第十六届华罗庚金杯少年数学邀请赛决赛(考前测试) 学生版
- 格式:doc
- 大小:157.00 KB
- 文档页数:4
2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷A(小学组)一、填空题(每小题3分,共80分)1.(3分)1+3+5+7=.2.(3分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成了其余的工程,那么完成这项工程共用了天.3.(3分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了5 千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为千米.4.(3分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯,晚上9时35分20秒时,在分针与时针所夹的锐角内有个小彩灯.5.(3分)在边长为1厘米的正方形ABCD中,分别以A、B、C、D为圆心,1厘米为半径画四分之一圆,交点E、F、G、H,如图,则中间阴影部分的周长为厘米.(取圆周率π=3.141)6.(3分)用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买一本,而且钱恰好花完.则不同的购买方法有种.7.(3分)已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是(立方厘米)8.(3分)将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有个二、解答下列各题(每题10分,共40分,要求写出简要过程)9.长方形ABCD的面积是2011平方厘米.梯形AFGE的顶点F在BC上,D 是腰EG的中点.试求梯形AFGE的面积.10.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有两支坏了的荧光管不亮,显示的线路号为“351”,则该公交车的线路号有哪些可能?11.设某年中有一个月里有三个星期日的日期为奇数,则这个月的20日可能是星期几?12.以[x]表示不超过x的最大整数,设自然数n满足[]+[]+[]+…+[]+[]>2011,则n的最小值是多少?三、解答下列各题(每小题0分,共30分,要求写出详细过程)13.在如图的加法竖式中,不同的汉字代表不同的数字.问:满足要求的不同算式共有多少种?14.如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G,假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向,试给出一个两只蜘蛛必定捉住爬虫的方案.2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷A(小学组)参考答案与试题解析一、填空题(每小题3分,共80分)1.(3分)1+3+5+7=18.【分析】根据加法结合律和加法交换律进行计算.【解答】解:1+3+5+7=1++3++5++7+=(1+3+5+7)+(+++)=16+2=18故答案为:18.2.(3分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成了其余的工程,那么完成这项工程共用了70 天.【分析】把这项工程看作单位“1”,用“÷30÷8=”求出1人1天的工作效率,则12个人工作效率和为×12=,求出剩下的工作总量,然后根据:工作总量÷工作效率=工作时间“求出后来用的时间,进而求出完成这项工程共用的时间.【解答】解:一个人的工作效率是÷30÷8=,12个人的工作效率和为×12=,共需:(1﹣)÷+30=40+30=70(天)答:一共用了70天.故答案为:70.3.(3分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了5 千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为45 千米.【分析】根据题意可知,甲乙的车速比是1.2:1=6:5,所以所用时间比为5:6,不妨设甲用时5t,则乙原定时间为6t,乙因故障耽误的时间为×6t=t,而最后全程用时5t,所以故障排除后,乙的提速使它节省了2t 的时间.提速后的速度与原来速度比为1.6:1=8:5,所以时间比为5:8,节省了三份的时间,所以每份为t,所以这段路原计划用时t×8=t,所以一开始的5千米原计划用时是6t﹣t=t,所以A、B之间的距离为5×(6t÷t),然后计算即可.【解答】解:甲乙的车速比是1.2:1=6:5,所以所用时间比为5:6;设甲用时5t,则乙原定时间为6t;乙因故障耽误的时间为×6t=t,而最后全程用时5t,所以故障排除后,乙的提速使它节省了2t的时间.提速后的速度与原来速度比为1.6:1=8:5,所以时间比为5:8,节省了三份的时间,所以每份为t,所以这段路原计划用时t×8=t,所以一开始的5千米原计划用时是6t﹣t=t,所以A、B之间的距离为:5×(6t÷t),=5×9,=45(千米);故答案为:45.4.(3分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯,晚上9时35分20秒时,在分针与时针所夹的锐角内有12 个小彩灯.【分析】先求出晚上9时35分20秒时针与分针所夹的角;再根据表盘共被分成60小格,每一大格所对角的度数为30°,每一小格所对角的度数为6°,即可求出晚上9时35分20秒时针与分针间隔的分钟的刻度,从而求出晚上9时35分20秒时,时针与分针所夹的角内装有的小彩灯个数.【解答】解:晚上9时35分20秒时,时针与分针所夹的角为:9×30°+35×0.5°+20×0.5°÷60﹣(7×30°+20×6°÷60)=270°+17.5°+10°÷60﹣210°﹣2°=(75)°(75)°÷6≈12(个).故在分针与时针所夹的锐角内有12个小彩灯.故答案为:12.5.(3分)在边长为1厘米的正方形ABCD中,分别以A、B、C、D为圆心,1厘米为半径画四分之一圆,交点E、F、G、H,如图,则中间阴影部分的周长为 2.094 厘米.(取圆周率π=3.141)【分析】如图所示:由题意很容易就可以得出△ABF为等边三角形,则弧为圆,同理弧也为圆,所以弧=+﹣=圆,同理其余三段也为圆,故周长=圆,再据圆的周长公式即可得解.【解答】解:依题易知△ABF为等边三角形,故弧为圆,同理弧也为圆,所以弧=+﹣=圆,同理其余三段也为圆,故阴影部分的周长=圆×4=圆==2.094(厘米);答:中间阴影部分的周长为 2.094厘米.6.(3分)用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买一本,而且钱恰好花完.则不同的购买方法有 5 种.