传输信道
- 格式:ppt
- 大小:3.12 MB
- 文档页数:82
物理信道和传输信道的通俗理解物理信道和传输信道是通信领域中的两个重要概念。
它们在数据传输过程中扮演着不同的角色,相互配合,确保信息的可靠传递。
本文将以通俗易懂的方式解释物理信道和传输信道的概念,并探讨它们之间的关系。
我们来了解一下物理信道。
物理信道是指信息传输中的实际媒介,它可以是电缆、光纤、无线电波等。
物理信道负责将发送方产生的信号传输到接收方。
在这个过程中,信号可能会受到各种干扰,如噪声、衰减等。
因此,物理信道的质量对于信息传输的可靠性至关重要。
传输信道则是指在物理信道的基础上建立起来的逻辑通路。
它通过使用各种调制解调器、编码解码器等技术手段,将发送方的数字信号转换为适合物理信道传输的模拟信号,并在接收方将模拟信号重新转换为数字信号。
传输信道的作用是确保信息在物理信道上的正确传输。
物理信道和传输信道之间存在着密切的联系。
物理信道提供了传输信道所需的物理媒介,而传输信道则通过各种技术手段来优化物理信道的传输效果。
可以说,传输信道是物理信道的一种抽象和扩展,它通过引入各种信号处理和纠错技术,提高了信息传输的可靠性和效率。
在实际应用中,物理信道和传输信道的选择取决于具体的通信需求和环境条件。
例如,在有线通信中,常用的物理信道包括铜缆、光纤等;而在无线通信中,常用的物理信道包括无线电波、红外线等。
传输信道则根据具体的通信标准和技术选择相应的调制解调器、编码解码器等设备。
总结起来,物理信道和传输信道是通信领域中不可或缺的两个概念。
物理信道提供了信息传输的物理媒介,而传输信道通过各种技术手段来优化物理信道的传输效果。
它们相互配合,确保信息的可靠传递。
在实际应用中,根据具体的通信需求和环境条件选择合适的物理信道和传输信道,对于建立稳定、高效的通信系统至关重要。
通信工程专业研究方法论无线传输信道的特性学院:电子信息工程学院专业:通信工程班级:学号:学生:指导教师:毕红军2014年8月目录一、引言: (2)二、无线电波传播频段及途径 (3)2.1无线电波频段划分 (3)2.2无线电波的极化方式 (3)2.3传播途径 (4)三、无线信号的传播方式 (4)3.1直线传播及自由空间损耗 (5)3.2 反射和透射 (6)3.2.1斯涅尔(Snell)定律 (6)d 功率定律 (7)3.2.2 43.2.3断点模型 (8)3.3绕射 (9)3.3.1单屏或楔形绕射 (9)3.3.2多屏绕射 (10)3.4散射 (12)四、窄带信道的统计描述 (14)4.1不含主导分量的小尺度衰落 (14)4.2含主导分量的小尺度衰落 (16)4.3多普勒谱 (16)4.4大尺度衰落 (17)五、宽带信道的特性 (18)5.1多径效应对宽带信道的影响 (18)5.2多普勒频移对宽带信道的影响 (21)六、总结 (22)七、参考文献 (23)一、引言:各类无线信号从发射端发送出去以后,在到达接收端之前经历的所有路径统称为信道。
如果传输的无线信号,则电磁波所经历的路径,我们称之为无线信道。
信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机结合。
同时,电波在各种路径的传播过程中,有用信号会受到各种噪声的污染,因而会出现不同情形的损伤,严重时会使信号难以恢复。
无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到建筑物、地形等的阻挡而引起信号功率的衰减和相位的失真,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。
下面将讨论无线传输信道的主要特性。
二、无线电波传播频段及途径2.1无线电波频段划分现代的数字通信系统频谱主要集中在300KHz到5GHz之间,尤其是500KHz到2GHz之间的频段使用更密集,比如GSM系统使用的是900MHz和1800MHz,WCDMA系统使用的是1940MHz—1955MHz和2130MHz—2145MHz。
在5G(NR)网络中媒体接入控制层MAC)是为无线链路控制(RLC)层提供服务的逻辑信道。
逻辑信道根据它所携带信息类型定义一般被分为:控制信道(用于传输控制和配置信息)和传输信道(用于用户数据的传输)。
1.5G(NR)网络中的逻辑信道o BCCH(广播控制信道):用于传送系统信息从网络到小区覆盖用户端的传输。
在接入网络前,用户需获取系统信息来获取系统配置。
BCCH信道用于5G(NR) 的独立(SA)组网方式,对于非独立组网(NSA),系统信息由LTE小区提供,没有BCCH。
o PCCH(寻呼控制信道):这是用来寻呼终端的信道,其所属小区网络侧并不知道。
