扫频仪应用技巧

  • 格式:doc
  • 大小:556.00 KB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫频仪使用技巧

在电子测量中,经常遇到对网络的阻抗特性和传输特性进行测量的问题,其中传输特性包括增益和衰减特性、幅频特性、相频特性等。用来测量前述特性的仪器我们称为频率特性测试仪,简称扫频仪。它为被测网络的调整,校准及故障的排除提供了极大的方便。

扫频仪一般由扫描锯齿波发生器、扫频信号发生器、宽带放大器、频标信号发生器、X轴放大、Y轴放大、显示设备、面板键盘以及多路输出电源等部分组成。其基本工作过程是通过电源变压器将50Hz市电降压后送入扫描锯齿波发生器,就形成了锯齿波,这个锯齿波一方面控制扫频信号发生器,对扫频信号进行调频,另一方面该锯齿波送到X轴偏转放大器放大后,去控制示波器X轴偏转板,使电子束产生水平扫描。由于这个锯齿波同时控制电子束水平扫描和扫频振荡器,因此电子束在示波管荧光屏上的每一水平位置对应于某一瞬时频率。从左向右频率逐渐增高,并且是线性变化的。扫频信号发生器产生的扫频信号送到宽带放大器放大后,送入衰减器,然后输出扫频信号到被测电路。为了消除扫频信号的寄生调幅,宽带放大器增设了自动增益控制器(AGC)。宽带放大器输出的扫频信号送到频标混频器,在频标混频器中与1MHz和10MHz或50MHz晶振信号或外频标信号进行混频。产生的频标信号送入Y轴偏转放大器放大后输出给示波管的Y轴偏转板。扫频信号通过被测电路后,经过Y轴电位器、衰减器、放大器放大后送到示波管的Y轴偏转板,得被测电路的幅频特性曲线。

早期频率特性的测量用逐点测绘的方法来实现。在整个测量过程中,应保持输入到被测网络信号的幅度不变,记录不同频率下相应输出的电压,根据所得到的数据,就可以在坐标纸上描绘出该网络的幅频特性曲线。显然,这种方法不仅操作繁锁、费时,而且有可能因测量频率间隔不够密而漏掉被测曲线上的某些细节,使得到的曲线不够精确。

扫频测量法是将等幅扫频信号加至被测电路输入端,然后用示波器来显示信号通过被测电路后振幅的变化。由于扫频信号的频率是连续变化的,在示波器屏幕上可直接显示出被测电路的幅频特性。

扫频信号加至被测电路,检波探头对被测电路的输出信号进行峰值检波,并将检波所得信号送往示波器Y轴电路,该信号的幅度变化正好反映了被测电路的幅频特性,因而在屏幕上能直接观察到被测电路的幅频特性曲线。

为了标出X轴所代表的频率值,需另加频标信号。该信号是由作为频率标记的晶振信号与扫频信号混频而得到的。

下面以产品BT3型扫频仪为例对各部分加以说明。

(一)对扫频信号源的要求

扫频信号发生器是扫频仪的心脏。实际上它就是频率可控的正弦振荡器,其工作大原理和调频振荡器相似,但扫频振荡器的扫频宽度远大于调频振荡器的频偏,前者中心频率变动范围也比后者大得多。扫频振荡器除具有一般正弦振荡器所具有的工作特性外,还需满足如下要求:

1.中心频率范围宽,且可连续调节。中心频率是指扫频信号从低频到高频之间中心位置的频率。不同测试对象对中心频率有不同频段要求,如高频段、中频段和音频段等。

2.扫频宽度(常叫频偏)要宽,并可任意调节。频偏是指调频波中的瞬时频率和中心频率之间的差值。显然,频偏应能覆盖被测电路的通频带,以便测绘

该电路完整的频率特性曲线。如测试电视接收的图象中频通道,要求频偏达

±5MHz,测试伴音中频通道时,频偏只需0.5MHz。

3.寄生调幅要小。理想的调频波应是等幅波。只有在扫频信号幅度保持恒定不变的情况下,被测电路输出信号的包络才能表征该电路的幅频特性曲线,否则会导致错误结果。

4.良好的扫频线性度。当扫频信号的频率和调制信号间成直线关系时,示波管的水平轴则变成线性的频率轴,这时幅频特性曲线上的频率标尺将均匀分布,便于观察,否则导致曲线畸变。

(二)BT-3型频率特性图示仪的主要技术指标:

1.中心频率(指扫描基线为100mm,在最大频偏时,对准荧光屏中心刻度线的频率):在1MHz~300MHz内可以连续调节,分三个波段实现。

2.有效扫频宽度:±0.5MHz~±7.5MHz可连续调节。

3.寄生调幅系数:≯±7.5%。

4.扫频线性度:在频偏±7.5MHz时,应>20%。

5.输出扫频信号电压:>0.1V(应接75Ω匹配负载,输出衰减置于0dB)。

6.输出电压调节方式:步进衰减(粗):0/10/20/30/40/50/60dB;

步进衰减(细):0/2/3/4/6/8/10dB。

7.检波探测器的输入电容:≯5pF(最大允许直流电压300V)。

(三)磁调制

所谓磁调制,就是用磁芯线圈作为振荡器的回路电感,利用加在磁芯励磁线圈上的调制电流来改变磁芯线圈电感量,从而达到扫(调)频的目的(或说达到振荡器所需频偏的目的)。在线性扫频条件下,扫频振荡器的瞬时频率变化规律与调制线圈中的调制电流变化规律成线性关系。为了把示波管屏幕的水平坐标变换成线性的频率坐标,要求调制电流波形必须与扫描电压波形完全相同。在感性负载的励磁线圈中产生正弦形电流要比其它波形电流方便得多。所以,磁调制采用正弦波调制信号,直接取自50Hz交流市电。通过电位器调节输入的50Hz市电信号幅度,可调节扫频信号频偏大小。

(四)扫频振荡器

BT3型超高频扫频仪的中心频率调节范围为1~300MHz,分三个波段来实现。

1.第Ⅰ波段:中心频率为1~75MHz

由于相对扫频宽度太大,扫频线性度、寄生调幅的矛盾尤为突出,一般扫频器难以保证。故扫频信号通过差频法获得。

定频振荡器,电容三点式振荡器。所谓定频,就是其振荡频率为某一恒定值,没有扫频信号。借助蝶形电容的调节,振荡频率可在290MHz~215MHz范围内变化(面板上的“中心频率”旋钮)。

调(扫)频振荡器也是三点式电路,振荡频率为290MHz。由于振荡线圈L 是绕在电流调制器的高频磁芯上,因而在调制电流作用下,将得到频偏>

±7.5MHz的扫频信号。

扫频、定频两信号经混频管的非线性作用后,由低通滤波器取出其差频信号。经宽频带放大器予以放大,使输出信号幅度大于0.1V。从而得到中心频率在

1MHz~75MHz内连续可调,而频偏为±7.5MHz的扫频信号了。

2.第Ⅱ波段:中心频率为75MHz~150MHz

此波段是普通的磁扫频器。由绕在高频磁芯上的L实现扫频振荡,中心频率的连续调节通过调节振荡回路蝶形电容实现。

相关主题