甲醇制烯烃工艺流程简述
- 格式:doc
- 大小:51.50 KB
- 文档页数:4
甲醇制低碳烯烃的工艺举例以及本组最佳工艺的确定一、甲醇制低碳烯烃的工艺列举甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要为在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SAPO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。
根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(methanol-to-olefin ,MTO ),甲醇制丙烯(methanol-to-propylene ,MTP )。
MTO 工艺的代表技术有环球石油公司( UOP )和海德鲁公司( Norsk Hydro )共同开发的UOP/Hydro MTO 技术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP 工艺的代表技术有鲁奇公司(Lurgi )开发的Lurgi MTP 技术和我国清华大学自主研发的FMTP 技术。
1.1 UOP /I-Iydro 公司的MTO 工艺美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发了UOP /Hydro MTO 工艺。
MTO 工艺对原料甲醇的适用范围较大,可以使用粗甲醇(浓度80%一82%)、燃料级甲醇(浓度95%)和AA 级甲醇(浓度>99%) 。
该工艺采用流化床反应器和再生器设计,其流程见图3。
其反应温度由回收热量的蒸汽发生系统来控制,失活的催化剂被送到流化床再生器中烧碳再生,并通过发生蒸汽将热量移除,然后返回流化床反应器继续反应。
由于流化床条件和混合均匀催化剂的共同作甲醇制取低碳烯烃 UOP/Hydro 公司的MTO 工艺 大连化学物理研究所的DMTO 工艺上海化工研究院的SMTO 工艺 鲁奇(Lurgi)公司的MTP 工艺清华大学的FMTP 工艺MTO MTP用,反应器几乎是等温的。
反应物富含烯烃,只有少量的甲烷,故流程选择前脱乙烷塔,而省去前脱甲烷塔,节省了投资和制冷能耗。
该工艺开发了基于SAPO一34的新型分子筛催化剂MTO一100,在温度350—550。
1 甲醇制烯烃1.1 工艺技术方案的选择1.1.1 甲醇制烯烃工艺技术1.1.1.1 原料路线确定的原则和依据甲醇制乙烯、丙烯等低碳烯烃(Methanol-to-Olefin,简称MTO)是最有希望替代石脑油为原料制烯烃的工艺路线,目前工艺技术开发已趋于成熟。
该技术的工业化,开辟了由煤炭或天然气经气化生产基础有机化工原料的新工艺路线,有利于改变传统煤化工的产品格局,是实现煤化工向石油化工延伸发展的有效途径。
甲醇制烯烃的反应比较复杂,在高选择性催化剂上,MTO主要发生如下放热反应:2CH3OH CH3OCH3+H2O12CH3OH C2H4+ 2C3H6+ C4H8+12H2O6CH3OCH3C2H4+ 2C3H6+ C4H8+6H2O本项目采用煤炭气化制甲醇,甲醇制烯烃的生产路线。
1.1.1.2 国内、外工艺技术概况(1) 国外工艺技术概况二十世纪八十年代初,美国美孚(Mobil)公司在研究采用沸石催化剂利用甲醇制汽油(MTG)工艺的过程中发现并发展甲醇制烯烃(MTO)工艺。
Mobil对反应机理进行了细致的研究,优化催化剂,合成了针对MTO和MTG反应的新型沸石催化剂ZSM-5。