【分析】每种先都减去1本,剩余40﹣2﹣5﹣11=22元.然后根据剩余的钱数,分类解答,解决问题.【解答】解:每种先都减去1本,剩余40﹣2﹣5﹣11=22元.如果再买2本11元的,恰好用完,计1种方法;如果再买1本11元的,剩余11元,可以买1本5元和3本2元,计1种方法;如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,计3种方法.共有1+1+3=5种方法.答:不同的购买方法有5种.7.(3分)已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是2666(立方厘米)【分析】由三视图可知,该几何体为四棱锥,分别确定底面积和高,利用锥体的体积公式求解即可.【解答】解:由三视图可知,该几何体为四棱锥,底面ABCD为边长为20cm 的正方体,OE⊥CD且E是CD的中点,所以棱锥的高OE=20cm.所以四棱锥的体积为×202×20=×400×20=2666(cm3).答:这个几何体的体积是2666cm3.故答案为:2666.8.(3分)将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有10 个【分析】分值为整数,说明分母是分子的约数.大于11的质数13、17、19要想构成分值为整数的分数,只能做1的分子.然后写出这几个数即可.【解答】解:根据分析可知,22个数最多能构成的整数为:,,,,,,,,,.所以分数值为整数的最多能有10个.故答案为:10.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.长方形ABCD的面积是2011平方厘米.梯形AFGE的顶点F在BC上,D 是腰EG的中点.试求梯形AFGE的面积.【分析】根据题意可连接DF,三角形ADF和长方形ABCD是同底等高的,因此可知三角形ADF的面积是长方形ABCD面积的一半,因为点D是EG的中点,AE平行与FG,所以三角形ADF也是梯形AFGE面积的一半,因为点D是线段EG的中点,所以三角形ADE和三角形DGF的面积就为梯形AFGE 面积的一半,即梯形的面积等于长方形的面积,据此解答即可.【解答】解:如图,连接DF.三角形ADF=2011÷2=1005.5(平方厘米),因为点D为EG的中点,所以三角形AED+三角形DFG=1005.5(平方厘米),梯形AFGE的面积:1005.5+1005.5=2011(平方厘米),答:梯形AFGE的面积是2011平方厘米.10.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有两支坏了的荧光管不亮,显示的线路号为“351”,则该公交车的线路号有哪些可能?【分析】显示的百位数字3有一处坏,可能是9,有两处坏可能是8;十位数字5,有一处坏,可能是6和9,有两处坏,可能是8;个位数字1,有一处坏可能是7,有两处坏可能是4;在不亮的灯管中可能应该都不亮,可能有一处该亮却没亮,可能有2处该亮却没亮,分三种可能情况,细致分析,即可得解.【解答】解:分三种情形考虑.第一种情形:线路号的数字中没有荧光管坏了.只有351 一个可能线路号.第二种情形:线路号的数字中有1 支荧光管坏了.坏在第一位数字上,可能的数字为9,线路号可能是951;坏在第二位数字上,可能的数字为6,9,线路号可能是361,391;坏在第三位数字上,可能的数字为7,线路号可能是357.第三种情形:线路号的数字中有2 支荧光管坏了.都坏在第一位数字上,可能的数字为8,线路号可能是851;都坏在第二位数字上,可能的数字为8,线路号可能是381;都坏在第三位数字上,可能的数字为4,线路号可能是354;坏在第一、二位数字上,第一位数字可能的数字为9,第二位数字可能的数字为6,9,线路号可能是961,991;坏在第一、三位数字上,第一位数字可能的数字为9,第三位数字可能的数字为7,线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9,第三位数字可能的数字为7,线路号可能是367,397.所以可能的线路号有13 个:351,354,357,361,367,381,391,397,851,951,957,961,991.答:则该公交车的线路号有13种可能.11.设某年中有一个月里有三个星期日的日期为奇数,则这个月的20日可能是星期几?【分析】有三个星期日的日期为奇数,这三个星期日应是不相邻的.并且两个奇数周日之间应相隔14天.故可设第一个周日为x,那么第二个周日为x+14,则第三个周日为x+28,第三个周日的日期应不大于31.【解答】解:因为每个周日的间隔是7日,所以若一个月中有三个星期日为奇数,则这三个星期日必定不会是连续的,而是两个奇数周日间间隔14日,一个月最多31日,设第一个周日为x,那么第二个周日为x+14,则第三个周日为x+28,所以x+28≤31,解得x≤3;这样第一个星期日可以是1号或3号.如果第一个星期日是1号,那么该月的20号是星期五;如果第一个星期日是3号(此时本月有31天),那么该月的20号是星期三.故这个月的20日可能是星期五或星期三(此时本月有31天).12.以[x]表示不超过x的最大整数,设自然数n满足[]+[]+[]+…+[]+[]>2011,则n的最小值是多少?【分析】观察:[]=0,[]=0,…,[]=0,前14个数的和为0 []=1,[]=[1]=1,…,[]=[1]=1,这15个数都是1,之和为1×15=15,[]=2,[]=[2]=2,…,[]=[2]=2,这15个数都是2,之和为2×15=30,…观察可以得到,规律是间隔15个增加1,(1+2+3+…+15)×15=1800,(1+2+3+…+15+16)×15=2040,2040>2011,因此整数部分加到15,只是达到1800,继续往下到达整数部分是16,2011﹣1800=211,211÷16=13.1875,那么要取14个,即最少取到16,才能保证大于2011,则n最下值是:16×15+13=253.【解答】解:(1+2+3+…+15)×15=1800,(1+2+3+…+15+16)×15=2040,2040>2011,那么整数部分到16,2011﹣1800=211,211÷16=13.1875,即最少取到16,才能保证大于2011,则n最下值是:16×15+13=253.答:自然数n的最小值是253.三、解答下列各题(每小题0分,共30分,要求写出详细过程)13.在如图的加法竖式中,不同的汉字代表不同的数字.问:满足要求的不同算式共有多少种?【分析】由于2+0+1+1=4 且 0+1+2+3+4+6+7+8+9=40,4≡40(mod 9),所以,九个不同的汉字代表的数字:0,1,2,3,4,6,7,8,9.易知:40﹣4=36,36÷9=4(次),说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1,“4=2+2”无解②华=1,“4=1+1+2”有解,据此分析讨论即可解答问题.