光纤温度传感器的设计
- 格式:doc
- 大小:587.51 KB
- 文档页数:13
分布式光纤测温系统的设计与实现的开题报告一、选题背景随着现代化工业的快速发展,温度成为一个重要的参数,对于许多工业生产环境来说,温度的控制和精确测量变得至关重要。
传统的温度测量技术包括热电偶、温度计等,在一些特殊环境下却显得不够稳定和准确。
而光纤传感技术的特点是免受其他传感器形式所受特定环境因素的影响。
因此本次课题将会探究光纤传感器在温度测量中的应用。
二、选题意义光纤传感技术具有稳定性好、对环境干扰小、可长距离传输信号等优势。
利用这一优势,分布式光纤测温系统得以实现。
在现代化工业中,许多环境需要温度测量,比如钢铁生产,铸造、化学工业等。
因此,研制一种能在不同环境中稳定、准确地测量温度的光纤测温系统至关重要。
三、主要研究内容本次课题将研究使用光纤传感技术设计和制作一种高效、准确、稳定的光纤温度传感器。
主要研究内容如下:1. 光纤传感器的工作原理和优点。
2. 光纤传感器的制作和安装方式。
3. 分布式光纤测温系统的结构设计以及温度数据采集系统的设计。
4. 光纤温度传感器及系统实验验证。
四、预期结果通过本研究,将会设计制作一种基于光纤传感技术的高效、准确、稳定的光纤温度传感器及其应用系统,实现对不同环境中温度变化的快速准确测量。
同时,本研究将为光纤传感器在未来更广泛的应用提供一定的技术支持。
五、研究方法和思路本研究将按照以下步骤进行:1. 研究光纤传感技术在温度测量中的优点和特点。
2. 研究光纤传感器的制作和安装方式。
3. 设计分布式光纤测温系统的结构,并完成相关电路设计。
4. 对设计的光纤温度传感器及系统进行实验测试。
5. 总结研究结果,提出改进方案。
六、进度安排第一周:调研光纤传感技术在温度测量中的应用。
第二周:光纤传感器的制作和安装方式的研究。
第三周:温度数据采集系统设计。
第四周:完成光纤温度传感器及系统实验测试。
第五周:总结研究结果,提出改进方案。
七、参考文献1. Boxiao Li, Chuanbiao Zhang. Intelligent intrusion detection system based on fiber-optic sensor technology [J]. Journal of Sensors, 2016.2. Haiyan An. Study on temperature measurement system based on fiber optic temperature sensor [J]. Control and Intelligent Systems, 2014.3. Lei Wang, Weiwei Gao. Design and research of distributed fiber optic temperature measurement system [J]. Information Technology, 2017.。
光纤光栅温度传感器工作原理
光纤光栅温度传感器通过测量光纤光栅传感器中光纤长度的微小变化来测量温度。
光纤光栅传感器由许多个光纤构成,每个光纤都有一个独特的折射率,因此在光纤光栅内,光会在光纤之间反射,并会发生干涉。
当发生温度变化时,光纤的长度会发生微小变化,其中一个光束的相位和另一个光束的相位将发生相对位移,导致干涉图案发生了变化。
通过对干涉图案的分析,可以测量出温度变化的大小,从而得到温度值。
这种传感器的特点是精度高、可靠性好、响应快、耐高温、不易受电磁干扰。
光纤光栅温度传感器在航空、石油、化工、电力等领域有广泛应用。
光纤温度传感器的技术原理和相关应用研究摘要:随着光纤技术研究的不断发展,人类的生活越来越离不开光纤传感器。
光纤传感器以其体积小、质量轻、灵敏度高、不易受到电磁的干扰等优点,人类开发出了各种类型的光纤传感器,逐渐取代了传统传感器在人类生活中的应用。
本文详细介绍了光纤的三种特性及其各自的特点,光纤传感器的工作原理和其按照不同方式的分类。
重点讲述了光纤温度传感器的特点以及分布式光纤温度传感器、光纤荧光温度传感器、光纤光栅温度传感器、干涉型温度传感器的测温原理与性质特点,并利用它们的工作原理及特点将光纤温度传感器应用到医疗、建筑、电力系统、航空航天等应用上。
利用光纤温度传感器的工作原理,进行基于马赫-泽德尔干涉仪的测温实验。
并根据这次的测温实验得到光纤温度传感器测温的优缺点,并对光纤温度传感器测温方法的改进提出自己的见解。