Mobil基于流化床的工艺示范装置自1982年底运行至1985年末,成功地证明了流化床反应系统可以应用于MTG和MTO过程。
Mobil甲醇制汽油技术的成功开发推动了甲醇制烯烃(MTO)、甲醇制丙烯(MTP)等工艺的开发。
目前,国外的工艺技术中,由※※※※/※※※※公司共同开发的MTO 工艺、由Lurgi公司开发的MTP工艺最具有产业化前景。
1986年UCC发现采用SAPO-34(磷酸硅铝分子筛)可以有效地将甲醇转化为低碳烯烃,而后UCC将相关技术转让给了※※※※公司。
1992年※※※※和Norsk※※※※合作开发了以多孔性MTO-100(主要活性组分为SAPO-34)为催化剂的※※※※/※※※※工艺,MTO-100催化剂具有更好稳定性和耐磨性。
甲醇制烯烃技术与应用发布时间:2023-01-15T03:32:28.062Z 来源:《工程管理前沿》2022年8月16期作者:拓雄[导读] 现如今,各行业的发展越来越好,工业化也稳定的发展,近年来整个行业的工艺技术水平得到了显著提升,乙烯、丙烯等基础工业原料对石油消耗较大,拓雄陕西延长石油榆林煤化有限公司,陕西榆林 719000摘要:现如今,各行业的发展越来越好,工业化也稳定的发展,近年来整个行业的工艺技术水平得到了显著提升,乙烯、丙烯等基础工业原料对石油消耗较大,有关生产很容易受到原料资源短缺或过度依赖进口的情况制约,因此从长期可持续发展的角度来看,要想保证乙烯、丙烯等工业原料的充足供应,就必须全面发展非石油资源制取低碳烯烃的相关技术,故对甲醇制烯烃工艺技术的研究现状展开探究,自然也是十分必要的。
关键词:甲醇制烯烃;技术;应用引言甲醇制烯烃工艺是甲醇在催化反应下所产生的一种反应气体,对于工业研究与实际应用均存有一定的意义。
但在甲醇制烯烃反应生成过程中,容易产生大量的酸性二氧化碳气体。
而这种气体若不能及时得到清除,则会导致对后续分离工作造成影响。
因而临床研究提示:在进行分离处置前应注意对酸性二氧化碳气体进行相应的脱除处置。
1工艺流程简述1.1全流程简述甲醇制烯烃装置是以甲醇为原料制取低碳烯烃的工艺。
原料甲醇经过换热之后进入反应器中与固体催化剂进行反应,反应后产生的反应产品混合气经过急冷水洗系统进行洗涤降温,合格的产品混合气送至下游装置进一步分离。
参与反应后失活的催化剂进入再生器中,通过燃烧反应去除催化剂上的结碳,成为恢复活性和选择性的再生剂,重新进入反应器中参与反应,催化剂再生产生的烟气经过旋风分离器除去携带的大部分催化剂后送至热工系统回收热量,由烟囱排放至大气中。
1.2热工系统流程简述热工系统的作用主要是去除烟气中的一氧化碳,回收烟气中的热量,使烟气符合排放标准。
该系统的主要设备是一氧化碳焚烧炉和余热锅炉。
甲醇制烯烃工艺流程设计与工艺优化甲醇制烯烃是一种重要的工业化学反应过程,通过将甲醇转化为烯烃,可以用于合成高附加值的石化产品。
本文将探讨甲醇制烯烃的工艺流程设计和工艺优化,以提高产率和降低成本。
一、工艺流程设计甲醇制烯烃的工艺流程包括催化剂选择、反应器设计、产品分离等环节。
首先,催化剂的选择对甲醇转化效率和烯烃产率至关重要。
目前常用的催化剂有ZSM-5、SAPO-34等,选择合适的催化剂能够提高反应效果。
其次,反应器设计是工艺流程中的关键环节。
反应器的结构和尺寸需要根据反应物质的特性和反应条件进行优化。
在甲醇制烯烃反应中,温度、压力、空速等条件的控制对反应效果有直接影响。
合理设计反应器可以增加反应物料与催化剂的接触时间,提高反应转化率。
