.计算题在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与)]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.三.问答题设P 点距两波源S 1和S 2的距离相等,若P 点的振幅保持为零,则由S 1和S 2分别发出的两列简谐波在P 点引起的两个简谐振动应满足什么条件?§7.6、7.7 驻波、多普勒效应一.选择题和.填空题3. 若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:[ ](A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI). (B) ]50.0)10(2cos[10.01π--π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI).(D )]75.0)10(2cos[10.01π+-π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).5. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是: [ ](A) o ',b ,d ,f . (B) a ,c ,e ,g . S4. 电磁波的电场强度E 、磁场强度 H 和传播速度 u的关系是:[ ](A) 三者互相垂直,而E 和H 位相相差π21.(B) 三者互相垂直,而且E 、H 、 u构成右旋直角坐标系.(C) 三者中E 和H 是同方向的,但都与 u垂直.(D) 三者中E 和H 可以是任意方向的,但都必须与 u垂直.5.一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ).[ ](A) 810 Hz . (B) 699 Hz . (C) 805 Hz . (D) 695 Hz .6. 两列波在一根很长的弦线上传播,其表达式为y 1 = 6.0×10-2cos π(x - 40t ) /2 (SI)y 2 = 6.0×10-2cos π(x + 40t ) /2 (SI) 则合成波的表达式为_________;在x = 0至x = 10.0 m 内波节的位置是_________________________________________________;波腹的位置是_______________________________________________________.7. 电磁波在媒质中传播速度的大小是由媒质的____________________决定的.8. 一静止的报警器,其频率为1000 Hz ,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是___________________和______________(设空气中声速为340 m/s ).。
大学物理【 06】部分常数: 真空介电常8.85 10 12 F m1,玻尔兹曼常数 k 1.38 1023J/K,气 体 普 适 常 数R 8.81J / K mol, 真空 磁 导 率0 =410 -7 N/A 2一、填空题(每空 2 分,共 40 分)1. 一个本来不带电的导体球半径为 R ,距球心 O 为 a 处( a >R )放一点电荷 q , q 以无穷远为电势零点,则导体球的电势为,球心处感觉电4 0 a荷产生的电场强度大小为 ___q2 ____,方向 __从球心指向 a 点 ____。
a42. 两无穷大平行搁置的平均带电平面,面电荷密度分别为A 和B ,在它们之间再平行地搁置一块无穷大金属平板(不带电) ,金属板左右两表面感觉面电荷密度 1=__ BA__________, 2 =___ AB_________。
223. 长为 L 的平均带电直线 AB ,单位长度带电量 。
取无量远为零电势,则其延伸线上距 B 端为 d 的 P 点的电势为 ____L d 。
4ln____________d4.平行板电容器两极板间距为 d,将它充电至电势差 U ,而后断开电源,插入厚d/2 的相对介电常数为 r 的介质板,则介质中的场强E=__U_____________;rd两极板间的电势差 U ′=_UU______________。
2 r 25. 一无穷长电流直导线通电流 I 0 ,达成如图示形状, ABC为半径为 R 的半圆形,则圆心 O 处磁感觉强度大小为 B 00I0 I,方向垂直纸面向里。
4R 4 R6. 图示 1/4 圆线圈 AOB 通电流为 5A ,半径为 0.1m ,置于平均的磁感觉强度 B 0=0.001T 的外磁场中, B 0 方向平行 OA ,则圆弧 AB 所受的磁力大小为 ___5 10 4 N __。
7. 半圆型线圈通电流为 I ,半径为 R ,置于磁感觉强度为 B 0 的平均外磁场中, B 0 的方向垂直于 AB ,如下图。
注意事项:1.请在本试卷上直接答题. 2.密封线下面不得写班级,姓名,学号等.教师姓名__________________ 作业序号_________专业__________________学号__________________姓名________________…………………………………………………07~08学年第一学期………………………密封装订线………………………08年1月15日……………………………………安徽工业大学06级《大学物理A 2》期末考试试卷 (甲卷)一、选择题: 请将你所选的各题答案的序号填入下表(每题3分,共30分).1、若匀强电场的场强为E v,其方向平行于半径为R的半球面的轴,如图所示.则通过此半球面的电场强度通量Φe 为 (A)(B)E R 2πE R 22π (C) E R 221π (D) E R 22π2、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=.