太和特大桥转体连续梁施工技术介绍
- 格式:ppt
- 大小:7.69 MB
- 文档页数:44
大跨度连续梁水平转体施工关键技术研究摘要:为减少大跨度连续梁上跨繁忙既有铁路施工对铁路行车安全的影响,采用旁位现浇、平衡转体的施工方法。
以潼湖特大桥跨京九铁路(75+125+75)m连续梁转体施工为例,对球铰、滑道安装,临时固结系统、平衡系统、牵引系统等主要部件的施工关键技术行了研究。
关键词:连续梁转体系统施工转体参数转体技术1.转体工程概况潼湖特大桥(75+125+75)m 现浇连续梁跨既有京九铁路,与其交角为41.42°,该梁平面位于半径8000m 的圆曲线上,纵面位于平坡上,线路纵坡0。
由于临近营业线及跨营业线施工难度大、安全风险高等施工条件的制约,采用常规挂篮悬臂浇筑的施工方法,对既有线运营存在重大安风险,因此该桥采用平衡转体的施工方法。
即先在铁路一侧浇筑梁体,然后通过转体使主梁就位、调整梁体线形、封固球铰转动体系的上、下转盘,最后进行合拢段施工,使全桥贯通。
转体221#、222#主墩分别梁长123m ,转体重达130000KN 如图1。
图11.转体理论依据转体的基本原理是箱梁重量通过墩柱传递于上球铰,上球铰通过球铰间的四氟乙烯滑片传递至下球铰和承台。
待箱梁主体施工完毕以后,脱空砂箱将梁体的全部重量转移于球铰,然后进行称重和配重,利用埋设在上转盘的牵引索、转体连续作用千斤顶,克服上下球铰之间及撑脚与下滑道之间的动摩擦力矩,使梁体转动到位。
3.转体施工关键技术及难点本连续梁采用双转体施工方法,难点在于该梁平面位于小曲线半径和竖曲线上,难以控制梁体线形。
因此在施工过程中,必须严格控制要求,进行转动支承、牵引系统及平衡系统的试验研究,并加强线形监控,确保转体施工的顺利实施。
3.1转动体系钢球铰加工及安装优化结合以往施工经验,在球铰施工中,加强与生产厂家沟通协调,通过增设定位工装、改进球铰定位支架及预埋定位型钢、四氟乙烯滑片、增设防溢导管防水混凝土外流等技术措。
⑴下球铰的中心处设置中心定位工装,具体做法是增设一定位管盖,下部插入销轴孔,顶面钢板上设置定位凹槽,在测量定位时,只要校正定位管盖的中心就可以在下球绞安装时方便找正。
(中铁)跨既有连续梁转体施⼯技术总结跨既有线连续梁转体施⼯技术总结(中铁⼆局宝兰客专⽢肃段项⽬经理部刘天宙)1⼯程概况1.1 设计概况称沟驿特⼤桥在DK962+011~DK962+167处上跨既有陇海铁路,上部结构为(40+56+40)m预应⼒混凝⼟连续梁,下部结构为圆端形桥墩,钻孔桩基础。
既有陇海铁路为I级双线电⽓化铁路,宝兰客运专线与既有陇海铁路线夹⾓为85°。
为保证既有线运营安全,减少施⼯过程中既有线运营⼲扰和加快施⼯进度,连续梁采⽤转体施⼯,即在21号、22号墩处平⾏于既有陇海铁路挂篮浇筑悬灌段施⼯,待施⼯⾄最⼤悬臂状态后,结合既有线运营,施⼯要点及天⽓等因素,择机实施转体施⼯。
将梁体及桥墩逆时针旋转85°,转体到位后再进⾏合拢段施⼯。
1.2平⾯、⾥⾯位置概况连续梁主跨跨越陇海铁路双线长度13.3⽶,宝兰铁路梁底距离陇海铁路轨⾯10.53m,距接触⽹线顶⾯2.735m。
其中21号墩承台边距陇海铁路防护⽹最⼩距离为10.3m,22号墩承台距陇海铁路防护⽹最⼩距离为17.71m。
宝鸡21#墩DK963+01122#墩DK963+067合拢处DK963+0391.3转体结构概况称沟驿特⼤桥主桥采⽤平转法施⼯,转体结构由下转盘、球铰、上转盘和转体牵引系统组成。