因此,寻呼消息在多个小区中发送。
与BCCH PCCH相同用于独立(SA)组网,对于非独立组网(NSA) ,寻呼消息由LTE小区提供,没有PCCH.。
o CCCH(公共控制信道):它是用来传输对UE接入进行控制信息的信道;o DCCH(专用控制信道):它用于对UE进行专门控制信息传送/ 接收的信道。
这个信道用于(UE单独)专用配置的信道,如不同的层参数设置不同。
o DTCH(专用传输信道):它用于将用户数据传送/接收到用户终端。
这是传输所有(用户)单独上行和下行用户数据的逻辑信道。
2.5G(NR)网络中的传输信道传输信道是通过无线接口传输信息的方式和特点。
在物理层,MAC层均以传输信道的形式进行服务。
传输信道上的数据被编排成传输块。
o BCH(广播信道):它用于传输BCCH系统信息,也就是主信息块(MIB)。
根据规范它有一个固定的传输格式;o PCH(寻呼信道):用于从PCCH逻辑信道下发寻呼信息。
PCH支持不连续接收(DRX),允许设备在预定的时间瞬间唤醒接收PCH消息以节省电池电量。
o DL-SCH(下行共享信道):这是5G(NR)传输下行数据的主要传输信道。
它支持动态速率自适应和信道调度、HARQ和空间复用等关键特性。
DL-SCH还用于传输某些部分没有映射到BCH的BCCH系统信息。
信道传输速率有什么影响因素?一、信号带宽信号带宽是指信号在传输过程中所占据的频带宽度。
带宽越大,信号的传输速率也就越高。
因为在传输过程中,信号需要占用一定的频谱资源,带宽越宽,传输的数据量也就越大。
二、信噪比信噪比是指信号与噪声的比值。
噪声是由于信号传输过程中受到干扰而产生的随机信号,会降低信号的质量和传输速率。
信噪比越高,表示信号相对于噪声的强度越大,传输速率也就越高。
通常情况下,我们希望保持较高的信噪比,以提高信道传输速率。
三、调制方式调制是将数字信号转换为模拟信号的过程。
不同的调制方式会对传输速率产生影响。
例如,调幅是通过改变载波的幅度来传输信号,而调频是通过改变载波的频率来传输信号。
一般来说,调频的传输速率要高于调幅。
四、传输介质传输介质也对信道传输速率有一定的影响。
光纤作为一种高速传输介质,具有大带宽、小损耗等优点,所以它在传输速率方面具有显著的优势。
而另一些传输介质,如铜缆,传输速率则相对较低。
五、编码方式编码方式是指对数字信号进行特定编码以便在信道上传输的方法。
不同的编码方式对传输速率有一定的影响。
例如,有些编码方式可以实现数据压缩,从而提高传输速率。
因此,在选择合适的编码方式时,需要根据具体应用需求和传输速率要求进行选择。
综上所述,信道传输速率受多个因素的影响,包括信号带宽、信噪比、调制方式、传输介质和编码方式等。
在实际应用中,我们需要针对不同的情况选择合适的传输参数,以提高信道的传输速率。
当然,还有许多其他因素也会对信道传输速率产生影响,需要我们在实际应用中进行深入的研究和探索。
信道传输能力的指标信道传输能力是指在单位时间内通过信道传输的数据量。
它是衡量信道传输性能的重要指标之一,对于评估通信系统的性能具有重要意义。
本文将从不同角度介绍信道传输能力的指标,并探讨其相关概念和应用。
我们来介绍一些常见的衡量信道传输能力的指标。
第一个指标是数据传输速率,即单位时间内传输的数据位数。
常见的单位有bps (比特每秒)、Kbps(千比特每秒)、Mbps(兆比特每秒)等。
数据传输速率直接影响着信道的传输能力,通常情况下,数据传输速率越高,信道传输能力越大。
除了数据传输速率,信道的带宽也是衡量传输能力的重要指标之一。
带宽是指信道能够传输的频率范围,通常以Hz为单位。
带宽越大,信道传输能力越高,能够传输更多的数据。
带宽与数据传输速率之间存在着一定的关系,可以通过调制技术和编码方式来提高信道的传输效率,从而提高数据传输速率。
除了数据传输速率和带宽,误码率也是衡量信道传输能力的重要指标之一。
误码率是指在信道传输过程中出现错误的比例。
误码率越低,信道传输能力越强,能够更可靠地传输数据。
为了降低误码率,通信系统通常会采用差错控制编码和纠错编码等技术,以提高信道传输的可靠性。
另外一个重要的指标是信噪比(SNR),它是信号与噪声功率之比。
信噪比越高,表示信号在传输过程中受到的噪声干扰越小,信道传输能力越强。
在实际通信系统中,为了提高信噪比,通常会采用调制技术、功率控制和多天线等技术手段。
时延也是衡量信道传输能力的重要指标之一。
时延包括传输时延、传播时延、处理时延和排队时延等。
传输时延是指数据从发送端到接收端所需的时间;传播时延是指信号在信道中传播所需的时间;处理时延是指数据在通信设备中处理所需的时间;排队时延是指数据在队列中等待处理所需的时间。