(C) 204r QE επ=,r Q U 04επ=. (D) 204r Q E επ=,RQU 04επ=.3、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个点电荷-q 、q 、2q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A)a qQ 032επ. (B) aqQ03επ. (C)a qQ 0233επ. (D) aqQ023επ.4、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳外场强分布改变,球壳内不变. (C) 球壳内场强分布改变,球壳外不变. (D) 球壳内、外场强分布均改变.5、如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh.6、一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q 、电场强度的大小E 和电场能量W 将发生如下变化(A) Q 增大,E 增大,W 增大. (B) Q 增大,E 增大,W 减小. (C) Q 增大,E 减小,W 增大. (D) Q 减小,E 减小,W 减小.7、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B .(B) 01=B ,lI B π=0222μ. (C) lIB π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ.8、圆铜盘水平放置在均匀磁场中,B v的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.9、根据玻尔的理论,氢原子在n =7轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 7/6. (B) 7/2. (C) 7/4. (D) 7.10、若α粒子(电荷为2e )在磁感应强度为B r均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) . (B) . )2/(eRB h )/(eRB h (C) . (D) .)2/(1eRBh )/(1eRBh二、填空题:(共 36 分) . 1、真空中一半径为R 的均匀带电球面带有电荷Q (Q >0).今在球面上挖去非常小块的面积△S (连同电荷),如图所示,假设不影响其他处原来的电荷分布,则挖去△S 后球心处电场强度的大小E =____________,其方向为_________.2、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /4的金属板,则板间电压变成 U ' =________________3、如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd (磁场以边框为界).而a 、b 、c 三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a 缺口沿ad 方向射入磁场区域,若b 、c 两缺口处分别有电子射出,则此两处出射电子的速率之比v b /v c =_________________.4、已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为0B v,那么正方形线圈(边长为a )在磁感强度为B v的均匀外磁场中所受最大磁力矩大小为______________________.( 反面还有试题 )题类,题号 选择题 填 空 题 计算题 1 计算题 2 计算题 3 计算题 4 计算题 5 总 分 累分人复累人得分评阅教师题号 1 2 3 4 5 678910选择 得分 q2 IvS Q得 分(1∼5)c d5、平行的无限长直载流导线A 和B ,电流均为I ,垂直纸面, 方向如图示,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度_________. =p B (2) 磁感强度B v 沿图中环路L 的线积分 =∫⋅L l B v v d __________________.6、如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B v 的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U v ac =____________;当aOc 以速度v v 沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.7、两根很长的平行直导线与电源组成回路,如图.已知导线上的电流为I ,两导线单位长度的自感系数为L ,则沿导线单位长度的空间内的总磁能W m =______________.8、用某频率的单色光照射基态氢原子气体,使气体发射出三种频率的谱线,原照射单色光的频率是______________________.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)9、如图所示,一频率为ν 的入射光子与起始静止的自由电子发生碰撞和散射.如果散射光子的频率为ν′,反冲电子的动量为p ,则在与入射光子平行的方向上的动量守恒定律的分量形式为_______________.10、波长为λ0 = 0.500 Å的X 射线被静止的自由电子所散射,若散射线的波长变为λ = 0.522 Å,反冲电子的动能为______________________.(普朗克常量h =6.63×10-34 J ·s)三、计算题:要求写出解题主要步骤 (34分).(6分) 1、一半径为R 的带电球体,其电荷体密度分布为ρ =A/r (r ≤R ) ,ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.(8分)2、一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别 为R 1 = 2 cm ,R 2 = 6 cm .电容器接在电压U = 30 V 的电源上,(如图所示),试求距离轴线R = 3 cm 处的A 点的电场强度和A 点与外筒间的电势差.(6分)3、一维运动的粒子,设其动量的不确定量等于它的动量,试求此粒子的位置不确定量与它的德布罗意波长的关系.(不确定关系式).h x p x ≥ΔΔ(6分)4、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B v中,求整个导线所受的安培力(R 为已知).(8分 )5、载有电流为I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M − U N .××××× 得分(6∼10) ……………………………………………………………此线以下答题无效…………………………………………………………得分得分 得分 得分Bv得分A2甲卷 3。
