第二十二讲 正弦定理和余弦定理
- 格式:doc
- 大小:44.50 KB
- 文档页数:2
三角函数中的正弦定理与余弦定理三角函数是数学中常用的一种函数,在几何学中也起着重要的作用。
本文将探讨三角函数中的两个关键定理:正弦定理和余弦定理。
这两个定理在解决各种三角形问题时非常有用,通过它们可以计算出未知的边长和角度。
一、正弦定理正弦定理是一个关于三角形边长和角度之间关系的定理,它适用于所有的三角形。
正弦定理表达的是三角形中一个角的正弦值与其对边的比例关系。
设三角形的三边分别为a、b、c,相应的角为A、B、C,那么正弦定理可以表示为:a/sinA = b/sinB = c/sinC这个定理的一种形式是:a/sinA = 2R其中,R是三角形外接圆的半径。
正弦定理的应用非常广泛,例如可以通过已知两边和一个角度,求解未知边长或者角度。
同时,它也常用于解决三角形的面积问题。
二、余弦定理余弦定理是另一个与三角形边长和角度之间关系的定理,与正弦定理相比,余弦定理更加灵活,适用于各种类型的三角形。
余弦定理表达的是三角形中一个角的余弦值与其对边的平方和其他两边的乘积之间的关系。
设三角形的三边分别为a、b、c,相应的角为A、B、C,那么余弦定理可以表示为:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理的应用非常广泛,可以通过已知三边求解未知角度或者通过已知两边和一个夹角求解未知边长。
三、正弦定理与余弦定理的关系正弦定理和余弦定理在解决三角形问题时可以互相补充使用。
根据正弦定理,我们可以求解任意一个角的正弦值,通过求解余弦,我们可以得知其他两个角的余弦值。
进而,我们可以通过余弦定理求解三角形的边长。
例如,在解决三角形的边长问题时,我们可以首先使用正弦定理求解一个角的正弦值,然后使用余弦定理求解其他两个角的余弦值。
通过已知角度的余弦值,我们可以应用余弦定理求解未知边长。
在实际应用中,我们常常需要通过这两个定理来解决与三角形相关的问题。
三角之:正弦定理,余弦定理 2011-7-23一.基础知识 (1)正弦定理:Cc Bb Aa sin sin sin ==(2)余弦定理: cos 2222ab c b a -+= AB ac c a b cos 2222-+=C ab b a c cos 2222-+= 注意:正弦定理和余弦定理都是“知三求一”,但应注意区别:正弦定理是“知两角一边可以求一边”或“知两边一角可以求一角”; 余弦定理是“知三边可以求一角”或“知两边一角可以求一边”。
正弦定理推论:(1)a=2RsinA,b=2RsinB,c=2RsinC (2)C Rc B Rb A Ra sin 2,sin 2,sin 2===(3) a :b :c=sinA:sinB:sinC(4)C B A c b a C B A sin sin sin >>⇔>>⇔>> 余弦定理推论:abcb a C acbc a B bcac b A 2cos ,2cos ,2cos 222222222-+=-+=-+=(2)三角形面积公式:,sin 21C ab S ABC =∆,sin 21A bc S ABC =∆B ca S ABC sin 21=∆二.基础题型题型一:解三角形(在各种情况下能熟练解三角形,只需说明做法即可) 例1: 解此三角形中,oo C B a ABC 75,60,8===∆(已知两角一边)例2:解此三角形中,oo C A c 75,45,3ABC ===∆(已知两角一边)例3:解此三角形中,oB c a ABC 150,3,1===∆(已知一角两边)例4:解此三角形中,045,1,2===∆B c b ABC (已知一角两边)例5:解此三角形中,oB b a ABC 45,2,3===∆(已知一角两边)例6:解此三角形中,,30,2,34o C c b ABC ===∆(已知一角两边)例7:ABC ∆中,若8:7:5::=c b a ,解此三角形小结:(1)三角形中必须已知三个条件时(其中必须有边和角),才可解三角形。
三角形正弦定理和余弦定理三角形正弦定理和余弦定理是几何学中的重要定理。
它们可以用来解决三角形中任意两边和夹角的求解问题。
两个定理都是基于三角形的基本定义而推导出来的,都有它们自己的特点,可以帮助我们解决复杂的几何问题。
三角形正弦定理由法国数学家Adrien-Marie Legendre于1786年提出,它定义了三角形的正弦和余弦值之间的关系:a/sinA = b/sinB = c/sinC,其中a,b,c分别表示三角形的三边,A,B,C分别表示三边所对应的角。
它可以用来求解三角形的任意两边和夹角的大小。
余弦定理,又称余弦公式,是由18世纪英国数学家John Wallis发现的,它定义了三角形的余弦值之间的关系:a^2 =b^2 + c^2 - 2bc*cosA,其中a,b,c分别表示三角形的三边,A表示两边之间的夹角。
它可以用来求解三角形的任意两边的长度。
三角形正弦定理和余弦定理是几何学中的重要定理,它们可以用来解决三角形中任意两边和夹角的求解问题,帮助我们求解复杂的几何问题。
它们的精确性和准确性,使得它们在几何学中具有重要的作用,也被广泛应用于现代数学和工程学中。
例如,它们可以用来求解地球表面上两点之间的距离,这是很多工程学上的应用,比如建筑、测量等应用都会用到三角形正弦定理和余弦定理。
此外,它们还可以用来解决圆柱体、球体和其他几何体的体积、表面积等问题,也是工程学中重要的计算公式。