关键词:光纤光纤传感温度传感器测温Technical principles and fiber optic temperature sensorsrelated researchAbstract:With the continuous development of optical fiber technology research, human life increasingly inseparable fiber optic sensors. Fiber Optic Sensors its small size, light weight, high sensitivity, less susceptible to electromagnetic interference and other advantages, humans developed various types of fiber optic sensors, gradually replaced the traditional sensors in human life.This paper describes the three characteristics of the fiber of their characteristics, working principle of fiber sensor and its classification in different ways. Focuses on the characteristics of the fiber optic temperature sensor, and temperature characteristics and properties of the principle of distributed optical fiber temperature sensors, fiber optic fluorescence temperature sensors, fiber grating temperature sensor, interferometric temperature sensor, and the use of their works and the characteristics of the fiber optic temperature sensors to the medical, construction, power systems, aerospace and other applications.The use of fiber optic temperature sensor works, based Mach - Ze Deer interferometer temperature experiments. And give advantages and disadvantages of fiber optic temperature sensor according to the temperature of the temperature experiment, and suggest improvements fiber optic temperature sensor temperature measurement method of his own views.Key words:Fiber;Fiber optic sensing;Temperature sensor;Applications;Measuring temperature引言随着人类社会的进步,光电子技术发展的越来越快,其中以光纤技术的发展最为迅速,半个多世纪以来,人们充分享用了由光纤技术带来的文明与便利后,有充分的理由使人们相信,人类已逐步进入由光主宰的技术世。
西南大学毕业论文题目:分布式光纤测温系统的设计与实现专业:电子信息工程技术班级:一班学生姓名:杨杰指导教师:谢熹摘要以光纤通信和光纤传感技术为代表的信息技术和传感技术在20世纪后半叶至今的几十年里R新月异,极大地推动了人类社会的进步。
与其他传感器相比,光纤作为一种新型的传感器件有其独特的优势。
它抗电磁,耐高温,对温度、应变等外界变化敏感,而且价格便宜,容易获取,可以形成分布式的线测量甚至是场测量。
因此光纤传感在最近几年的到快速发展.将应用于更广的范围。
分布式光纤测温系统的信号采集、数据处理,以及后台软件的编写占系统成本的绝大部分。
它的检测精度和速度决定了整个系统的测量精度,空问分辨率,采集速度以及最后的请求响应时间。
如何提高系统各个部分的处理速度,协调好数据传输,成为分布式光纤铡温系统的关键。