其中,转动球铰是转动体系的核⼼,在转体过程中⽀撑转体重量,是整个平衡转体的⽀撑中⼼,为转体施⼯的关键结构。
称沟驿特⼤桥主桥球铰竖向承载⼒为4500t ,平⾯直径为270cm ,它由上下球铰、球铰间聚四氟⼄烯滑⽚、固定上下球铰的27cm 钢销、下球铰钢⾻架组成。
2设备配置序号机械名称规格型号额定功率(KW)或吨位或容量数量(台)13 电焊机3000型10DAZ-100×75KW 514 ⾼压⽔泵615 装载机ZL50 116 洒⽔车EQ1141G70 13.1下转盘施⼯3.1.1下转盘第⼀次混凝⼟浇筑为保证下球绞及滑道的安装质量下转盘混凝⼟分两次施⼯。
结合实例探讨桥梁转体施工在铁路既有线施工中的应用作者:卞仁基来源:《城市建设理论研究》2013年第08期摘要:连续梁转体施工技术在铁路大桥中应用比较广泛,本文结合某高铁特大桥连续梁转体施工实例,介绍特大桥连续梁作为跨线桥的转体施工方案,阐明转体系统构造、转体设备以及转体实施方法,可为类似工程提供参考。
关键词:高铁特大桥;连续梁;转体施工Abstract: Continuous beam in railway bridge rotation construction technology is widely applied; this paper combined with the construction practice of continuous beam with a high-speed rail bridge, the bridge rotation construction scheme of continuous beam as an overpass, clarifies the swivel system structure, rotating equipment and twists the implementation method, which can provide reference for similar project.Key words: high-speed rail bridge; continuous beam; Swivel Construction中图分类号:U445.4文献标识码:A文章编号:2095-2104(2013)1-0020-031工程概况某大桥铁路的重点工程之一。
该桥采用(48m+80m+48m)连续梁,梁体为单箱单室、变高度、变截面结构,三向预应力体系;中支点处梁高6.23m,边跨7.6m直线段梁高为3.83m,梁底下缘按二次抛物线变化(立面布置如图1所示)。
转体桥球铰安装施工技术分析摘要:转体法即在偏离设计桥位的方位提前浇注或者组装为桥体,同时再利用转动支座平转就位的一种作业手段。
本文将以某工程为例,详细地阐述转体桥球铰安装施工技术,进一步提供球铰安装定位措施,牢牢遵循施工方案予以施工,在此期间强化球铰中线、高程方面的控制,在第一时间精准地掌控及调整作业期间产生的偏差值,重视测量复核,希望给同行带来一定的参考价值。
关键词:转体桥;主墩承台;球铰安装;技术分析1引言过去传统跨越既有铁路施工的桥梁一般为T梁、钢桁架梁或连续梁。
T梁小角度形式跨越既有线一般采用门式墩通过,天窗点内施工任务繁多,.钢桁架梁跨越既有线一般采用顶推法施工,既有线安全风险大;连续梁跨越既有线一般采取悬灌法施工,需要设置安全防护棚架[1],受施工空间限制,一般棚架很难拆除。
因此本文针对转体桥主墩承台主要施工技术,例如钢筋绑扎、安装模板、浇筑混凝土等方面安装施工技术要点,为桥梁正式转体跨越既有线提供施工依据。