【解答】解:由于2+0+1+1=4 且 0+1+2+3+4+6+7+8+9=40,4≡40(mod 9),所以,九个不同的汉字代表的数字:0,1,2,3,4,6,7,8,9.易知:40﹣4=36,36÷9=4(次),说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1,“4=2+2”无解②华=1,“4=1+1+2”有解A:28+937+1046=2011,可组成算式36 种(6×6×1=36)B:69+738+1204=2011,可组成算式48 种(6×4×2=48)C:79+628+1304=2011,可组成算式48 种(6×4×2=48)③华=1,“4=1+2+1”有解A:46+872+1093=2011,可组成算式36 种(6×6×1=36)B:98+673+1240=2011,可组成算式72 种(6×6×2=72)C:97+684+1230=2011,可组成算式72 种(6×6×2=72)总计:72×3+96=216+96=312(种).答:一共有312种.14.如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G,假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向,试给出一个两只蜘蛛必定捉住爬虫的方案.【分析】根据题意,可假设一只蜘蛛先不动另一只蜘蛛去追击沿着棱去追击虫子,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,此时即可抓到虫子.【解答】解:其中一只蜘蛛先不动,控制正方体的其中一个面,我们定义这个面为A1面,另一只蜘蛛开始向A1面的相对的面爬行,我们定义这个相对的面为A2面;这时2只蜘蛛,每个蜘蛛控制一个面,不论虫子如何移动,必然会移动到A1面或者A2面;于是必然有一个蜘蛛和虫子处于一个面,这时处于一个面的蜘蛛(设追击的蜘蛛为B1)开始追击虫子,另一个面的蜘蛛则不动,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,这时等待的蜘蛛出击,必然能抓到虫子.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:54:16;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
华罗庚金杯少年数学邀请赛决赛模拟题(初二组)一、填空题(每小题10分,共80分) 1.已知15-=a ,则1227223--+a a a 的值等于. 2.关于y x ,的方程)(20822y x y x -=+的所有正整数解为. 3.如图,E ,F 分别是菱形ABCD 的边AB ,AD 上的点, 60=∠DCB , 105=∠DFE ,321-==BE DF ,,那么这个菱形的边长等于.4.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知321-=t ,a 是t 的整数部分,b 是t -的小数部分, 则=.5.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且CF BC 4=,DCFE是平行四边形,则图中阴影部分的面积为.6.能使2562+n 是完全平方数的正整数n 的值为.7.设b a ,是方程01682=++x x 的两个根,d c ,是方程01862=+-x x 的两个根,则()()()()d b d a c b c a -⋅-⋅+⋅+的值为.8.如图,四边形ABCD 中,CD BC AB ==,∠ABC=78O ,∠BCD=162O .设 AD ,BC 延长线交于E ,则∠AEB=.二、解答下列各题(每小题10分,共40分,要求写出简要过程)a 1b 21-9.求关于a ,b ,c ,d 的方程组⎪⎩⎪⎨⎧==++dabc dca bc ab 9101010的所有正整数解.10.在梯形ABCD 中,AB //CD ,其底角036=∠DAB ,054=∠CBA ,M ,N分别是边AB ,CD 的中点.若这个梯形的下底AB 恰好比其上底CD长2016,求线段MN 的长.11.从1,2,… ,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.12.5x ,yz 3分别表示一个两位数和一个三位数,求使得785035=⋅yz x 成立的数字x ,y ,z .三、解答下列各题(每小题15分,共30分,要求写出详细过程) 13.已知b a ,为正整数,求42322---=b ab a M 能取到的最小正整数值.14.如图,梯形ABCD 中,AB //CD ,AC ,BD 相交于点O .P ,Q 分别是AD ,BC 上的点,且CPD APB ∠=∠,CQD AQB ∠=∠.求证:OP =OQ .华罗庚金杯少年数学邀请赛决赛模拟题答案(初二组)一、填空题(每小题10分,共80分)二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.【答案】()()()()()()(),9015,3,215,3,50,2505255090,5,2,5,2,5,5,,,,,,,2,3,,,,901590,,2,15,3()()90,2,3,1515,.,3,2,9010.【答案】1008.11.【答案】5.12.【答案】4yx.=z=,1,2=三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.【答案】2.14.【证明】略.。
第十六届华罗庚金杯少年数学邀请赛决赛——模拟试卷一、 填空题(每小题10分,共80分)1. 计算:=+⨯++⨯+⨯125.0201131407725.040223201114 。
【分析】: 2。
2. 四位数中,数码0出现_ ____次。
【分析】一个数中出现3个0的有1000,2000,……, 9000.共9个。
一个数中出现2个0的有993243⨯⨯=个;只出现1个0的有39992187⨯⨯⨯=个。
因此 ,四位数中,数码0出现21872243392700+⨯+⨯=次。
3. 如图,每个正六边形的面积是1,则图中虚线围成的五边形的面积是_______.【分析】:整个图形的面积减去外面的8个小块的面积.整个图形一共有10个小正六边形.我们把外面8个小块编号为1,2,3,4,5,6,7,8.如图.1号和6号正好是小六边形的一半,面积都是0.5.2号和3号刚好可以凑成一个六边形,所以,面积是1.同样,7号和8好凑成一个六边形,面积是1.4号和5号是两个一样的小三角形,而正六边形可以分成6个这样的小三角形,所以,4号和5号的面积都是1/6.所求面积是: 10-0.5×2-1-1-1/6×2=6+2/3=6.7.4. “12345678910111213…484950”是一个位数很多的多位数,从中划去80个数字,使剩下的数字(顺序不变)组成一个首位不为0的多位数,则这个多位数最大为______,最小为___ ___。