时延越小,信道传输能力越高,能够更快速地传输数据。
信道传输能力的指标包括数据传输速率、带宽、误码率、信噪比和时延等。
这些指标反映了信道传输的性能和可靠性,对于设计和评估通信系统具有重要意义。
信道传输的速率与信道带宽之间的关系展开全文数据传输速率的定义数据传输速率是描述数据传输系统的重要技术指标之一。
数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。
对于二进制数据,数据传输速率为:S=1/T(bps)其中,T为发送每一比特所需要的时间。
例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。
在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。
其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps带宽与数据传输速率在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。
信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。
奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。
因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps)对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。
奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。
香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。
香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N的关系为:Rmax=B.log2(1+S/N)式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。
若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N)可得,S/N=1000。
若带宽B=3000Hz,则Rmax≈30kbps。
LTE信道详解信道及信号逻辑、传输、物理信道逻辑、传输、物理信道映射逻辑信道定义传送信息的类型,这些数据流是包括所有用户的数据。
传输信道是在对逻辑信道信息进行特定处理后再加上传输格式等指示信息后的数据流。
物理信道是将属于不同用户、不同功用的传输信道数据流分别按照相应的规则确定其载频、扰码、扩频码、开始结束时间等进行相关的操作,并在最终调制为模拟射频信号发射出去;不同物理信道上的数据流分别属于不同的用户或者是不同的功用。
下行信道映射关系上行信道映射关系对于上行来说,逻辑信道公共控制信道CCCH、专用控制信道DCCH以及专用业务信道DTCH都映射到上行共享信道UL-SCH,对应的物理信道为PUSCH。
上行传输信道RACH 对应的物理信道为PRACH。
对于下行来说,逻辑信道寻呼控制信道PCCH对应的传输信道为PCH,对应物理信道为PDSCH承载;逻辑信道BCCH映射到传输信道分为两部分,一部分映射到BCH,对应物理信道PBCH,主要是承载MIB(MasterInformationBlock)信息,另一部分映射到DL-SCH,对应物理信道PDSCH,承载其它系统消息。
CCCH、DCCH、DTCH、MCCH (Multicast Control Channel)都映射到DL-SCH,对应物理信道PDSCH。
MTCH (Multicast Traffic Channel)承载单小区数据时映射到DL-SCH,对应物理信道PDSCH。
承载多小区数据时映射到MCH,对应物理信道PMCH。
物理信道简介物理信道:对应于一系列RE的集合,需要承载来自高层的信息称为物理信道;如PDCCH、PDSCH等。
物理信号:对应于物理层使用的一系列RE,但这些RE不传递任何来自高层的信息,如参考信号(RS),同步信号。
下行物理信道:PDSCH: PhysicalDownlink SharedChannel(物理下行共享信道) 。
主要用于传输业务数据,也可以传输信令。
传输信道是连接发送端和接收端的通信设备之间的传输媒介,是信号传输的通道。
根据传输媒质的不同,信道可以分为两大类:无线信道和有线信道。
无线信道中,信号的传输是利用电磁波在空间的传播来实现的。