2.工程概况某项目线下工程起止里程K41+400.5~K41+628,正线长度227.5m。
主桥上横跨南昆客运线路,此时公铁交叉里程为K41+510.163(公路)=K46+848.877(铁路),桥梁和铁路重叠角度即67°。
在桥梁下端,其结构左幅2#主墩承台与右幅4#主墩承台结构规模大约是15.5×11.4×3.5m。
与此同时,转体系统包括下转盘、球铰、上转盘、牵引系统等部分构成。
将下转盘安置在下承台之上,下承台规模为15.5×11.4×3.5m,此时采取C50混凝土。
球铰垫石平面直径为496cm,高度为66cm,采用C50混凝土,球铰垫石内预埋角钢,作为下球铰调平及支撑用。
除此之外,球铰承载力即14000吨,平面长度大约330厘米,而转动球铰是转动机制的中心,已经成为转体作业的重要结构。
在上转盘之上,设置有八组撑脚,各个撑脚是双圆柱形,而在下设有30毫米厚的钢走板,同时再从内部浇筑C50微膨胀混凝土,撑脚底与滑道的间隔距离大约为20mm,在施工过程中避免出现结构倾斜的问题。
第1篇一、项目背景随着城市化进程的加快,桥梁建设在交通基础设施建设中扮演着越来越重要的角色。
转体施工作为一种先进的桥梁施工技术,具有施工速度快、占用场地少、环境影响小等优点,被广泛应用于大跨度桥梁的建设中。
本方案针对某跨河大桥的转体施工进行详细规划,以确保工程顺利进行。
二、工程概况1. 项目名称:某跨河大桥2. 桥梁类型:预应力混凝土连续梁桥3. 跨径布置:主桥跨径为120m,引桥跨径为40m4. 设计荷载:公路-Ⅰ级5. 设计速度:80km/h6. 转体结构:主桥采用单箱单室截面,转体部分采用整体预制、分段拼装的方式。
三、转体施工方案1. 施工准备(1)施工组织设计:成立转体施工项目部,明确各部门职责,制定详细的施工组织设计。
(2)施工图纸及技术资料:收集整理施工图纸、技术资料,确保施工过程中资料齐全。
(3)施工设备:配置足够的施工设备,包括转体设备、吊装设备、运输设备等。
(4)施工人员:组织施工队伍,进行技术培训和安全教育。
2. 施工工艺(1)预制阶段1)主梁预制:采用现场预制,分节段浇筑,每节段长度根据转体角度和施工要求确定。
2)支座预制:根据主梁节段尺寸和转体角度,预制相应的球型支座。
(2)安装阶段1)基础施工:完成转体基础施工,确保基础稳固。
2)主梁拼装:将预制好的主梁节段运至现场,按照设计要求进行拼装。
3)支座安装:将预制好的球型支座安装到主梁节段上。
4)转体设备安装:安装转体设备,包括转体装置、驱动装置、导向装置等。
(3)转体施工1)转体前准备:检查转体设备、主梁拼装质量,确保转体施工顺利进行。
2)转体:启动转体装置,逐步调整转体角度,直至达到设计要求。
3)转体后调整:调整转体后的主梁位置,确保主梁与支座、墩柱等部位连接牢固。
(4)桥面施工1)桥面钢筋绑扎:根据设计要求,进行桥面钢筋绑扎。
2)桥面混凝土浇筑:进行桥面混凝土浇筑,确保桥面平整、密实。
3. 施工质量控制(1)材料质量控制:严格把控施工材料的质量,确保材料符合设计要求。
2024/03总第577期商合杭铁路阜阳特大桥连续梁上跨京九铁路施工技术研究刘怀远(中铁十九局集团第一工程有限公司,辽宁辽阳 111000)[摘要]为保证特大桥连续梁施工质量,结合商合杭铁路阜阳特大桥跨京九铁路连续梁实际情况,从转体施工准备工作入手,借助称重试验确定不平衡力矩,在转体过程中控制好牵引系统,可有效确保稳定性及转体安全。