【分析】:根据题意,由于共有941291+⨯=个数字,最后划去80个数字,还剩下11个数字,99997484950;10000123440。
,为得到最小值,留下小的数字。
5. 所有适合不等式187<5n <720的自然数n 之和为 。
【分析】:根据题意,n 可以是2到14中的任意自然数,于是:2+3+…+14 = 104。
6. 请从2、3、5、7、9中选出4个不同的数字组成一个四位完全平方数,那么这个平方数是 。
2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)参考答案与试题解析一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是10 .【分析】买1支的人数是其余人数的2倍,也就是说全班人数相当于其余人数的1+2=3倍,先根据除法意义,求出买2支和3支铅笔的人数,再设买2支铅笔的有x人,进而用x表示出买3支铅笔的人数,最后依据买笔总数=人数×买笔支数,用x表示出买笔总人数,根据铅笔总数是50支列方程,依据等式的性质即可求解.【解答】解:36÷(1+2)=36÷3=12(人);设买2支铅笔的人数是x人12×2×1+2x+(12﹣x)×3=5024+2x+36﹣3x=5060﹣x+x=50+x60﹣50=50+x﹣50x=10;答:买2支铅笔的人数是10.故答案为:10.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于75 .【分析】若将AD作为底边,因为点E为BC的中点,那么△ADB,△ADE,△ADC的高为等差数列(可以认为中间三角形的高是两边三角形的高的平均数),所以面积也呈等差数列(可以认为中间三角形的面积是两边三角形的面积的平均数).据此可解.【解答】解:若将AD作为底边,因为点E为BC的中点,所以△ADE的高为△ADB和△ADC的高的平均数,因此△ADE的面积就等于△ADB和△ADC的面积的平均数.所以,S△ADE=(S△ADB+S△ADC)÷2=(45+18+18+69)÷2=75;答:三角形AED的面积等于75.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是3028 .【分析】根据题意,列出这个数列是:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…易见,从第4个数开始每8个数一个循环.由于前面还有3个数,所以需用2011减去3的得数除以8,求出有多少组,再相加即可解答.【解答】解:这个数列:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…(2011﹣3)÷8=251(0+3+3+2+0+1+3+0)×251+1+7+8=12×251+16=3028故答案为:3028.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?【分析】在面积不变的情况下,要使得这些等边三角形堆成的边长最短,则使它们堆城一个六边形,且六边形的每个内角都是120度.然后构建一个大三角形:把大三角形每条边n等分,连结各边n等分点一共构成n×n个小等边三角形解答即可.【解答】解:我们把一个等边三角形每条边2等分,可以连结各边中点一共构成2×2=4个小等边三角形;如果把每条边3等分,连结各边三等分点一共构成3×3=9个小等边三角形;以此类推,把每条边n等分,连结各边n等分点一共构成n×n个小等边三角形.7×7<57<8×8<9×9,8×8=64,64﹣57=7,7不能分解成为3个完全平方数之和的形式,9×9=81,81=4+4+16,所以我们就可以把这57个小三角形放在如图所示的等边三角形中,每条边被9等分,△ABC的边长为9,三个角各被切除一部分,此时DE=5,EF=2,FG=3,GH=4,HI=3,DI=2,则DE+EF+FG+GH+HI+DI=19,即这个六边形的周长至少是19.答:这个六边形的周长至少是19.故答案为:19.5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?【分析】(1)每操作一次,不影响黑板上所有数的总和,因此最后剩下的和=1+2+3+…+2011,根据高斯求和公式完成即可.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次显然,从开始,只要117次操作,黑板上就剩256个数.据此依据规则分析即可.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)*139/2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066;综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326 【解答】解:(1)1+2+3+…+2011=(1+2011)×2011÷2=2012×2011÷2=2023066答:最后剩下的这个数是2023066.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次,显然,从开始,只要117次操作,黑板上就剩256个数.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)×139÷2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326.6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.【分析】首先判断出积能被25整除,由于各因数均为奇数,则判断积的末两位数字为25或75,结合各因数被4整除的余数特点判断积的余数,进而判断出末两位数字为75.【解答】解:设n=(21+1)×(22+1)×(23+1)×…×(22011+1),由于各因数2k+1均为奇数,其中22+1=5,26+1=65=5×13,所以n≡0(mod25),此时知n的末两位数字要么为25,要么为75.又21+1≡3(mod4),对k≥2,都有2k+1≡1(mod4),所以n≡3(mod4),即n的末两位数字被4除余3,而25≡1(mod4),75≡3(mod4),所以n 的末两位数字为75.答:(21+1)(22+1)(23+1)…(22011+1)的末两位的数字75.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:51:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。
甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。
