浅谈高性能混凝土
- 格式:doc
- 大小:72.00 KB
- 文档页数:10
浅析建筑施工中高性能混凝土的应用现状摘要:高性能混凝土的体积稳定性良好,早期强度高,易于浇筑和振捣,对环境的适应性强,即便遇到恶劣环境也能够保持稳定,由于综合性能突出,成为建筑工程中的重要施工材料。
高性能混凝土是建筑工程中常用的材料,也是高性能混凝土研究的一种应用方法。
关键词:建筑工程;高性能混凝土;施工方法引言影响高性能混凝土施工效果的细节较多,例如原材料的选择、制备及浇捣等方法。
因此,深入研究高性能混凝土的应用策略具有重要意义。
1.原材料的选取及质量控制1.1骨料骨料有粗骨料和细骨料两类,在选材时应严格控制各类骨料的直径,其中粗骨料的直径以4.75mm以上为宜,细骨料直径应在4.75mm以内。
若骨料的直径过小,则难以在混凝土中形成可靠的骨架,增加砂浆的用量,采用此类混凝土建设而成的结构缺乏稳定性和耐久性;若骨料的直径过大,则易发生离析,降低混凝土的硬度,也难以保证施工质量。
因此,在选择粗、细骨料时需严格控制直径。
此外,骨料中不可掺杂过多的杂物。
1.2添加剂添加剂的作用在于改善混凝土的性能,在高性能混凝土中,常用的添加剂是聚羧酸减水剂和蔡系减水剂,添加比例约1:20,不可过量使用添加剂,否则会影响高性能混凝土的坚实度。
添加前,需检验减水剂的性能,确认无误后,再按照添加比例控制用量。
1.3粉煤灰粉煤灰是工程中常用的矿物质材料,将其按比例掺入至高性能混凝土后,有利于提高混凝土的硬度;同时,粉煤灰的表观光滑、延展性好、直径小,掺入此类材料的混凝土具有更好的物理性能,方便施工,保证建筑结构施工质量。
2.应用要点2.1配合比设计科学配制是提升高性能混凝土应用效果的重要前提,需要先试配,从坍落度、强度多个方面分析试配结果,确定混凝土性能达到最低时对应的配合比,再以此为准称量原材料,保证各类材料的用量具有合理性。
2.2拌和(1)以设计的配合比为准,称量各类原材料的用量,掺料后充分拌和,产出高性能混凝土。
材料称量采用电子秤,水泥、外加剂的用量偏差不超过1%,集料和水的偏差不超过2%。
1 摘 要 随着我国改革开放不断深入和现代化进程的加快,我国的建设规模在不断壮大,如何保证建筑工程质量、保证工程长久安全,日益受到各级政府和社会各界的广泛关注。近年来,一种新型的混凝土技术正在快速发展并运用到许多实际工程项目中,即高性能混凝土。 高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。 本文简要介绍了高性能混凝土发展的背景及目前国内外的发展现状,阐明了高性能混凝土的概念及性能,重点阐述高性能混凝土质量与施工控制要点,还着重介绍了绿色高性能混凝土和智能混凝土,最后对高性能混凝土的发展前景作出了展望。随着我国建筑向高层化、大型化、现代化的发展,“HPC”必将成为21世纪的重要新型建筑工程材料。 关键词:高性能混凝土;高耐久性;高体积稳定性;高工作性
浅谈高性能混凝土 1. 高性能混凝土产生的背景和发展现状 进入20世纪70年代以来,不少工业发达国家正面临一些钢筋混凝土结构老化问题,需要投入巨资进行维修或更新。美国现存的全部混凝土工程的价值约6万亿美元,每年用于维修的费用高达300亿美元。在加拿大,为修复劣化损坏的全部基础设施工程估计要耗费5 000亿美元。而我国结构工程中混凝土耐久性问题也非常严重。建设部于20世纪90年代组织了对国内混凝土结构的调查,发现大多数工业建筑及露天构筑物在使用25~30年后即需大修,处于有害介质中的建筑物使用寿命仅15~20年,民用建筑及公共建筑使用及维护条件较好,一般可维持50年。 混凝土作为用量最大的人造材料,不能不考虑它的使用对生态环境的影响。传统混凝土的原材料都来自天然资源。每用1t水泥,大概需要0.6t以上的洁净水,2t砂、3t以上的石子;每生产1 t硅酸盐水泥约需1.5 t石灰石和大量燃煤与电能,并排放1t的CO2,而大气中CO2浓度增加是造成地球温室效应的原因之一。尽管与钢材、铝材、塑料等其它建筑材料相比,混凝土所消耗的能源和造成的污染相对较小,混凝土本身也是一种洁净材料,但由于它的用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境。有些大城市现已难以获得质量合格的砂石。另一方面,由于混凝土过早劣化,如何处置费旧工程拆除后的混凝土垃圾也给环境带来威胁。 因此,未来的混凝土必须从根本上减少水泥用量,必须更多地利用各种工业废渣作为其原材料;必须充分考虑废弃混凝土的再生利用,未来的混凝土必须是 2