A北京航空航天大学2006-2007 学年第 1学期期末《基础物理学—2》考 试 A 卷学号 姓名考试说明:考试为闭卷考试,考试时间为120分钟。
注意事项:1、 第一部分基础满分共30分。
2、 本部分试题共10题,每题3分。
3、 请用2B 铅笔在答题纸上规范填涂答案.单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。
1. 下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线?[ ]2。
对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于(A ) 2/3. (B ) 1/2.(C ) 2/5. (D ) 2/7.[ ]3. 一定量的理想气体向真空作绝热自由膨胀,体积由V 1增至V 2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加.v v[ ]4。
在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B ) 向上平移,且间距不变. (C) 不移动,但间距改变. (D) 向上平移,且间距改变.[ ]5. 使一光强为I 0的平面偏振光先后通过两个偏振片P 1和P 2.P 1和P 2的偏振化方向与原入射光光矢量振动方向的夹角分别是α 和90°,则通过这两个偏振片后的光强I 是(A)21I 0 cos 2α . (B ) 0. (C) 41I 0sin 2(2α). (D ) 41I 0 sin 2α .(E ) I 0 cos 4α .[ ]6。
某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(A) 35.3°(B ) 40.9° (C ) 45° (D) 54。
2006年上学期2005级《大学物理》课程期末考试试卷(A)一. 选择题: (共27分) 1.(本题3分) 0367质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s . [ ]2.(本题3分) 5636一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3.(本题3分) 0216已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ] 4. (本题3分)0390一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ] 5. (本题3分)1140真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ] 6.(本题3分)5471电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B、2B 和3B表示,则O 点磁感强度的大小为(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]7. (本题3分)2082如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b< F c .(C) F b > F c > F a . (D) F a > F c > F b . []8. (本题3分)2013四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I a B π=02μ. (B) I aB 2π=02μ.(C) B = 0. (D) I aB π=μ. [ ]9.(本题3分) 2736顺磁物质的磁导率: (A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]二填空题: (共33分)10. (本题3分)0007一质点沿x 方向运动,其加速度随时间变化关系为 a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = . 11. (本题3分)0351一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.12. (本题3分)0712哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆.它离太阳最近的距离是r 1=8.75×1010 m ,此时它的速率是v 1=5.46×104 m/s .它离太阳最远时的速率是v 2=9.08×102 m/s ,这时它离太阳的距离是r 2=______.13. (本题3分)0100已知地球质量为M ,半径为R .一质量为m 的火箭从地面上升到距地面高度为2R 处.在此过程中,地球引力对火箭作的功为_____________________.14. (本题5分)1206一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的Ia_________倍;电场能量是原来的_________倍.15. (本题4分)2401长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =________________,磁感强度的大小B =__________.16. (本题4 分)2180写出麦克斯韦方程组的积分形式: _____________________________,_____________________________, _____________________________,_____________________________.17. (本题3分)4715以速度v 相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为______. 