最后,产品分离是工艺流程中的最后一步,也是最关键的一步。
由于甲醇制烯烃反应产物的组分复杂性和挥发性等特点,需要选择适宜的分离技术,如精馏、吸附等。
通过优化产品分离工艺,可以提高产品的纯度和产率。
二、工艺优化工艺优化是为了改进工艺流程,提高产率、降低成本和环境污染。
在甲醇制烯烃工艺中,有几个关键方面可以进行优化。
首先,反应条件的优化是关键。
通过调节反应温度、压力和催化剂用量等参数,可以提高甲醇转化率和烯烃选择性。
此外,气体分子扩散速率、反应速率等因素也需要考虑,以达到最佳的反应条件。
其次,催化剂的改进也是工艺优化的重要方面。
通过改变催化剂的活性元素含量、物理结构等参数,可以调节催化剂对甲醇和烯烃的选择性和活性,提高反应效果。
另外,废弃物的处理也是工艺优化的重要环节。
甲醇制烯烃过程中会产生一定量的废弃物,如水、二甲醚等。
合理处理这些废弃物可以减少对环境的污染,并回收利用其中的有价值物质。
三、案例分析以ZSM-5催化剂为例,进行甲醇制烯烃工艺流程设计与工艺优化的案例分析。
在工艺流程设计方面,选择合适的反应器结构和温度、压力等参数,以最大程度提高甲醇转化率和烯烃产率。
同时,利用先进的分离技术,如吸附、晶体分离等,提高产品纯度。
甲醇制烯烃工艺技术目录第一章绪论 (3)第一节概述 (3)一.烯烃、聚烯烃市场分析 (3)二.竞争力分析 (4)第二节主要产品简介 (4)一.甲醇的物理化学性质和用途 (5)二.乙烯的物理化学性质和用途 (6)三.丙烯的物理化学性质和用途 (6)四.聚乙烯的物理化学性质和用途 (7)五.聚丙烯的物理化学性质和用途 (8)第二章甲醇制烯烃工艺技术的发展概况 (11)第一节甲醇制烯烃工艺技术简介 (11)第二节甲醇制烯烃工艺技术的发展状况及趋势 (11)一.甲醇制乙烯、丙烯(MTO) (11)二.甲醇制丙烯(MTP) (13)第三章甲醇制烯烃 (16)第一节甲醇制烯烃的基本原理 (16)一.反应方程式 (16)二.反应机理 (17)三.反应热效应 (18)四.MTO反应的化学平衡 (19)五.MTO反应动力学 (19)第二节甲醇制烯烃催化剂 (20)一.分子筛催化剂的研究 (20)二.分子筛催化剂的制备 (23)三.分子筛催化剂的再生 (27)第三节甲醇制烯烃工艺条件 (27)一.反应温度 (27)二.原料空速 (28)三.反应压力 (28)四.稀释剂 (28)第四节甲醇制烯烃工艺流程及主要设备 (29)一.MTO工艺流程及主要设备 (29)二.MTP工艺流程及主要设备 (40)第四章甲醇制烯烃工艺路线的选择 (42)一、技术条件 (42)二、工业化应用现状 (42)三. 经济性对比 (43)四. 工艺技术的选择 (44)第五章聚烯烃工艺简介 (45)第一节聚乙烯工艺技术简介 (45)一、LDPE 生产工艺 (45)二、LLDPE/HDPE生产工艺 (45)三、聚乙烯工艺技术 (47)第二节聚丙烯工艺技术简介 (52)一.聚丙烯工艺技术介绍 (52)二.聚丙烯工艺技术 (53)第一章绪论第一节概述乙烯、丙烯等低碳烯烃是重要的基本化工原料,随着我国国民经济的发展,特别是现代化学工业的发展对低碳烯烃的需求日渐攀升,供需矛盾也将日益突出。
完整word版MTO⼯艺MTO/MTP⼯艺论证⼀.MTO/MTP⼯艺概述1.1 概述MTO是指以煤基或天然⽓基合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,⽣产低碳烯烃的化⼯⼯艺技术,其主要产品为⼄烯、丙烯。