三角形正弦定理和余弦定理都是几何学的重要定理,它们可以用来解决三角形中任意两边和夹角的求解问题,它们的精确性和准确性使得它们在几何学中具有重要的作用,也被广泛应用于现代数学和工程学中,比如求解两点之间的距离,求解圆柱体、球体和其他几何体的体积、表面积等问题,都是重要的工程学计算公式。
第二十二讲 正弦定理和余弦定理一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.(2010·湖北)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63 D.632.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150° 3.(2010·江西)E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627 B.23 C.33 D.344.(2011·青岛模拟)△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝⎛⎭⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33 D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A-cos 2A =12,则( ) A .b +c =2a B .b +c <2aC .b +c ≤2aD .b +c ≥2a二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2010·江苏)在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若b a +a b=6cos C ,则tan C tan A +tan C tan B的值是________.8.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.9.(2010·新课标全国)在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.10.(2010·新课标全国)在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.(2010·全国Ⅰ)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a 1tan A +b 1tan B,求内角C .12.(2010·辽宁)在△A BC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.13.(2010·陕西)如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC =14,DC=6,求AB的长.。
余弦正弦定理在数学中,余弦正弦定理是三角形中常用的定理之一。
它可以用来计算三角形中的各个角度和边长。
余弦正弦定理的公式如下:余弦定理:c² = a² + b² - 2ab cos C正弦定理:a/sin A = b/sin B = c/sin C其中,a、b、c 分别表示三角形的三条边,A、B、C 分别表示三角形的三个角度。
余弦定理可以用来计算三角形中的任意一个角度,只需要已知另外两个角度和两条边的长度即可。
例如,如果已知三角形的两条边分别为 3 和 4,夹角为 60 度,那么可以使用余弦定理来计算第三条边的长度:c² = a² + b² - 2ab cos Cc² = 3² + 4² - 2×3×4×cos 60°c² = 9 + 16 - 12c² = 13c = √13因此,第三条边的长度为√13。
正弦定理可以用来计算三角形中的任意一个角度或边长,只需要已知另外两个角度或边长即可。
例如,如果已知三角形的两条边分别为 3 和 4,夹角为 60 度,那么可以使用正弦定理来计算第三个角度的大小:a/sin A = b/sin B = c/sin C3/sin 60° = 4/sin B = c/sin Csin B = 4sin 60°/3sin B = √3/2B = 60°因此,第三个角度的大小为 60 度。
余弦正弦定理是解决三角形问题的重要工具,可以帮助我们计算三角形中的各个角度和边长。
在实际应用中,我们可以根据具体情况选择使用哪种定理来解决问题。
正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。
正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。
一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。
【注1】其中“R”为三角形△ABC外接圆半径。
下同。
【注2】正弦定理适用于所有三角形。
初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。
二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。
2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。
【注】多用于“边”、“角”间的互化。
三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。
4、三角形ABC中,常用到的几个等价不等式。
(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。