论文提出了一种基于嵌入式的利用光纤拉曼散射原理的分布式测温解调方案。
由于传感距离长,使得系统可以进行场式的温度测量,可以全面的获得空间式的3维温度模型,满足大型工程传感网络的实时监测。
论文详细介绍了嵌入式光纤传感分布测温系统的光路设计,硬件电路设计和软件设计。
光路设计包括:在嵌入式主机的控制下利用激光源和脉冲调整器形成固定周期的脉冲光,作为光纤传感器的激励信号;使用3dB耦合器对激励光进行分束,传入光纤传感器,散射拉曼光回传经过耦合器进入分光系统,只有固定频率的Stokes光和Anti .Stokes光透过分光系统;两束光分别进入光电探测器( PD) ,完成光电转换过程。
系统中各个模块间的同步由硬件电路控制,主控芯片为TI公司的双核微处理器。
0M AP5912对FPG A模块发出采集控制信号,FPG 巩负责控制与脉冲调制器间的同步,计时,同时触发AD采集。
采集结束,FPG A发出中断,通知采集过程结束。
O M AP5912发出传输数据指令,将外接RAM 中的数据读入DSP进行数据处理。
在DSP中对数据进行小波变换多分辨分析对采样的数字量进行降噪处理,消除传输和测量过程中的各种噪音和随机干扰。
光纤光栅温度传感器原理及应用嘿,朋友们!今天咱来聊聊光纤光栅温度传感器,这玩意儿可神奇啦!你看啊,这光纤光栅温度传感器就像是一个超级敏感的小侦探。
它是咋工作的呢?简单来说,就是利用了光纤光栅对温度变化特别敏感的特性。
就好比人对自己喜欢的东西特别在意一样,温度一变,它立马就能察觉到。
想象一下,在一些高温或者低温的环境里,普通的传感器可能就有点扛不住啦,但光纤光栅温度传感器可不一样,它就像个顽强的小强,啥恶劣环境都能应对自如。
它能在各种复杂的场景中准确地测量温度,是不是很厉害?那它都能用在啥地方呢?这可多了去了!比如说在工业领域,那些大型的机器设备运行的时候,温度可是个关键指标啊,有了它就能随时监控温度,确保设备正常运行,这就像给机器请了个专门的健康顾问。
还有啊,在一些科研实验中,要求温度测量得特别精确,这时候光纤光栅温度传感器就派上大用场了,它能提供超级准确的数据,帮助科学家们取得更好的研究成果,那可真是功不可没呀!在日常生活中,它也能发挥作用呢。
比如说在一些特殊的场合,像博物馆啊,对温度要求很高,它就能帮忙把温度控制得恰到好处,保护那些珍贵的文物。
它就像是一个默默守护的卫士,不声不响地做着重要的工作。
而且啊,它还有个很大的优点,就是不容易受到干扰。
不像有些传感器,稍微有点干扰就不准确了。
它可稳定啦,就像一座稳稳的山。
咱再来说说它的安装和使用。
其实也不难啦,只要按照说明书一步一步来,一般人也能搞定。
不过可得细心点哦,毕竟这是个高科技的玩意儿。
总之呢,光纤光栅温度传感器真的是个很了不起的发明。
它让我们对温度的测量和控制变得更加容易和准确。
有了它,我们的生活和工作都变得更加安全和可靠啦!它就像一把神奇的钥匙,打开了温度测量的新世界大门,让我们能更好地了解和掌控周围的世界。
难道不是吗?。
光纤温度传感器原理光纤温度传感器是一种利用光纤材料的热敏特性来测量温度的传感器。
它利用光纤的光学特性和热学特性,将温度转换成光学信号,并通过光纤传输到检测端,最终实现温度的测量。
光纤温度传感器的原理主要基于两个基本原理:热敏效应和光纤传输。
热敏效应是指材料的电阻、电容、电导率等在温度变化下发生变化的现象。
光纤温度传感器中常用的热敏材料有热敏电阻、热敏电容和热敏电导率等。
当温度发生变化时,热敏材料的阻值、电容或电导率也会相应变化。
通过测量这些变化,就可以得到温度的信息。
光纤传输是指利用光纤的光学特性进行信息传输的过程。
光纤具有折射率高、传输损耗小、抗干扰能力强等优点。
光纤温度传感器利用光纤的这些特性,将温度信息转换成光学信号,并通过光纤进行传输。
在光纤的一端,通过光源产生一束光信号,经过光纤传输到另一端的检测器。
当光信号经过热敏材料时,由于温度的变化,光信号的强度、频率或相位也会发生变化。
通过检测器对光信号的变化进行测量,就可以得到温度的信息。
光纤温度传感器的工作原理可以简述为:首先,光源产生一束光信号,并通过光纤传输到待测温区域。
在待测温区域,光信号经过热敏材料,由于温度的变化,光信号的强度、频率或相位发生变化。
然后,光信号再经过光纤传输到检测端,通过检测器对光信号的变化进行测量。
最后,根据光信号的变化,利用预先确定的光学特性-温度曲线,就可以得到温度的信息。
光纤温度传感器具有很多优点。
首先,由于光纤本身是绝缘材料,能够在高电压、高电流等环境下工作,具有较好的电磁兼容性和抗干扰能力。