MTP是指以煤基或天然⽓基合成的甲醇为原料,采⽤固定床反应器,⽣产丙烯的化⼯⼯艺技术。
甲醇制烯烃技术源于甲醇制汽油。
在甲醇合成汽油过程中,发现C2~C4 烯烃是过程的中间产物。
控制反应条件(如温度等)和调整催化剂的组成,就能使反应停留在⽣产⼄烯等低碳烃的阶段。
显然,催化剂的研究则是MTO 技术的核⼼。
⽬前世界上,对研制MTO催化剂卓有成效,因⽽具备⼯业化和商业转让条件的甲醇制低碳烯烃的技术主要有三种:美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发的UOP/Hydro MTO ⼯艺;德国鲁奇公司开发的Lurgi MTP ⼯艺;中国科学院⼤连化学物理研究所开发的D M TO ⼯艺。
1.2 MTO技术特点采⽤流化床反应器和再⽣器,连续稳定操作;采⽤专有催化剂,催化剂需要在线再⽣,保持活性;甲醇的转化率达100%,低碳烯烃选择性超过85%,主要产物为⼄烯和丙烯;可以灵活调节⼄烯/丙烯的⽐例;⼄烯和丙烯达到聚合级。
.1.3 MTP技术特点采⽤固定床由甲醇⽣产丙烯,⾸先将甲醇转化为⼆甲醚和⽔,然后在三个MTP反应器中进⾏转化为丙烯。
催化剂系采⽤南⽅化学开发的改进ZSM-5催化剂,有较⾼的丙烯选择性。
甲醇和DME的转化率均⼤于99%,对丙烯的收率则约为71%。
产物中除丙烯外还将有液化⽯油⽓、汽油和⽔。
从技术上讲,MTO和MTP技术已经成熟可⾏,具备⼯业化推⼴的条件。
1.4 基本反应历程MTP、MTO反应历程通常认为可分成三个步骤:(1)甲醇⾸先脱掉⼀分⼦⽔⽣成⼆甲醚。
甲醇和⼆甲醚迅速形成平衡混合物。
甲醇/⼆甲醚分⼦与分⼦筛上酸性位作⽤⽣成甲氧基.(2)甲氧基中⼀个C.H质⼦化⽣成C-H+,与甲醇分⼦中-OH.作⽤形成氢键,然后⽣成已基氧缝,进⽽⽣成C=C键。
(一)、MTO装置工艺流程简述MTO装置由甲醇制烯烃单元、烯烃分离单元组成,其中甲醇制烯烃单元包括反应再生系统,取热系统,急冷、汽提系统;烯烃分离单元包括进料气压缩、酸性气体脱除和废碱液处理系统,进料气体和凝液干燥系统,气体再生部分,脱丙烷系统,脱甲烷系统,脱乙烷系统、乙炔加氢,乙烯精馏塔,丙烯精馏塔,脱丁烷塔,丙烯制冷系统。
(1)甲醇制烯烃1)进料汽化和产品急冷区进料汽化和产品急冷区由甲醇进料缓冲罐,进料闪蒸罐,洗涤水汽提塔,急冷塔,产品分离塔和产品/水汽提塔组成。
来自于罐区的甲醇经过与汽提后的水换热,在中间冷凝器中部汽化后进入进料闪蒸罐,然后进入汽化器汽化,并用蒸汽过热后送入MTO反应器。
反应器出口物料经冷却后送入急冷塔。
闪蒸罐底部少量含水物料进入氧化物汽提塔中。
一些残留的甲醇被汽提返回到进料闪蒸罐。
急冷塔用水直接冷却反应后物料,同时也除去反应产物中的杂质。
水是MTO反应的产物之一,甲醇进料中的大部分氧转化为水。
MTO反应产物中会含有极少量的醋酸,冷凝后回流到急冷塔。
为了中和这些酸,在回流中注入少量的碱(氢氧化钠)。
为了控制回流中的固体含量,由急冷塔底抽出废水,送到界区外的水处理装置。
急冷塔顶的气相送入产品分离器中。
产品分离器顶部的烯烃产品送入烯烃回收单元,进行压缩,分馏和净化。
自产品分离器底部出来的物料送入水汽提塔,残留的轻烃被汽提出来,在中间冷凝器中与新鲜进料换热后回到产品分离器。
汽提后底部的净产品水与进料甲醇换热冷却到环境温度,被送到界区外再利用或处理。
洗涤水汽提塔底主要是纯水,送到轻烯烃回收单元以回收MTO生成气中未反应的甲醇。
水和回收的甲醇返回到氧化物汽提塔,在这里甲醇和一些被吸收的轻质物被汽提,送入进料闪蒸罐。