(2)“a+b>c”等价于“sinA+sinB>sinC”。
(3)“a+c>b”等价于“sinA+sinC>sinB”。
(4)“b+c>a”等价于“sinB+sinC>sinA”。
5、三角形△ABC的面积S=(abc)/4R。
其中“R”为三角形△ABC的外接圆半径。
部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。
正弦定理和余弦定理一、正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a+b+csin A+sin B+sin C=asin A=bsin B=csin C;(5)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab二、常见正余弦定理的应用1、正弦定理求角:2、边角互化之正弦定理:3、边角互化之射影定理:4、余弦定理求边角: 5边角互化的速判:6、边角互化--伪降幂公式:三、对三角形解的个数的探究---正弦定理可以用来解决两类解三角形的问题:1.已知两角和任意一边,求另两边和另一角; 2.已知两边和其中一边的对角,求其他的边和角.第一类问题有唯一解,当三角形的两角和任一边确定时,三角形就被唯一确定. 第二类问题的三角形不能唯一确定,可能出现一解、两解或无解的情况. 下面以已知a ,b 和A ,解三角形为例加以说明.法一;由正弦定理、正弦函数的有界性及三角形的性质可得:0121法则(大招秒杀)(1)若sin B =b sin Aa >1,则满足条件的三角形的个数为0,即无解; (2)若sin B =b sin Aa =1,则满足条件的三角形的个数为1;(3)若sin B =b sin Aa <1,则满足条件的三角形的个数为1或2.显然由0<sin B =b sin Aa <1可得B 有两个值,一个为钝角,一个为锐角,考虑到“大角对大边”、“三角形内角和等于180°”等,此时需进行讨论.判断三角形解的个数也可由“三角形中大边对大角”来判定.设A 为锐角,若a ≥b ,则A ≥B ,从而B 为锐角,有一解;若a <b ,则A <B ,由正弦定理得sin B =b sin Aa ;①sin B >1,无解;②sin B =1,一解;③sin B <1,两解.四、三角形的面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 、r 分别是三角形外接圆、内切圆的半径),并可由此计算R ,r .五、三角形中的不定量问题题型一 最值问题:1、角度相关的最值问题:内角关系式+正弦型函数已知条件选用公式三角形的一边及此边上的高公式1:S △ABC =12a ·h a =12b ·h b =12c ·hc (h a ,h b ,h c 分别为边a ,b ,c 上的高)三角形的两边及夹角公式2:S △ABC =12ab sin C =12bc sin A =12ac sinB三角形的两角及一边公式3:S △ABC =12a 2sin B sin C sin A ,S △ABC =12b 2sin A sin Csin B ,S △ABC =12c 2sin A sin Bsin C.三角形的三边公式4:(海伦公式)S △ABC =()()()c p b p a p p ---,其中p =12(a +b +c ).2、边长相关的最值问题:①正弦定理+正弦型函数 ②余弦定理+基本不等式3、对称速算(已知对边对角b 、B ,求22,,ca ac c a ++周长,面积的最值和取值范围都可用)两边相等有最值,再看临界题型二 多三角形问题锁定三角形,选择公式:两角用正弦,一角用余弦 题型三 割线问题(通法:锁定三角形,选择公式) 常规算法:正余弦定理的选用 已知割线分比1、涉及对应角:向量法(巴掌定理再求模)2、不涉及对应角:补角模型:抓住补角,两次余弦(依据:0cos cos 180=+=+βαβα,) 3、涉及堆堆角:堆堆角模型:堆堆角,面积法(利用大三角形面积=两小三角形面积和) 题型四:中线模型1、常规以及解答题求中线方法:两次余弦定理求中线长2、选填注意中线定理的应用:题型五:角分线模型1、特殊割线模型,注意角平分线定理的应用:角分线模型+补角模型2、中难题优先考虑:堆堆角,面积法 题型六:四边形问题1、求值问题:补角模型(抓住补角,两次余弦)2、秒杀大招(对角互补): 海伦公式秒杀面积:托勒密定理秒杀对角线最大值:BD AC AD BC CD AB ⋅≥⋅+⋅四点共圆取等cab F ED A BC最值问题:正弦定理+正弦型函数Or 余弦定理+基本不等式补充知识点--三角形中线、角平分线定理一、中线定理,又称阿波罗尼斯定理,一种欧式几何的定理,表示三角形三边和中线长度关系 定理:三角形一条中线两侧所对边平方和等于底边的一半平方和与该中边平方和的2倍2222122b c a AD +=+ 2222122b a c CF +=+2222122a c b BE +=+证明:三角形ABC 的边,,a b c 所对的角分别为,,A B C ,其中点,,D E F 分别是,,BC AC AB 的中点,如图所示:以2222122b c a AD +=+为例 在三角形ABD ,由余弦定理,可得:2222cos AB AD BD AD BD ADB =+-⋅∠,即222112cos 22c AD a AD a ADB ⎛⎫⎛⎫=+-⋅⋅∠ ⎪ ⎪⎝⎭⎝⎭-------①在三角形ADC 中,又余弦定理可知:2222cos AC AD CD AD CD ADC =+-⋅∠即222112cos 22b AD a AD a ADC ⎛⎫⎛⎫=+-⋅⋅∠ ⎪ ⎪⎝⎭⎝⎭-----②ADC ADC π∠+∠=,则ADC ADC π∠=-∠, ∴cos cos ADC ADC ∠=-∠有①②联立,且①+②,得:2222122c b AD a +=+,命题得证. 