电磁波的传输主要分为地波、天波(或称为电离层反射波)和视线传播三种。
地波传播是频率较低(约2MHz以下)的电磁波趋于沿弯曲的地球表面传播,有一定的绕射能力。
这种传播方式称为地波传播,在低频和甚低频段,地波能够传播超过数百千米或数千千米。
由于电离层不均匀性,使其对在这一频段入射的电磁波产生散射。
这种散射信号的强度与30MHz以下的电离层反射信号强度相比要小的多,但仍然可以用于通信。
对流层散射是由于对流层中的大气不均匀性产生。
有线信道中,传输电信号的有线信道主要有三类,明线、对称电缆和同轴电缆。
明线是平行架设在电线杆上的架空线路。
在通信过程中,信道会受到各种因素的影响,如噪声、干扰、衰减等,这些因素会导致信号的质量下降,甚至无法正常通信。
因此,需要对信道进行优化和设计,以最大程度地减小这些因素的影响,保证信号的传输质量和稳定性。
我国地面数字电视信道传输标准文章标题:深度解析我国地面数字电视信道传输标准1. 介绍我国地面数字电视信道传输标准,作为数字电视技术中的核心内容之一,直接关系到数字电视信号的传输和接收质量。
要深入了解我国地面数字电视信道传输标准,需要从其历史、技术要点和发展趋势等多个方面进行全面评估。
2. 历史我国地面数字电视信道传输标准的历史需要被关注。
我国自20世纪90年代开始研制数字电视技术,经过多年的努力和探索,终于于2004年颁布了地面数字电视传输标准。
该标准不断得到完善和更新,现已成为我国数字电视传输技术的基石。
3. 技术要点需要从技术要点的角度深入探讨我国地面数字电视信道传输标准。
该标准采用了何种传输技术和频率划分?在信号编码、调制和传输过程中又有哪些关键参数和指标?通过对这些技术要点的深入分析,可以更好地了解我国地面数字电视信道传输标准的特点和优势。
4. 发展趋势随后,我们需要关注我国地面数字电视信道传输标准的发展趋势。
数字电视技术一直在不断发展和创新,我国的地面数字电视信道传输标准也在不断完善和更新。
未来,随着5G、8K等新技术的兴起,数字电视传输标准可能会面临新的挑战和机遇,这也将影响到我国地面数字电视信道传输标准的发展方向。
5. 总结和回顾通过对我国地面数字电视信道传输标准的全面评估,我们可以更全面、深刻地了解这一重要的技术标准。
与此也能够更好地把握我国数字电视技术发展趋势,为相关行业的技术创新和发展提供参考。
6. 个人观点和理解在我看来,我国地面数字电视信道传输标准的不断完善和更新,为我国数字电视技术的发展提供了有力支持。
我坚信,随着科技的不断进步,我国的地面数字电视信道传输标准将迎来更加美好的未来。
通过对我国地面数字电视信道传输标准的深度解析,我们对这一重要的技术标准有了深刻的了解。
希望我们的文章可以让您对这一主题有新的认识和理解。
技术要点我国地面数字电视信道传输标准的技术要点包括传输技术、频率划分、信号编码、调制和传输过程中的关键参数和指标等方面。
无线信道传播特性分析总结(共8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--无线信道传播特性分析总结班级学号姓名随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。
在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。
1、无线信道的概念要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。
信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。
信道具有一定的频率带宽,正如公路有一定的宽度一样。
与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。
不同的环境,其传播特性也不尽相同。
无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。
在无线信道中,信号衰落是经常发生的,衰落深度可达30。
对于数字传输来说,衰落使比特误码率大大增加。
这种衰落现象严重恶化接收信号的质量,影响通信可靠性。
移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。
另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。
所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。
2、无线信道的特性信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。