气体后的水返回氧化物汽提塔。
2)流化催化反应和再生区MTO的反应器是快速流化床型的催化裂化设计。
反应实际在反应器下部发生,此部分由进料分布器,催化剂流化床和出口提升器组成。
甲醇制烯烃的反应方程式【摘要】甲醇制烯烃是一种重要的化工过程,通过一系列复杂的化学反应实现。
醇液相裂解反应方程式是最主要的步骤之一,可以将甲醇分解成烯烃和其他副产物。
三氧化碳水蒸气重整反应方程式和烃类水蒸气重整反应方程式则是将其中间产物重新组合生成目标产物的关键步骤。
二氧化碳水蒸气重整反应方程式也是甲醇制烯烃过程中不可或缺的环节。
甲醇脱氢反应方程式能够将甲醇转化为烯烃,进一步提高产物纯度。
综合以上反应方程式,可以看出甲醇制烯烃过程是一个复杂而高效的化学工艺,通过不同的反应步骤实现高效转化,为烯烃生产提供了重要的技术支持。
【关键词】甲醇制烯烃、反应方程式、醇液相裂解、三氧化碳水蒸气重整、烃类水蒸气重整、二氧化碳水蒸气重整、甲醇脱氢、综述1. 引言1.1 甲醇制烯烃的反应概述甲醇制烯烃是一种重要的化工反应过程,通过在适当的催化剂存在下,甲醇分子可以被转化成烯烃类化合物。
烯烃是一类具有双键结构的碳氢化合物,具有广泛的应用领域,包括石油化工、医药和涂料等。
甲醇制烯烃的反应过程涉及多种不同的反应机理,其中主要包括液相裂解、重整和脱氢等反应步骤。
这些反应步骤都需要适当的反应条件和催化剂的协同作用,才能有效地将甲醇转化成烯烃产品。
了解甲醇制烯烃的反应机理和反应方程式对于优化工艺流程和提高产物收率具有重要意义。
在本文中,将对甲醇制烯烃的各种反应方程式进行详细介绍和分析,以期深入了解这一重要的化工过程。
2. 正文2.1 醇液相裂解反应方程式醇液相裂解是甲醇制烯烃的重要反应之一,它通常在高温和高压的条件下进行。
醇液相裂解的反应方程式如下所示:CH3OH → CH4 + H2 + CO在这个反应过程中,甲醇分子被裂解成甲烷、氢气和一氧化碳。
这些裂解产物可以进一步参与后续的反应,生成更多的烯烃。
醇液相裂解反应是一个热力学上比较有利的反应,因为甲烷等产物相对稳定,而且裂解过程可以释放大量的热量。
该反应也需要高温和高压的条件下才能进行,因此在工业生产中需要耗费大量能量。
mtp 甲醇制丙烯的工艺
1 甲醇制丙烯的工艺
甲醇制丙烯是石化行业中的重要装置,产物用于制造多种烯烃,
制冷剂、橡胶、涂料等,其中,以聚丙烯、有机合成树脂等烯烃的占
有率最高。
此外,丙烯也是重要的化工原料,可用于合成苯乙烯、柠
檬酸、苯甲酸等。
甲醇制丙烯是一种化学反应,通过添加溶剂催化剂和氢气,把甲
醇强氢分解为丙烯和水,它们可用于制备一些有价值的中间体物质和
最终产品。
丙烯有宝贵的工业应用,因此,甲醇制丙烯将成为全球化工巨头
争夺的焦点。
甲醇转化制备丙烯,不仅可以成本价更低,而且,会使
甲醇的经济价值大大提升。
甲醇制丙烯的工艺流程,基本上可以分为两个阶段:一是前处理
阶段,主要由甲醇,空气,氢气和催化剂构成,通过精细的控制调节,达到平衡状态;二是制备阶段,主要由甲醇、水和氮构成,经过反应
得到丙烯气体,并加以合成并冷却成液态产品。
此外,甲醇制丙烯工艺中,还可以采用微电极催化反应,在维持
合适温度的条件下,实现甲醇到丙烯的直接转换。
这种工艺技术的特
点为:催化剂的耗用量低,反应速度快,生产效率更高,在来历容易
制得纯度更高的产品,优点有助于节能环保。
甲醇制丙烯虽然有很多好处,但同时还需要注意操作安全等问题,要建立完善的安全措施,以期产生更多的价值。
甲醇制烯烃工艺流程简述
本装置由反应-再生部分、取热部分、急冷、汽提部分组成。
