对于大多数工程材料,热导率都是温度的
函数。在日常生活和工业应用的温度范围内,
可近似地认为热导率随温度线性变化,并表示
为: ( 0 1 bt)
(2-5)
λ0—按公式计算的0℃时的热导率
b—实验测定的系数,b>0或b≤0
常取t=(t1+t2)/2 一般材料生产厂家都会随材料提供其热导
率的数值,工程中的常用材料在特定温度下的热 导率值可参看附录,查取热导率数值时,应注意 材料的确切名称、密度、使用温度范围等。
内容精粹
§1 导热的基本概念 §2 导热的基本定律 §3 热导率 §4 导热微分方程和单值性条件
第一节 导热的基本概念
一、温度场
1.概念
在某一时刻τ,物体内所有各点温度分 布的总称,称为该物体在τ时刻的温度场。
一般,温度场是空间坐标和时间的函数,在 直角坐标系中可表示为:
t=f (x,y,z,τ)
作为热工技术人员应掌握一些常用材 料的热导率数据。
第四节 导热微分方程式及单值性条件
目的:求解温度场 t f x, y, z,
一、 导热微分方程式的导出
依据:能量守恒和傅里叶定律。 假设:1)物体由各向同性的连续介质组成;
2)有内热源,强度为 ,V 表示单位时间、单位
体积内的生成热,单位为W/m3 。
第二节 导热基本定律
法国数学家傅立叶(J.B.J.Fourier)在 对导热过程进行实验研究的基础上,发现了导 热热流密度与温度梯度之间的关系,于1822年 提出了著名的傅立叶定律即导热基本定律。
一、数学q表达式g:rad
t
t
n
W/m2
n
式中“-”号表示
q
与gradt二者方向相