若甲车已经走过路程的一半,那么C到A路程是千米。
7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。
第十六届华罗庚金杯少年数学邀请赛决赛试题C (小学组)(时间: 2011年4月16日10:00~11:30)一、填空题(每小题 10分, 共80分)1. 877655433++=.2.工程队的8个人用30天完成了某项工程的32, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了天. 3.甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍.乙骑了4千米后, 自行车出现故障, 耽误的时间可以骑全程的61. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为千米.4.在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时37分20秒时, 在分针与时针所夹的锐角内有个小彩灯.5.在边长为2厘米的正方形ABCD 中, 分别以A , B , C , D 为圆心, 2厘米为半径画四分之一圆, 交点E , F , G , H , 如图所示. 则中间阴影部分的周长为 厘米.(取圆周率3.141π=)6.用同一种颜色对44⨯方格的7个格子进行涂色, 如果某列有涂色的方格则必须从最底下的格子逐格往上涂色, 相邻两列中左侧的涂色的方格数大于或等于右侧涂色的方格数(如右图). 那么共有 种涂色的图案.7.已知某个几何体的三视图如右图, 根据图中标示的尺寸(单位: 厘米), 这个几何体的体积是_______(立方厘米).8.公交车的线路号是由数字显示器显示的三位数, 其中每个数字是由横竖放置的七支荧光管显示, 如下图所示.某公交车的数字显示器有一支坏了的荧光管不亮, 显示的线路号为“351”, 则可能的线路号有个.二、解答下列各题 (每题10分, 共40分, 要求写出简要过程)9.在右面的加法竖式中, 不同的汉字可以代表相同的数字, 使得算式成立. 在所有满足要求的算式中, 四位数华杯决赛的最小值是多少?10.长方形ABCD 的面积是70平方厘米. 梯形AFGE 的顶点F 在BC 上, D 是腰EG 的中点. 试求梯形AFGE 的面积.11.求不能写成3个不相等的合数之和的最大奇数.12.设某年中有一个月里有三个星期日的日期为奇数, 则这个月的21日可能是星期几?三、解答下列各题(每小题 15分, 共30分, 要求写出详细过程)13.以[]x 表示不超过x 的最大整数, 设自然数n 满足200015151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n ,则n的最小值是多少?14.一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水, 深度为a, 其中600≤<a. 现将棱长为10的立方体铁块放在容器的底面, 问放入铁块后水深是多少?第十六届华罗庚金杯少年数学邀请赛决赛试题C参考答案(小学组)一、填空题(每小题10分,共80分)二、解答下列各题(每题10分,共40分, 要求写出简要过程)9.答案: 1000解答. 因为华杯决赛是四位数, 所以不会小于1000. 当华杯决赛=1000, 十六届=990, 兔年=21时题目要求的等式成立.10.答案:70.解答. 连接FD的直线与AE的延长线相交于H. 则△DFG绕点D逆时针旋转180o与△DHE重合,DF=DH.梯形AEGF的面积=△AFH的面积=2×△AFD的面积=长方形ABCD的面积=70(平方厘米).11.答案: 17解答. 合数有:4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,…….因为4 + 6 + 9 = 19, 所以19能写成3个不相等的合数之和. 大于19的奇数n可以表示成n=19+2k, k是非零自然数, 进而第十六届华罗庚金杯少年数学邀请赛决赛试题C 参考答案(小学组)n =4+9+(6+2k ).注意6+2k 为大于2的偶数, 是合数, 所以不小于19的奇数都写成3个不相等的合数之和.另外, 17不能写成3个不相等的合数之和.12.答案: 4, 6.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是整数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0,2,4三个值, 此时,177+=+k a k分别为1, 15, 29, 这时21号是星期六.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k+2不可能有三个奇数.当a =3时, 要使7k+3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k分别为3, 17, 31, 这时21号是星期四.当74≤≤a 时, a k +7不可能有三个奇数.三、解答下列各题 (每小题 15分,共30分,要求写出详细过程)13.答案: 252.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.200015151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2000213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.400013152≤-k k又40004114171317152>=⨯-⨯, 40003632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时811161842363220002131520002+⨯==-=--k k . 注意到20002008121618161512151615111516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而200019921116181615111516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ . 所以 252 是满足题目要求的n 的最小值.14. 解答. 由题设知水箱底面积S 水箱=40×25=1000.水箱体积V 水箱=1000×60=60000,铁块底面积S 铁=10×10=100.铁块体积V 铁=10×10×10=1000.(1)若放入铁块后,水箱中的水深恰好为60时,1000a +1000=60000, 得 a =59.所以,当59≤a ≤60时,水深为60(多余的水溢出).(2)若放入铁块后,水箱中的水深恰好为10时,1000a +1000=10000, 得 a =9.所以,当9≤a <59时,水深为a ×40×25+10×10×1040×25= a +1. (3)由(2)知,当0<a <9时,设水深为x ,则1000x =1000a +100x .得x =109a .答:当0<a <9时,水深为109a ;当9≤a <59时,水深为a +1;当59≤a ≤60时,水深为60.。