此外对转体结构施工、下转盘施工、滑道安装、上球铰安装等关键技术进行了分析,实现了商合杭铁路阜阳特大桥跨京九铁路连续梁一次性成功转体,为类似工程提供参考。
[关键词]特大桥;连续梁;转体;合拢段[中图分类号]U445 [文献标识码]B [文章编号]1001-554X(2024)03-0095-04 Research on construction technology of continuous beam of Fuyang bridge ofShanghehang railway crossing Jingjiu railwayLIU Huai-yuan目前,桥梁工程施工中广泛应用的高新技术、材料和设备等,极大地提升了施工速度和质量[1-3]。
其中,连续梁转体施工技术作为一种先进的桥梁施工技术,其施工难度较大,需要综合考虑多种因素[4-6]。
在当前我国高速铁路建设蓬勃发展的背景下,商合杭铁路作为我国高铁网的重要组成部分,连接了沪蓉高铁和合蚌高铁,具有巨大的交通运输和经济发展价值。
其中,阜阳特大桥作为商合杭铁路的重要节点和难点工程,将跨越京九铁路,对其转体施工技术进行深入研究,具有重要的理论和实践意义。
商合杭铁路阜阳特大桥的设计采用了预应力混凝土双线连续箱梁,并进行了转体施工。
由于采用了新的施工工艺,在不改变原结构形式和受力状态的前提下进行了相应的调整,使其成为目前国内最大跨度的双曲线钢桁梁悬索桥之一。
该特大桥连续梁总重量达到了2842.6t,在旋转过程中,其转体段长度为46m,转角则为82.40°。
常山江特大桥跨320国道设计采用一联32m+48m+32m连续箱梁,采用满堂支架现浇施工,中孔设置门洞支架,以保证车辆通行。
满堂支架法施工连续梁,施工前,应设计支架布置,根据支架布置对支架基础进行加固处理,机械碾压,浇注混凝土基础,搭设支架,支架顶面搭设平台。
施工平台施工完成后,对支架进行预压,预压荷载为结构重及施工荷载的1.2倍。
并待非弹性变形消除后,方能进行箱梁混凝土的浇筑。
严格控制混凝土的入模温度在10~30℃,灌注时模板温度控制在5~35℃。
为防止梁体产生早期裂纹,在混凝土强度达到设计强度的50%~60%时拆除内模,外模只拆不移的情况下进行带模预张拉。
两侧腹板对称张拉,四顶同步进行。
在压浆材料中掺入高性能无收缩防腐灌浆剂,并采用真空辅助压浆工艺,选用连续式压浆泵,在出浆口设置三通以检验进浆口和出浆口浆体浓度是否一致。
具体工艺流程见“支架法现浇连续箱梁施工工艺框图”,说明如下:一、结构介绍新建衢常铁路常山江特大桥跨越320国道和常山江,跨越320国道是以一联32+48+32m的弯连续箱梁,与国道斜交,角度为34度。
该联弯连续箱梁全长113米(含两侧梁端至边支座中心各0.5米),位于曲线半径为2500m,纵坡为+5.5‰,设计时速160km/h的单线一级铁路线上。
道碴桥面,道碴槽宽度为4.2m,两侧人行道宽各1.4米,轨底到梁顶0.6米。
箱梁采用C50混凝土,挡碴槽采用C30混凝土,管道压浆采用M50水泥浆,封端采用C50微膨胀混凝土;钢绞线采用低松弛高强预应力钢绞线,预应力管道采用金属波纹管成孔,锚具采用OVM系列锚具。
全联梁等高为3.4米,箱梁横截面为单箱单室直腹板,顶宽7.0m,底宽4.0m,箱梁顶板厚0.32m,中支点和端支点处局部加厚至0.6m,腹板厚0.36m~0.80m,底板厚0.3m~0.6m,箱梁悬臂板端部厚0.2m,根部厚0.6米,全梁共设4道横隔板,其中在中支点处设置厚1.2m的横隔板,梁端支座处设置厚1.1m的端横隔板。