二、角平分线定理:定理1:角平分线上的点到这个角两边的距离相等定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例. 证明:如图,在ABC ∆,AD 是BAC ∠的平分线,过点D 作AB DE ⊥,AC DF ⊥,AD 是角BAC ∠的平分线,AB DE ⊥,AC DF ⊥DF DE =∴(定理1)DE AB S ABD ⋅=∆21 ,AD AC S ACD ⋅=21ACAB S S ACD ABD ::=∴∆∆,过点A 作BC AG ⊥,垂直为GAG BD S ABD ⋅=∆21 ,AG CD S ACD ⋅=∆21CDBD S S ACD ABD ::=∴∆∆CD BD AC AB ::=∴定理3:已知AD是ABC的角平分,则CDBDACABAD⋅-⋅=2(角平分线长定理)补充向量知识点六:向量的代数策略和几何策略题型1:建系法巧算模与夹角:有垂直,有特殊角度,可建系题型2:建系法巧算数量积、巧定系数:不定图形求值问题,可取特殊情况建系题型3:建系法处理动点最值:动点可利用共线向量,求出坐标题型4:几何法巧算向量:题型5:几何法巧算模的最值:三角不等式(中间和差模,两边模和差)正余弦定理在实际中的应用对实际应用问题中的一些名称、术语的含义的理解(1)坡角:坡向与水平方向的夹角,如图.(2)仰角和俯角:在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,如图.(3)方位角:指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.(4)方向角:从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°.(1)(2)(3)(4)。
第二十二讲 正弦定理和余弦定理
班级________ 姓名________ 考号________ 日期________ 得分________
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.) 1.(精选考题·湖北)在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223 B.223 C .-63
D.6
3
2.(精选考题·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )
A .30°
B .60°
C .120°
D .150°
3.(精选考题·江西)E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( ) A.16
27
B.23
C.33
D.3
4
4.(2011·青岛模拟)△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝⎛⎭⎫0,π2,则△ABC 的形状是( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形
5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )
A .1+ 3
B .3+3 C.3+3
3
D .2+ 3
6.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =1
2,
则( )
A .b +c =2a
B .b +c <2a
C .b +c ≤2a
D .b +c ≥2a
二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.(精选考题·江苏)在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若b a +a b =6cos C ,则
tan C
tan A +
tan
C
tan B
的值是________.
8.(精选考题·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.
9.(精选考题·新课标全国)在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.
10.(精选考题·新课标全国)在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2.
若△ADC 的面积为3-3,则∠BAC =________.
三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)
11.(精选考题·全国Ⅰ)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a 1tan A +b 1
tan B ,求内
角C .
12.(精选考题·辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b+c)sin B +(2c+b)sin C.
(1)求A的大小;
(2)若sin B+sin C=1,试判断△ABC的形状.
13.(精选考题·陕西)如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.。