18. (本题5分)4732观察者甲以 0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg 的物体,则(1) 甲测得此物体的总能量为____________;(2) 乙测得此物体的总能量为____________.三.计算题: (共30分) 19. (本题10分)0781物体A 和B 叠放在水平桌面上,由跨过定滑轮的轻质细绳相互连接,如图所示.今用大小为F 的水平力拉A .设A 、B 和滑轮的质量都为m ,滑轮的半径为R ,对轴的转动惯量J =221mR .AB 之间、A 与桌面之间、滑轮与其轴之间的摩擦都可以忽略不计,绳与滑轮之间无相对的滑动且绳不可伸长.已知F =10 N ,m =8.0 kg ,R =0.050 m .求:(1) 滑轮的角加速度; (2) 物体A 与滑轮之间的绳中的张力;(3) 物体B 与滑轮之间的绳中的张力. 20. (本题5分)1284真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.21. (本题10分)2737两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势 ,并说明线圈中的感应电流是顺时针还是逆时针方向.22. (本题5分)2408一面积为S 的单匝平面线圈,以恒定角速度ω在磁感强度k t B Bωsin 0=的均匀外磁场I中转动,转轴与线圈共面且与B 垂直( k为沿z 轴的单位矢量).设t =0时线圈的正法向与k同方向,求线圈中的感应电动势.23. (本题5分)4735已知μ 子的静止能量为 105.7 MeV ,平均寿命为 2.2×10-8 s .试求动能为 150 MeV 的μ 子的速度v 是多少?平均寿命τ 是多少?四 回答问题(共5分) 24. (本题5分)0088有人把一物体由静止开始举高h 时,物体获得速度v ,在此过程中,若人对物体作功为W ,则有试问这一结果正确吗?这可以理解为“合外力对物体所作的功等于物体动能的增量与势能的增量之和”吗?为什么?大学物理试卷(A)参考答案一.选择题: (共27分) 1.(本题3分) 0367 ( A ) 2.(本题3分) 5636 ( C ) 3.(本题3分) 0216 ( D ) 4. (本题3分)0390 ( D ) 5. (本题3分)1140 ( C ) 6.(本题3分)5471 ( A ) 7. (本题3分)2082 (C ) 8. (本题3分)2013 ( C )9.(本题3分) 2736 ( B )二填空题: (共33分)10. (本题3分)000723 m/s 3分 11. (本题3分)0351θc o s /mg 1分θθc o ss i ngl2分 12. (本题3分)07125.26×1012 m 3分 13. (本题3分)0100)131(R R G M m- 或 RGMm32-3分14. (本题5分)1206εr 2分 1 1分 εr 2分mgh m W +=221v15. (本题4分)2401I / (2πr ) 2分 μI / (2πr )2分16. (本题4 分)2180⎰⎰⋅=VSV S D d d ρ 1分 ⎰⎰⋅⋅∂∂-=SL S t B l E d d 1分0d =⎰⋅SS B 1分 ⎰⋅⎰⋅∂∂+=SL S t DJ l Hd )(d 1分17. (本题3分)4715c 3分18. (本题5分)47329×1016 J 2分 1.5×1017 J 3分三.计算题: (共30分) 19. (本题10分)0781解:各物体受力情况如图. 图2分 F -T =ma 1分 T '=ma 1分(T T '-)R =β221mR 1分 a =R β 1分由上述方程组解得:β =2F / (5mR )=10 rad ·s -22分T =3F / 5=6.0 N 1分 T '=2F / 5=4.0 N 1分20. (本题5分)1284解: 通过x =a 处平面1的电场强度通量Φ1 = -E 1 S 1= -b a 3 1分 通过x = 2a 处平面2的电场强度通量Φ2 = E 2 S 2 = 2b a 3 1分其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为 Φ = Φ1+ Φ2 = 2b a 3-b a 3 = b a 3 =1 N ·m 2/C 3分21. (本题10分)2737解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ 2分以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:23ln 2d 203201π=π⋅=⎰Idr rId ddμμΦ aa T ’y与线圈相距较近的导线对线圈的磁通量为:2ln 2d 20202π-=π⋅-=⎰Idr rId ddμμΦ总磁通量 34ln 2021π-=+=IdμΦΦΦ 4分 感应电动势为: 34ln 2d d )34(ln 2d d 00αμμπ=π=-=d t I d t Φ☜ 2分 由 >0和回路正方向为顺时针,所以 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向. 2分22. (本题5分)2408解: t t S B t BS ωωωΦcos sin cos 0== 2分 ωωωΦ)cos sin (/d d 220t t S B t +-=)2cos(0t S B ωω=)2cos(0t S B i ωω-=☜ 3分23. (本题5分)4735解:据相对论动能公式 202c m mc E K -= 得 )1)/(11(220--=c c m E K v 即419.11)/(11202==--cm E c Kv 解得v = 0.91c 3分平均寿命为 821031.5)/(1-⨯=-=c v ττ s 2分四 回答问题(共5分) 24. (本题5分)0088答:人将质量为m 的物体举高h ,并使物体获得速度v ,在这过程中人对物体 作的功W 确为 mgh m W +=221v2分但W 并不是合外力所作的功.因为物体所受的力除了人的作用力F 外,还有重力P =mg ,根据动能定理,合外力所作的功等于物体动能的增量,则可写为221v m mgh Fh =- 即021)(2+=-v m h P F1分 所以mgh m Fh W +==221v2分W 是人对物体所作的功,而不是物体所受合外力所作的功.。