现就主要的工艺流程简述如下:
1反应-再生部分
升压,经甲醇-蒸来自装置外的甲醇先进入甲醇缓冲罐(V1105),经甲醇进料泵(P1101A、B)汽换热器(E1101)预热,再经甲醇-反应器换热器(E1102)、甲醇冷凝器(E1103)换热后进入反应器(R1101),甲醇与来自再生器的高温再生催化剂直接接触,甲醇在催化剂表面迅速进行放热反应。
反应气经反应器设置的两级旋分器及外挂式三级旋风分离器除去所夹带的催化剂后引出,经甲醇-反应气换热器(E1102)降温后送至后部急冷塔(T1201),由反应器外挂旋风分离器料腿回收下来的待生催化剂进入废催化剂储罐(V1104),定期用槽车送至装置外。
反应器内设置六组内取热管以取走多余热量。
反应后积碳的待生催化剂进入待生汽提器汽提,待生汽提器内设有三个汽提蒸汽环,用于汽提出待生催化剂携带的反应气,汽提后的待生催化剂用提升风水平输送后经待生立管向上进入再生器(R1102)中部,在再生器内烧焦后,再生催化剂经再生汽提器汽提后,在提升蒸汽的带动下,经水平管和立管送回反应器。
再生后的烟气经再生器两级旋风分离器除去所夹带的催化剂后送至再生器顶烟囱排放大气。
再生器内设置六组内取热管以取走多余热量。
再生器烧焦所需的主风由主风机提供。
装置设有两台往复式主风机,一台操作,一台备用。
主风经主风机出口缓冲罐(V1113)后分成两路:其中一路主风经辅
助燃烧室(F1101)进入再生器,另一部分主风作为待生管输送风与待生催化剂一同进入再生器。
再生器内还设有氮气流化环,完全再生方案时该环通入主风,不完全再生方案时该环通入氮气,以保证再生器旋风分离器在合适的工况下操作。
2取热部分
本部分为一个在反应再生系统取热、在循环水冷却器放热的闭式循环除氧水系统。
考虑到反应器再生器过剩热量负荷波动大,系统循环水量变化大,设置一个1000m3的除氧水灌,以自总管来的4.0Mpa、104℃除氧水作为补充水。
70t/h、0.25Mpa、40℃的循环(除氧)水由罐底送出,先经热水循环泵P1108A~C升压至0.7Mpa,在分两路分别送入反应器(R1101)内取热器和再生器(R1102)内取热器取热,水温升至50℃,最后送至循环水冷却器再冷却至40℃,返回水罐。
3急冷、汽提部分
富含乙烯、丙烯的反应气进入急冷塔(T1201),自下而上经人字型挡板与急冷塔顶冷却水逆流接触,洗涤反应气中携带的少量催化剂,同时降低反应气的温度,冷却水自急冷塔底抽出,经急冷塔底泵(P1102A、B)升压后分成三路,一路经急冷水冷却器(一)换热后作为急冷剂返回塔顶,另一路少部分送至装置外。
第三路直接进入沉降罐(V1114)。
急冷塔顶反应气进入水洗塔(T1202)下部,自下而上经填料与急冷水逆流接触,洗涤反应气中携带的少量催化剂,降低反应气的温度,水洗塔底冷却水抽出后经水洗塔底泵(P1103A、B)升压,一路
进入沉降槽(V1114),另一路经急冷水冷却器(二)冷却至55℃后再分为两路,一路作为急冷剂进入水洗塔中部,另一路经急冷水冷却器(三)冷却至37℃,作为急冷剂进入水洗塔上部,水洗塔顶反应气送至火炬系统或锅炉。
经沉降罐沉降除去催化剂后,经汽提塔进料泵(P1108A、B)升压后进入污水汽提塔(T1203),污水汽提塔底通入汽提蒸汽,气体后的塔底净化水经净化水冷却器(E1105)冷却后进入塔顶回流罐,冷却后的浓缩水经塔顶回流泵(P1104A、B)升压,一部分作为塔顶冷回流返回污水汽提塔上部,一部分进入浓缩水储罐(V1107),定期送至反应器床层回炼。
装置物料平衡。