高性能的,耐久的。耐久和高强都意味着节约资源。“高性能混凝土”正是在这样背景下产生的。 目前,高性能混凝土的发展主要有以下几个方向: (1) 绿色高性能混凝土 水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低了混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度。而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。 (2) 超高性能混凝土 超高性能混凝土,如活性粉末混凝土(Reactive Powder con-crete,RPC),其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。 (3) 智能混凝土 智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了坚实基础。
2. 高性能混凝土的概念及性能 2.1 高性能混凝土的概念 关于高性能混凝土的定义或含义,迄今为止国际上尚没有一个统一的理解,各个国家有不同的理解。我国著名的混凝土科学家吴中伟教授定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能有重点的予以保证;耐久性、工作性、适用性、强度、体积稳定性以及经济合理性。为此,高性能混凝土在配制上的特点是低水胶比,选用优质原材料,并除水泥、集料外,必须掺加足够数量的矿物细掺料和高效外加剂。1997年3月吴中伟教授在高强高性能混凝土会议上又指出,高性能混凝土应更多地掺加以工业废渣为主的掺合料,更多地节约水泥熟料,提出了绿色高性能混凝土(GHPC)的概念。 中国土木工程学会高强与高性能混凝土委员会将高性能混凝土定义为以耐久性和可持续发展为基本要求并适合工业化生产与施工的混凝土。与传统的混凝土相比,这种高性能混凝土在配比上的特点是低用水量(水与胶凝材料总量之比低于0.4,或至多不超过0.45),较低的水泥用量,并以化学外加剂和矿物掺合料作为水泥、水、砂、石之外的必需组分。这也是现代高强混凝土的配制途径。实际上,正是现代高强混凝土技术的出现,为解决高性能混凝土的耐久性问题指明了出路。 高性能混凝土是在提高常规混凝土性能的基础上,采用现代混凝土技术,选用优质原材料,除水泥、集料外,必须掺加足够数量的矿物细掺料和高效外加剂,从而达到高耐久性、高工作性、高适用性、高强度、高体积稳定性的一种新型高 3
技术混凝土。 2.2 高性能混凝土的性能 与普通混凝土相比,高性能混凝土具有如下独特的性能: 2.2.1 高耐久性。高性能混凝土的重要特点是具有高耐久性, 而耐久性则取决于抗渗性;抗渗性又与混凝土中的水泥石密实度和界面结构有关。由于高性能混凝土掺加了高效减水剂,其水胶比很低(≤0138),水泥全部水化后,混凝土没有多余的毛细水,孔隙细化,最可几孔径很小, 总孔隙率低;再者高性能混凝土中掺加矿物质超细粉后,混凝土中骨料与水泥石之间的界面过渡区孔隙能得到明显的降低,而且矿物质超细粉的掺加还能改善水泥石的孔结构, 使其≥100μm的孔含量得到明显减少,矿物质超细粉的掺加也使得混凝土的早期抗裂性能得到了大大的提高。以上这些措施对于混凝土的抗冻融、抗中性化、抗碱- 集料反应、抗硫酸盐腐蚀,以及其它酸性和盐类侵蚀等性能都能得到有效的提高。 高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 2.2.2 高工作性。高性能混凝土具有良好的流变学性能, 高流动性,不泌水,不离析,能在正常施工条件下保证混凝土结构的密实性和均匀性,对于某些结构的特殊部位(如梁柱接头等钢筋密集处)还可采用自流密实成型混凝土,从而保证该部位的密实性,这样就可以减轻施工劳动强度,节约施工能耗。 坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。 2.2.3力学性能。由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。 2.2.4体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。 2.2.5经济性。高性能混凝土较高的强度、良好的耐久性和工艺性都能使其具有良好的经济性。高性能混凝土良好的耐久性可以减少结构的维修费用,延长结构的使用寿命,收到良好的经济效益;高性能混凝土的高强度可以减少构件尺寸,减小自重,增加使用空间;HPC良好的工作性可以减少工人工作强度,加快施工速度,减少成本。前苏联学者研究发现:用C110~C137的高性能混凝土替代C40~C60的混凝土,可以节约15%~25%的钢材和30%~70%的水泥。虽然HPC本身的价格偏高,但是,其优异的性能使其具有了良好的经济性。概括地说,高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构的使用年限,降低工程造价。