其次,光纤传输的光信号不受电磁场的影响,能够在较恶劣的环境下工作。
再次,光纤温度传感器具有快速响应、高精度和长测距等优点。
最后,光纤温度传感器适用于各种温度测量场合,如石油、化工、医疗、冶金等领域。
光纤温度传感器利用光纤的光学特性和热学特性,通过光纤传输温度信息,实现温度的测量。
其原理是基于热敏效应和光纤传输的。
光纤温度传感器具有快速响应、高精度和抗干扰能力强等优点,适用于各种温度测量场合。
光纤光栅传感器的温度灵敏度研究一、光纤光栅传感器概述光纤光栅传感器是一种利用光纤光栅的特性来检测物理量变化的传感器。
与传统的传感器相比,光纤光栅传感器具有抗电磁干扰能力强、尺寸小、重量轻、可实现分布式测量等优点。
光纤光栅传感器通过在光纤中写入周期性的折射率变化来形成光栅,当外部环境发生变化时,光栅的周期或折射率也会随之变化,从而引起反射或透射光的波长发生变化,通过测量这些变化可以检测出温度、压力、应力等物理量。
1.1 光纤光栅传感器的工作原理光纤光栅传感器的工作原理基于光的干涉和衍射现象。
当光波在光纤中传播时,遇到光栅结构会发生衍射,产生多个衍射级。
这些衍射级相互干涉,形成特定的反射和透射光谱。
当光栅的周期或折射率发生变化时,衍射光谱也会相应地移动,通过测量光谱的移动量,可以推算出外部环境的变化。
1.2 光纤光栅传感器的分类根据光栅的类型,光纤光栅传感器可以分为布拉格光栅传感器、长周期光栅传感器和光纤布拉格光栅传感器等。
根据测量的物理量,又可以分为温度传感器、压力传感器、应力传感器等。
每种类型的传感器都有其独特的优势和应用场景。
二、光纤光栅传感器的温度灵敏度研究温度是光纤光栅传感器中最常见的测量对象之一。
温度的变化会影响光纤的折射率,进而影响光栅的周期和反射光谱的位置。
因此,研究光纤光栅传感器的温度灵敏度对于提高测量精度和应用范围具有重要意义。
2.1 温度对光纤光栅传感器的影响温度的变化会引起光纤材料的热膨胀和折射率的变化,从而影响光栅的周期和波长。
这种影响可以通过温度系数来量化。
不同的光纤材料具有不同的温度系数,选择合适的材料可以提高传感器的温度灵敏度。
2.2 提高温度灵敏度的方法为了提高光纤光栅传感器的温度灵敏度,研究者们提出了多种方法,包括优化光栅的参数、使用特殊的光纤材料、采用复合光栅结构等。
这些方法可以有效地提高传感器对温度变化的响应速度和精度。
2.3 温度灵敏度的测量与标定温度灵敏度的测量通常采用实验方法,通过将传感器暴露在不同温度下,测量反射光谱的变化,从而计算出温度灵敏度。
光纤测温方案随着科技的不断进步,测温技术也在不断更新和创新。
光纤测温作为一种新兴的测温技术,正逐渐被应用于各个领域。
本文将介绍光纤测温的原理、应用场景以及其在工业生产中的重要性。
一、光纤测温原理光纤测温是利用光纤传输光信号的特性来测量被测物体的温度。
其原理主要包括光纤传感器、光纤传输和信号处理三个部分。
1. 光纤传感器光纤传感器是将光纤与温度敏感元件结合起来,通过温度的变化来改变光的特性。
常见的光纤传感器有热敏光纤和光栅光纤传感器。
热敏光纤通过测量光纤在线温度的变化来推断被测物体的温度;而光栅光纤传感器则利用光纤中的光栅结构,在光纤上形成周期性的衍射光谱,通过测量光谱的变化来计算温度。
2. 光纤传输光纤作为光信号的传输媒介,具有传输距离远、抗干扰能力强等优点,非常适合用于测温。
光纤传输光信号时,通过对光的衰减和相位的变化进行测量,可以准确地获得被测物体的温度信息。
3. 信号处理通过对光纤传输的信号进行采集和分析处理,可以得到最终的温度信息。
信号处理一般包括光的幅度和相位的测量,以及后续的数据处理和结果显示。
二、光纤测温的应用场景光纤测温凭借其高精度、快速响应和远距离传输等特点,被广泛应用于各个领域。
1. 工业生产在工业生产中,温度的监测和控制非常重要。
光纤测温可以用于监测高温炉、热处理设备以及各种化学反应过程中的温度变化,帮助实现工艺优化和安全控制。
2. 能源领域在能源领域,光纤测温可以用于监测发电厂、输电线路和变电站等设备的温度变化,及时发现异常情况并采取相应的措施,以确保电力系统的安全稳定运行。
3. 环境监测光纤测温还可以应用于环境监测领域,例如监测地壳温度、水体温度以及天气预警中的火灾和局部高温区域等。
这对于预防火灾、保护生态环境以及提前预警具有重要意义。
三、光纤测温的重要性光纤测温作为一种高精度、远距离传输的测温技术,对于工业生产和各个领域的发展具有重要的意义。
首先,光纤测温可以提供精确的温度变化数据,帮助工程师和科研人员对温度变化进行准确分析和预测,从而优化工艺控制和产品质量。