第十六届华罗庚金杯少年数学邀请赛总决赛初一组一试试题解答一、填空题(共3题,每题10分)1. 计算)]5(31[)41(2)32(|231|)1()2(22343-⨯-+-⨯-⎥⎦⎤⎢⎣⎡--÷---⨯-= 解: 3432228594(2)(1)|123|()8122832781146472()[13(5)]4⎡⎤-⨯---÷---⨯-÷--⎢⎥⎣⎦==+-⨯-+-⨯- 6459431.4784--==-⨯ 2. 正方形ABCD 的面积等于625平方厘米.如图,DE 与CF 相交于G.已知125ADE CDG S S ∆∆==平方厘米.△BFG 的面积是 平方厘米.答:△BFG 的面积是50平方厘米.解:由于正方形ABCD 的面积等于625平方厘米.所以,边长25AB =厘米.由于125ADE S ∆=平方厘米,所以AE =10厘米.连接CE , 则1162531222CDE S ∆=⨯=(平方厘米). 而已知125CDG S ∆=(平方厘米), 则1252,312.55CDG CDE S DG DE S ∆∆===连接AG . 由221255055ADG ADE S S ∆∆==⨯=(平方厘米) 但16252ADGCBG S S ∆∆+=⨯,而16252BFG CBG S S ∆∆+=⨯,比较可得 50BFG ADG S S ∆∆==(平方厘米).3. 用长度分别为50,,2,1 的木条去摆三角形,每个三角形的三条边的长度分别为c b a ,,,c b a <<,问),,(c b a 最多有多少种不同的取法?答案:9500.解:利用三条边可以构成三角形的条件:任意的两个边的和大于第三边. 边长为1的木条不能与其它长度的木条构成三角形.三角形的最小边长为2时,边长为2的木条只能与差值为1的两个木条构成三角形,故有47对.三角形的最小边长为3时,边长为3的木条只能与差值为1,2的两个木条构成三角形,故有46+45对.三角形的最小边长为4时,边长为3的木条只能与差值为1,2,3的两个木条构成三角形,故有45+44+43对.......三角形的最小边长为k ()25≤k 时,边长k 为的木条只能与差值为1,2,3,⋯,1-k 的两个木条构成三角形,故有(49)(491)(4922)k k k -+--++-+ 对.三角形的最小边长为k ()25>k 时,边长k 为的木条只能与差值为1,2,3,⋯,1-k 的两个木条构成三角形,故有1)149()49(++--+- k k 对. 故总数为(47461)(45441)(43421)(212k k +++++++++++++-+-+++ (321)1++++ 47244523(21)53321k k =⨯+⨯++-⨯++⨯+⨯+()22224231(24231)9500.=+++-+++=二、解答题(共3题,每题10分,写出解答过程)4. 用)(n S 表示自然数n 的数字和,如1)1(=S ,6)123(=S ,10)1234(=S 等等,求自然数n ,使得2011)(=+n S n .答: 1991.解1: 2011)(=+n S n ,20111900<<∴n 则可设y x n ++=101900或y x n ++=102000,其中90,90≤≤≤≤y x ,且y x ,为整数.若y x n ++=101900,则201191101900=++++++y x y x ,即101211=+y x ⎩⎨⎧==∴19y x 1991=n 若y x n ++=102000,则20112102000=+++++y x y x ,即9211=+y x 没有符合条件的整数解.因此,n =1991.解2:因为()(mod9),n S n ≡要使2011)(=+n S n ,只须()2011(mod9),n S n +≡ 即220114(mod9)2(mod9).n n ≡≡⇒≡已知在2011n ≤时()S n 最大为38,所以19832011,n ≤≤其中被9除余2的有1991,2000,2009.其中只有1991满足1991+20=2011,所以1991.n =5. 两个21位自然数m 和n ,每个都由三个1、三个2、三个3、三个4、三个5、三个6和三个7组成,使得nm k =是自然数,问k 能取哪几个自然数?说明你的理由.答:1.解:显然777666555444333222111 1.777666555444333222111k == 假设存在这样的m 和n ,使得数m n 是一个大于1的自然数,则可设m k n=,故m kn =. 两边分别除以9,用数被9除的性质知m 和n 被9除的余数均等于3(1234567)⨯++++++被9除的余数,即84被9除的余数,为3. 因此3与3k 模9同余. 由7776665554443332221117111222333444555666777m k n =≤<, 及m 和n 不同(即1k ≠)推得4k =,即4m n =. 考虑数n 最低位的数字7,当把n 乘以4时,这个数字7的下一位(如果有)最多为6,因此乘以4最多进两位,这说明m 中对应位的数字为8(下面不进位,7×4=28)或9(下面进一位)或0(下面进两位),这与m 由三个1、三个2、三个3、三个4、三个5、三个6和三个7组成相矛盾!即不存在满足条件的m 和n .使得数m n是一个大于1的自然数. 所以,只有 1.k =6. 使得关于未知数x 的方程k x x =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡32无解的自然数 k 由小到大排成一行,其前2011个k 的值之和等于多少?解. k0 1 2 3 x 1 2 3 4 23x x ⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦ 0 1 2 3 设5,0,1,2,3k m r r =+=;令6,x m p p =+待定. 325232323x x p p p p m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 从上表可知,=,0,1,2,3,23p p r r ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦是有解的. 因此,5,0,1,2,3,(1)k m r r =+=都有解.下面考虑 5 1.k m =-显然,665.23m m m ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦而对于01,q <<66323121115 2.232323m q m q q q q q m m m m m --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-+-=-+-+-+-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦上式对于任意01q <<的q 成立. 