3. 高性能混凝土质量与施工控制 3.1 高性能混凝土原材料及其选用 4
3.1.1 细集料。细集料宜选用质地坚硬、洁净、级配良好的天然中、粗河砂,其质量要求应符合普通混凝土用砂石标准中的规定。砂的粗细程度对混凝土强度有明显的影响,一般情况下,砂子越粗,混凝土的强度越高。配制C50~C80的混凝土用砂宜选用细度模数大于2.3的中砂,对于C80~C100的混凝土用砂宜选用细度模数大于2.6的中砂或粗砂。 3.1.2 粗集料。高性能混凝土必须选用强度高、吸水率低、级配良好的粗集料。宜选择表面粗糙、外形有棱角、针片状含量低的硬质砂岩、石灰岩、花岗岩、玄武岩碎石,级配符合规范要求。由于高性能混凝土要求强度较高,就必须使粗集料具有足够高的强度,一般粗集料强度应为混凝土强度的115倍~210倍或控制压碎指标值>10﹪。最大粒径不应大于25mm,以10mm~20mm为佳,这是因为,较小粒径的粗集料,其内部产生缺陷的几率减小,与砂浆的粘结面积增大,且界面受力较均匀。另外,粗集料还应注意集料的粒型、级配和岩石种类,一般采取连续级配,其中尤以级配良好、表面粗糙的石灰岩碎石为最好。粗集料的线膨胀系数要尽可能小,这样能大大减小温度应力,从而提高混凝土的体积稳定性。 3.1.3 细掺合料。配制高性能混凝土时,掺入活性细掺合料可以使水泥浆的流动性大为改善,空隙得到充分填充,使硬化后的水泥石强度有所提高。更重要的是,加入活性细掺合料改善了混凝土中水泥石与骨料的界面结构,使混凝土的强度、抗渗性与耐久性均得到提高。活性细掺合料是高性能混凝土必用的组成材料。在高性能混凝土中常用的活性细掺合料有硅粉(SF)、磨细矿渣粉(BFS)、粉煤灰(FA)、天然沸石粉(NZ)等。粉煤灰是火电厂燃煤锅炉排出的烟道灰,它能有效提高混凝土的抗渗性,显著改善混凝土拌合物的工作性,大掺量粉煤灰混凝土还对环境保护和节约资源有重要意义。配制高性能混凝土的粉煤灰宜用含碳量低、细度低、需水量低的优质粉煤灰。矿渣是高炉炼铁排出的熔融矿渣在高温状态下迅速水淬冷却而成的,用于高性能混凝土的磨细矿渣细度大于水泥,能提高混凝土的工作性和耐久性。硅粉是电炉法生产硅铁合金所排放的烟道灰,SiO2含量大于90﹪,平均粒径约011μm,比表面积>20000㎡/kg,借助大剂量高效减水剂和强力搅拌作用,可以填充到水泥或其他掺合料的间隙中去,并且具有很高的活性,在各种掺合料中对混凝土的增强作用最为显著,是国际上制备超高强混凝土最通用的超细活性掺合料。 3.1.4. 减水剂及缓凝剂。由于高性能混凝土具有较高的强度,且一般混凝土拌合物的坍落度较大(15~20㎝左右),在低水胶比(一般<0.35)一般的情况下,要使混凝土具有较大的坍落度,就必须使用高效减水剂,且其减水率宜在20﹪以上。有时为减少混凝土坍落度的损失,在减水剂内还宜掺有缓凝的成份。此外,由于高性能混凝土水胶比低,水泥颗粒间距小,能进人溶液的离子数量也少,因此减水剂对水泥的适应性表现更为敏感。因大部分高性能混凝土施工时采用泵送,故掺减水剂后混凝土拌合物的坍落度损失不能太快太大,否则影响泵送。 3.1.5. 矿物掺合料。(1)粉煤灰,粉煤灰是燃烧煤粉的锅炉烟气中收集到的细微粉末,又称“飞灰”(Fly Ash),其颗粒多呈球形,表面光滑。大量的实践证明:掺用粉煤灰的混凝土,其长期性能可得到大幅度的改善,对延长构筑物的使用寿命有重要意义。粉煤灰在混凝土中的主要作用包括以下几个方面:①填充骨料颗粒的空隙并包裹它们形成润滑层,产生“滚珠润滑”效应;②对水泥颗粒起物理分散作用,使其分布得更均匀;③粉煤灰和聚集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,生成具有胶凝性质的产物,加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用;④粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止