大学毕业设计题目专业班级学生学号指导教师二〇一四年五月五日Abstract1 引言:光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。
与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。
它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。
在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。
2 论文要求:(1)详细分析国内外主要光纤温度测温方法的原理及特点,比较不同方法的温度测量范围和性能指标。
(2)掌握空调器的工作电气原理和基本的热力学过程。
3 毕业论文综述:70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。
1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。
从这以后,光纤传感器在全世界的许多实验室里出现。
从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。
从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。
光纤传感器与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。
光纤温度传感器原理光纤温度传感器是一种用于测量温度的先进技术。
它利用光的传输特性和温度对光的影响来实现温度的测量。
光纤温度传感器具有精度高、响应快、抗干扰能力强等优点,被广泛应用于各个领域。
光纤温度传感器的原理基于光纤的热致敏效应。
当光纤受到温度变化时,其折射率也会发生变化。
这种折射率的变化会导致光的传输特性发生改变,进而可以通过测量光的某些特性来获得温度信息。
一种常见的光纤温度传感器原理是利用光纤的布里渊散射效应。
布里渊散射是指当光波在介质中传输时,由于介质中存在微弱的非均匀性引起的散射现象。
当光波频率与介质的声子频率匹配时,布里渊散射会导致光的强度发生变化。
在光纤温度传感器中,一段光纤被固定在待测温度环境中。
当温度变化时,光纤的折射率也会发生变化,从而改变了光波与介质的匹配程度。
这种匹配程度的变化会导致布里渊散射的频率发生变化,进而改变了光的强度。
通过测量光纤传输的光强信号,可以获得布里渊散射频率的变化情况。
而布里渊散射频率的变化与温度的变化是相关的,因此可以通过测量光的强度来获得温度信息。
光纤温度传感器的原理还可以基于其他光纤的特性来实现。
例如,利用光纤的拉曼散射效应,可以通过测量光的频移来获得温度信息。
又如,利用光纤的菲涅尔衍射效应,可以通过测量光的干涉图案来获得温度信息。
光纤温度传感器利用光的传输特性和温度对光的影响来实现温度的测量。
通过测量光的某些特性,如光强、频移或干涉图案等,可以获得温度信息。
光纤温度传感器具有精度高、响应快、抗干扰能力强等优点,被广泛应用于各个领域,如工业生产、环境监测、医疗诊断等。
随着技术的进步,光纤温度传感器将会在更多领域发挥重要作用。
东北石油大学 课 程 设 计
201?年 ? 月 ?? 课 程 传感器课程设计 题 目 光纤温度传感器的设计 院 系 电气信息工程学院 专业班级 学生姓名 学生学号 指导教师 任务书 课程 传感器课程设计 题目 光纤温度传感器的设计
专业 姓名 学号 主要内容: 本次传感器课程设计拟设计一个光纤温度传感器系统。整个系统包括对温度进行采集的光纤温度传感器,将光信号转换成电信号的转换电路,以及电信号最终送至由52单片机为主体构成的信号处理部分。最终根据程序设定的要求,通过本次设计的系统完成相应操作。 基本要求: 1、光纤温度传感器能准确测量温度,尽量减少信号延迟; 2、转换电路中的光敏电阻能准确将光信号转换为电信号; 3、成功搭建单片机最小系统,完成对信号的控制。 主要参考资料: [1] 刘国钧,陈绍业,王凤翥.图书馆目录[M].北京:高等教育出版社, 1957.15-18. [2] 刘润华,刘立山.模拟电子技术[J].自动化仪表.2005(6):21-23. [3] 宋文绪,杨帆.传感器与检测技术[M].高等教育出版社.2007.29-31 [4] 刘瑞复,史锦彭j.光纤传感器及其应用[M].北京:机械工业出版社, 1997.69-87