所以当51k m =-时,方程无正有理数解.因此,前2011个k 的值之和=20112012(511)(521)(520111)5201110113319.2⨯⨯-+⨯-++⨯-=⨯-=初一组二试试题解答图3 一、填空题(共3题,每题10分)1. 一水池有一进水口,若干同样大小的排水口.如果同时打开进水口和5个排水口,连续30个小时可以将水排尽;如果同时打开进水口和6个排水口,连续20小时可以将水排尽.如果同时打开进水口和15个排水口,几小时可以将水排尽?答:5小时.解:设一水池水为z 立方米,进水口每小时过水y 立方米,一个排水口每小时排水x 立方米.于是 3053020620x y z x y z ⨯=+⎧⎨⨯=+⎩由此此得 2305230232063203x y z xy z ⨯⨯=⨯+⎧⎨⨯⨯=⨯+⎩ 两式两边分别相减得 60x z = ∴ 160x z =;同样可得 120y z =. 设同时打开一进水口和15个排水口,t 小时可以将水排尽. 则1115,6020t z t z z ⨯=⨯+ 即 11 1.420t t =+ 所以 1155t t =⇒=(小时). 2. 图中,四边形ABCD 是一个长方形,EF //AB ,GH //AD , EF 和GH 相交于点O , 三角形OBD 的面积是m ,求长方形OFCH 的面积和长方形AGOE 的面积差.答:2.m解:从图中可见,1.2BODC BOD ABCD BODA BOD S S S S S ∆∆-==+ 即 22.BODC BODA BOD S S S m ∆-==即 ()()2O F C H B O F D O H A G O E B O G D O ES S S S S S m ∆∆∆∆++-++= 但 ,,BOF BOG DOH DOE S S S S ∆∆∆∆== 因此得2.OFCH AGOE S S m -=3. 自然数a ,b 互质,如果a a b =⎥⎦⎤⎢⎣⎡,n b a b 101⨯=⎭⎬⎫⎩⎨⎧,n 是10进制数b 的位数,则a b = .其中⎥⎦⎤⎢⎣⎡a b 表示不超过a b 的最大整数,⎭⎬⎫⎩⎨⎧a b 表示a b 的小数部分.答:.25 解:设符合题意的最简分数为b a ,a 、b 均为正整数且互质.可知b >a ,根据题意即,则110n b a b a+⨯=,整理成正整数方程为210()n b a -=ab . 从方程中可知2a a b ≤<.因为a 与b 互质,所以b - a 2与ab 也互质.因为若 b -a 2与ab 有公因子p ,那么p 能整除a (或能整除b ),也能整除b -a 2,从而p 也能整除b (或也能整除a ),这样,与题意最简分数(分子与分母互质的分数)矛盾.因此,互质的a 与b 的积只能是10n 与1的乘积或5n 与2n 的乘积两种可能.若10n b =,1a =,这时21b a -≠; 若ab =10n =)(52n⨯,b =5n ,2n a =, 这时b -a =1得25(2)1n n -=,即()2521n n -=. 因此,n 只能是1时才成立,即a =2,b =5. 最简分数为.25 二、解答题(共3题,每题10分,写出解答过程)4. 将正整数1,2,3,… ,8分别放置于正方体的8个顶点,每个顶点与相邻3个顶点上的数之和称为该顶点的“众数”.对每一种填法,都可以得到最大“众数”的与最小“众数”的差,那么这个差至少等于多少.答:2解:首先考虑这样的8个众数能否全相等,如果能,因为它们的和等于144,即 1444364)8_321(=⨯=⨯+++,所以每个都等于18,那么最大与最小的众数之差就是0.如果不能全相等,为了求得最小可能值,如果有一个是19,那么 相应地得有一个是17,(总和须等于144)所以这个最小的可能值就不能小于21719=-.这样我们只要先证明8个众数不能全相等,然后找出一种布法,其最大与最小众数之差等于2,就可以断定所求的这个最小值是2.设顶点的编号为1,2,3,4,5,6,7,8,如图,记在顶点i 的数为,18,i x i ≤≤.这样,顶点1的众数为1234x x x x +++;顶点5的众数为1568x x x x +++. 若此二顶点的众数相等,则864286515421x x x x x x x x x x x x +=+⇒+++=+++同样地,顶点2的众数为1236x x x x +++,顶点4的众数为1348x x x x +++,若此二顶点的众数相等,则846284316321x x x x x x x x x x x x +=+⇒+++=+++由上面得到的二式相加得 2822,x x =即 28,x x =这是不可能的. 这就证明了8个众数不能全相等.构造一个摆放方式的图例(见右图),最大数和最小数的差等于2,故最小差值等于2.5. 已知三角形边长都是整数,周长不超过28,三个边长两两之差的平方和等于14. 问这样的三角形共有多少个?(三条边长分别对应相等的三角形只算1个)答:12个.解:设三角形三条边长分别为a,b,c ,由已知等式可得:()()()22214a b b c a c -+-+-=. ①令a b m,b c n -=-=,则a c m n -=+,其中m,n 均为自然数.于是,等式①变为 227m n mn ++=. ② 由于m,n 均为自然数,判断易知,2()3737.m n mn mn -+=⇒≤因此,使得等式②成立的m ,n 只有两组:21m n =⎧⎨=⎩ 和 12m n =⎧⎨=⎩. (1)当m =2,n =1时,b =c +1,a =c +3.又a ,b ,c 为三角形的三边长,所以b c a +>,即13c c c ++>+,解得2c >.又因为三角形的周长不超过28,即3428a b c c ++=+≤,解得8c ≤.因此28c <≤,所以c 可以取值3,4,5,6,7,8,对应可得到6个符合条件的三角形.(2)当12m ,n ==时,23b c ,a c =+=+.a,b,c 又为三角形的三边长,所以b c a +>,即23c c c ++>+.解得1c >.又因为三角形的周长不超过28,即()()3228a b c c c c ++=++++≤,解得233c ≤,因此17c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形,且和(1)中得到的三角形不同.综合可知:符合条件且周长不超过28的三角形的个数为6612+=个.6. 求最小自然数k , 使得对于任意正整数n , k 个奇数2n +1, 2n +3, ……, 2n +2k -1中至少有一个数, 不能被3, 5, 7, 11中的任何一个整除.解. 试验可知,我们有6个奇数: 115,117,119,121,123,125,它们中每一个都可以被3,5,7,11中的一个或几个数整除.所以,k>6.对于任意的正整数 n , 当 k >6时, 取前7 个数:2n +1, 2n +3, ….., 2n +13 (1)由于2个能被3整除的奇数之差,不小于6; 2个能被5整除的奇数之差,不小于10; 2个能被7整除的奇数之差,不小于14; 2个能被11整除的奇数之差,不小于22. 因此,(1)中能被3整除的数最多有3个,且只能是2n +1, 2n +7, 2n +13.(1)中能被5整除的数最多有2个,且只能是2n +1,2n +11或者2n +3,2n +13;(1)中能被7整除的数最多有1个;(1)中能被11整除的数最多有1个.下面证明(1)中能被3 或5 整除的数的个数不超过4.若能被3整除的数只有2个,显然能能被3 或5 整除的数的个数不超过4. 若能被3整除的数有3个,不管什么情况,能被3整除的数和能被5整除的数,必有一个重合. 能被3整除和能被5整除的数一共不能超过4个.除了能被3 或5 整除的数外,还余下3个.但能被7或11整除的数最多只有2个,因此,必有一个数不能含有质因子3,5,7,11.即这个数不能被3, 5, 7, 11中的任何一个整除.答.k的最小值是7。
第十六届华罗庚金杯少年数学邀请赛决赛试题C (小学组) 决赛试题C (小学组) (时间: 2011年4月16日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 877655433++= . 2. 工程队的8个人用30天完成了某项工程的32, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了 天. 3. 甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍. 乙骑了4千米后, 自行车出现故障, 耽误的时间可以骑全程的61. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为 千米. 4. 在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时37分20秒时, 在分针与时针所夹的锐角内有 个小彩灯. 5. 在边长为2厘米的正方形ABCD 中, 分别以A , B , C , D 为圆心, 2厘米为半径画四分之一圆, 交点E , F , G , H , 如图所示. 则中间阴影部分的周长为 厘米.(取圆周率3.141π=)6. 用同一种颜色对44⨯方格的7个格子进行涂色, 如果某列有涂色的方格则必须从最底下的格子逐格往上涂色, 相邻两列中左侧的涂色的方格数大于或等于右侧涂色的方格数(如右图). 那么共有 种涂色的图案.密封线内请勿答题7. 已知某个几何体的三视图如右图, 根据图中标示的尺寸(单位: 厘米), 这个几何体的体积是_______(立方厘米).8. 公交车的线路号是由数字显示器显示的三位数, 其中每个数字是由横竖放置的七支荧光管显示, 如下图所示.某公交车的数字显示器有一支坏了的荧光管不亮, 显示的线路号为“351”, 则可能的线路号有 个.二、解答下列各题 (每题10分, 共40分, 要求写出简要过程)9. 在右面的加法竖式中, 不同的汉字可以代表相同的数字, 使得算式成立. 在所有满足要求的算式中, 四位数华杯决赛的最小值是多少?10. 长方形ABCD 的面积是70平方厘米. 梯形AFGE 的顶点F 在BC 上, D 是腰EG 的中点. 试求梯形AFGE 的面积.11. 求不能写成3个不相等的合数之和的最大奇数.12. 设某年中有一个月里有三个星期日的日期为奇数, 则这个月的21日可能是星期几?三、解答下列各题(每小题 15分, 共30分, 要求写出详细过程)13. 以[]x 表示不超过x 的最大整数, 设自然数n 满足200015151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n ,则n的最小值是多少?14.一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水, 深度为a, 其中600≤<a. 现将棱长为10的立方体铁块放在容器的底面, 问放入铁块后水深是多少?。
第十六届华罗庚金杯少年数学邀请赛决赛(考前测试)
一、 填空题(每小题10分,共80分)
1、 计算:121231234122001223234232001
+++++++++⨯⨯⨯⨯++++++ =__
2、从1到999这999个自然数中有 个数的各位数字之和能被4整除.
3、 如果一个三位数ABC 满足A B >,B C <,那么把这个三位数称为“凹数”,求所有“凹数”的个数.
4、如右图所示,在梯形ABCD 中,E 、F 分别是其两腰AB 、CD 的中点,G 是EF 上的任意一点,已知ADG ∆ 的面积为215cm ,而BCG ∆的面积恰好是梯形ABCD 面积的720
,则梯形ABCD 的面积是 2cm . A B C D
E F G
5、 一个正方体的各边长都是整数,并且它的体积是2310,那么这样的长方体有多少个?(如果两个长方体经过旋转可以重合,则认为它们是同一长方体。
)
6、 有4位朋友的体重都是整千克数,他们两两合称体重,共称了5次,称得的千克数分别是99,113,125,130,144.其中有两人没有一起称过,那么这两个人中体重较重的人的体重是__千克?
7、称能表示成123k ++++ 的形式的自然数为三角数.有一个四位数N ,它既是三角数,又是完全平方数.则N = .
8、 一个水箱有甲、乙、丙三根进水管,如果只打开甲、丙两管,甲管注入30吨水时,水箱已满;如果只打开乙、丙两管,乙管注入40吨水时,水箱才满.已知乙管每分钟注水量是甲管的1.5倍,则该水箱注满时可容纳________吨水.
二、 解答下列各题(每题10分,共40分,要求写出简要过程)
9、规定a b ☆表示在b 的约数中,不能整除a 的最小的那一个,例如:6204=☆.如果正整数m 使得21208m m +=☆☆,那么m 的最小可能值是多少?
10、 用十进制表示的某些自然数,恰等于它的各位数字之和的16倍.则满足条件的所有自然数之和为多少?.
11、下面竖式中的每个“奇”字代表1、3、5、7、9中的一个,每个“偶”字代表0、2、4、6、8中的一个,如果竖式成立,那么算式的乘积是多少?
⨯奇偶
偶奇
偶偶偶偶偶
偶偶偶
a b c d ⨯偶偶偶偶偶偶偶偶
12、 九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中
至少有三条经过同一个点.
H
N
M
Q
P
三、解答下列各题(每小题15分,共30分,要求写出详细过程)
13、已知四边形ABCD,CHFG为正方形,S甲:S乙=1:8,a与b是两个正方形的边长,求a:b=?
14、一个正整数A,若满足:A,2A
⨯,3A
⨯这99个数除以100的余
⨯, (99)
数各不相同,则称A为“末尾好数”.1,2,3,……,2006中有个“末尾好数”.。