完成期限 指导教师 专业负责人 2012年 6 月 25 日 传感器课程设计 摘 要 光纤温度传感器采用一种和光纤折射率相匹配的高分子温敏材料涂覆在二根熔接在一起的光纤外面。本设计完成的是遮光式光纤温度计的设计。传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定可靠。当温度升高时,双金属片的变形量增大,带动遮光板在垂直方向产生位移从而使输出光强发生变化,则出射光强将随温度的变化而变化。这种形式的光纤温度计检测精度约为0.5℃。它的缺点是输出光强受壳体振动的影响,且回应时间较长,一般需几分钟。
关键字:光纤;传感器;光纤传感器;光纤温度传感器 传感器课程设计 目 录 一、设计要求 ......................................................... 1 二、方案设计 ......................................................... 1 1、方案一 ........................................................ 1 2、方案二 ........................................................ 1 三、传感器工作原理 ................................................... 2 四、光纤温度传感器电路图 ............................................. 2 五、 单元电路设计、参数计算和器件选择 ................................ 3 1、单元电路设计 .................................................. 3 2、参数计算 ...................................................... 5 3、器件选择 ...................................................... 5 六、总结 ............................................................. 6 七、参考文献 ......................................................... 8 传感器课程设计
1 光纤温度传感器的设计 一、设计要求
本设计完成的是遮光式光纤温度计的设计。传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定可靠。当温度升高时,双金属片的变形量增大,带动遮光板在垂直方向产生位移从而使输出光强发生变化,则出射光强将随温度的变化而变化。
二、方案设计 在温度信号的监测控制方面,有多种类型的传感器可以使用,其中包括热电偶传感器和光纤温度传感器。本次设计拟从以下两种方案考虑:
1、方案一
利用热电偶传感器作为采集温度的装置,将采集的到的数据经温敏二极管冷端补偿电路后,再经由运算放大器将信号放大后送入A/D转换芯片,最终将处理后的信号送入单片机进行信号处理。原理如图1所示。
2、方案二 利用光纤温度传感器作为温度采集的装置,采用探测信号与传输信号两部分分开的非功能型,经由光纤作为传输介质,光信号经过信号转换电路转换为电信号后,经过A/D转换电路后送入单片机进行信号处理。原理如图2所示。
8051单片机 运放 温敏二极管冷
端补偿电路 热电偶 A/D转换
图1 方案一原理框图 传感器课程设计
2 通过方案比较,由于方案一中还需要温敏二极管冷端补偿电路,电路比较复杂。而方案二使用的是光线温度传感器,此类传感器以光纤为传输手段,以光作为信号载体,抗电磁干扰,电绝缘;本质安全灵敏度高重量轻,体积小,外形可变测量对象广泛对被测介质影响小可以进行连续分布测量,便于复用,便于成网。通过比较采用方案二。
三、传感器工作原理 本次课程设计设计的是遮光式光纤温度计,当温度升高时,双金属片的变形量增大,带动遮光板在垂直方向产生位移从而使输出光强发生变化。 在光纤中传输的单色光波可用如下形式的方程表示
)cos(0tEE (1) 式中,错误!未找到引用源。0是光波的振幅:ω是角频率;φ为初相角。 该式包含五个参数,即强度错误!未找到引用源。02、频率ω、波长γ=2πc/nω错误!未找到引用源。、相位(ωt+φ)和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。因此这是一种利用被测量的变化引起光纤中的光强发生变化的光纤传感器。 光纤温度传感器通过输出的光纤将光信号作用于信号转换电路的光敏电阻上,光敏电阻根据光强不同有不同的电阻值,从而通过电阻分压,将光信号转换为电信号后送至单片机的A/D转换器完成对温度的测量。
四、光纤温度传感器电路图 光纤温度传感器将光强大小传输至光线传感器,光线传感器采用高灵敏度光敏电阻,线性比较好,尤其在室内环境下,且阻值随外界物理量的变化较明显,
8051单片机 A/D转换 敏感
元件
光纤
信号转换电路
图2 方案二原理框图 传感器课程设计
3 因而可省去中间放大电路直接与单片机IOA1端口相连。光线温度测量电路如图所示。整个电路由5V电池供电,2V的稳压管为A/D转换电路提供2V基准电压。
可调电阻R1用来校准由温漂和电源电压降低引起的基准电压降低,R2与R3串联,光线强度的变化通过分压值的变化反应,并输到单片机P27端口,进行A/D转换。P27端口设置为悬浮输入口,在单片机中定义变量iLM,光线测量得到的电压数放在iLM中,并根据它判断光线强弱。每1ms取一次A/D转换数据,共取10次是为在100Hz的自然光的一个周期中都能取到数据。取10次测量平均值查表得到光强。温度测量与光线测量原理基本相同。该模块电路如图3所示。
五、单元电路设计、参数计算和器件选择
1、单元电路设计 ⑴、温度采集部分 传感头主要由多模光纤与金属构件组成,金属零件随温度高低不同产生形变也不一样,加载在零件上光纤弯曲损耗大小随之改变金属件受到温度越高,形变越大,在光源输出光功率稳定情况下,光纤弯曲损耗增加时,探测器接收到的光功率就会减小,反之,接收到的光功率增大。当传感头处的温度场发生变化时,通过探测器将接收到的不同光信号转换成电信号,进一步处理、计算,输出外界
图3 光纤温度传感器电路图 传感器课程设计 4 图6 信号处理电路 的温度值大小。金属零件在热变形时,其变形量不仅与零件尺寸、组成该形体的材料线膨胀系数α、环境温度t 有关,而且与形体结构因子(取决于几何参数)有关。为了提高传感器的灵敏度,温度敏感头金属材料需选用膨胀系数较大的,且膨胀系数在整个温度测量区间要较稳定,有较好重复性;温度敏感头的结构形状也要考虑的另一个因素,不同的形状,对灵敏度影响很大。 ⑵、传输部分 光纤在这里不仅要作为转换器件使用,同时也作为光信号传输载体,选用对弯曲损耗更敏感的多模光纤,一般地采用62.5/125μm 标准的多模光纤。由于加载光纤时要施加一定的张力控制,使得光纤缠绕在金属零件上,光纤本身就比较容易损坏,敏感头处光纤长时间受到一定内应力用,必须对光纤的涂层进行加固耐力用,必须对光纤的涂层进行加固耐磨处理,增加传感器使用的可靠性。
图4 A/D转换电路 图5 信号转换电路 传感器课程设计
5 ⑶、A/D转换电路 利用A/D转换装置将经过调理后的信号转化成能被单片机识别的信号。而A/D转换的转换频率由单片机上的一个引脚提供,如图4所示。 ⑷、信号转换电路 温度使金属片形变后,改变了光强的大小,光纤将随时改变的光强传输至光敏电阻,通过电阻分压,将不同的光强转换为不同大小的电压值输入A/D转换芯片,如图5所示。 ⑸、信号处理部分
信号处理部分主要由数字处理电路组成。数字电路处理使用的美ATMEL公司生产AT89C52 单片机,是一块具有低电压、高性能CMOS 8 位单片机,片内含8k bytes 的可反复擦写的只读程序存储器(PEROM)和256bytes 的随机存取数据存储(RAM),全部采ATMEL 公司的高密度、非易失性存储技术生产,与标准MCS-51 指令系统及8052 产品引脚容,片内置通用8 位中央处理器(CPU)和Flash存储单元,功能强大。A/D 转换采用AD 公司生产的12 位D574A 芯片,转换时间位25μs,数字位数可设定为12 位,也可设为8 位,内部集成有转换时钟、参考电压和三态输出锁存,可以与微机直接界面。由于温度的变化引起光强的变化不是线性的,因此我们采用查表法对其测量值进行线性补偿。
2、参数计算
金属体积随温度的变化,在这里采用传统的公式模拟来计算: )]20(1[CtLLot (2)
式中,Lt—温度t 时的尺寸;L—20℃时的尺寸;α—线膨胀系数,其数学表达式比较复杂,可选用平均线膨胀系数,经过查表可知。线膨胀系数α:选用成本较低、加工容易、导热较快,并且满足使用范围的金属材料铝,α=23; 光纤的参数:采用标准梯度多模通信光纤,光纤芯包比为62.5/125um,数值孔径O.27,单向平均传输损耗为3.1dB/km。入射角的最大值: