2012人教版九上25.2《用列举法求概率》教案1
- 格式:docx
- 大小:67.92 KB
- 文档页数:4
《用列举法求概率》学历案(第一课时)一、学习主题本学习主题为“用列举法求概率”,是初中数学课程中的一课。
这一课的学习重点在于理解概率的基本概念,掌握列举法求概率的步骤和方法,通过实际问题的解决,提高应用概率知识解决实际问题的能力。
二、学习目标1. 理解概率的基本概念,掌握概率的表示方法。
2. 掌握列举法求概率的基本步骤和技巧。
3. 能够运用列举法求概率解决简单的实际问题。
4. 培养学生的逻辑思维能力和解决实际问题的能力。
三、评价任务1. 评价学生对概率基本概念的掌握情况,通过课堂提问和小组讨论的方式进行。
2. 评价学生运用列举法求概率的步骤和技巧的掌握情况,通过课堂练习和作业进行。
3. 评价学生解决实际问题的能力,通过布置实际问题的作业,检查学生的应用能力。
四、学习过程1. 导入新课:通过生活中的实例引入概率的概念,如抛硬币、抽卡片等,让学生感受概率的存在和实用性。
2. 新课学习:讲解概率的基本概念和表示方法,介绍列举法求概率的步骤和技巧。
3. 课堂练习:通过具体的例子,让学生亲自操作,运用列举法求概率,加深对知识的理解和掌握。
4. 小组讨论:学生分组讨论列举法求概率的步骤和方法,相互交流,共同进步。
5. 总结反馈:教师总结学生的练习情况,对共性问题进行讲解,对个别问题进行辅导。
五、检测与作业1. 课堂检测:通过小测验或课堂练习的方式,检测学生对列举法求概率的掌握情况。
2. 作业布置:布置相关的实际问题作业,让学生运用所学知识解决实际问题,提高学生的应用能力。
六、学后反思1. 学生反思:学生应反思自己在课堂上的学习情况,总结自己的不足之处,明确下一步的学习方向。
2. 教师反思:教师应对课堂教学进行反思,总结教学中的优点和不足,为今后的教学提供参考。
通过以上内容的学习,学生应能够熟练掌握用列举法求概率的方法,并能够运用这种方法解决实际问题。
同时,教师也应对学生的学习情况进行全面的评估,根据学生的掌握情况调整教学计划,使教学更加有效。
人教版数学九年级上册25.2.2《用列举法求概率》教学设计一. 教材分析人教版数学九年级上册25.2.2《用列举法求概率》是概率论的一个基本内容,主要让学生了解列举法求概率的基本步骤和应用。
通过本节课的学习,学生能够理解列举法求概率的原理,掌握列举法求概率的基本方法,并能够应用列举法解决一些简单的实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率论的基本概念有一定的了解。
但是,对于列举法求概率的具体操作步骤和方法,学生可能还不够熟悉。
因此,在教学过程中,需要引导学生逐步理解列举法求概率的原理,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:让学生掌握列举法求概率的基本步骤和方法,能够应用列举法解决一些简单的实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:列举法求概率的基本步骤和方法。
2.难点:如何引导学生理解列举法求概率的原理,并能够灵活运用。
五. 教学方法1.引导法:通过教师的问题引导,让学生自主探究和发现列举法求概率的原理和方法。
2.互动法:教师与学生之间的提问和回答,学生与学生之间的讨论和交流,以提高学生的参与度和积极性。
3.练习法:通过大量的练习题,让学生巩固所学知识,并能够灵活运用。
六. 教学准备1.教学课件:制作精美的教学课件,以吸引学生的注意力,并帮助学生更好地理解和记忆。
2.练习题:准备一些有关列举法求概率的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个简单的实例,让学生思考如何求解该事件的概率,从而引出列举法求概率的方法。
2.呈现(10分钟)教师通过课件呈现列举法求概率的原理和方法,并进行讲解和演示。
3.操练(10分钟)学生分组进行练习,每组选择一道题目,应用列举法求解概率,并互相交流解题过程和方法。
25.2用列举法求概率(1)授课时间:教学目标:会用直接列举法计算简单事件发生的概率.重点:用列举法计算简单事件发生的概率.难点:能正确列举所有可能的结果.教学过程:一、预习导学小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为偶数;(3)牌上的数字为大于3且小于6。
解:任抽取一张牌,其出现数字可能为1,2,3,4,5,6,共6种,这6种结果出现的可能性相等.(1)P(牌上数字为3)= ;(2)牌上数字为偶数的结果有3个,即牌上数字为。
所以P(牌上数字为偶数)=(3)牌上的数字为大于3且小于6的有两个,即牌上数字为。
所以 P(牌上数字大于3且小于6)=.简记二、学习研讨例掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上。
思考:“同时掷两枚硬币”与“先后两次掷一枚硬币"这两种试验的所有可能结果一样吗?练习:袋子中有红、绿各一个小球,除颜色外无其他差别,随机摸出简记1个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球。
三、当堂达标1. 从一副扑克牌中任意抽取一张.(1)它是王牌的概率是多少?(2) 它是Q的概率是多少?(3)它是梅花的概率是多少?2。
一天晚上小伟在清洗两个只有颜色不同的有盖茶杯,此时突然停电了,他只好把杯盖和茶杯随机地搭配在一起,求颜色搭配正确和颜色搭配错误的概率各是多少。
教后反思:尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
人教版九年级数学上册25.2.1《用列举法求概率(1)》教学设计一. 教材分析《用列举法求概率(1)》是人教版九年级数学上册第25章的教学内容。
本节内容是在学生已经掌握了概率的定义、等可能事件的概率以及如何用树状图法求概率的基础上进行的。
通过本节课的学习,使学生掌握列举法求概率的方法,并能运用列举法解决实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的概念和求法已经有了一定的了解。
但是,对于如何运用列举法求概率,以及如何将实际问题转化为概率问题,仍然是学生的学习难点。
三. 教学目标1.知识与技能目标:使学生掌握列举法求概率的方法,并能运用列举法解决实际问题。
2.过程与方法目标:通过实例分析,培养学生运用列举法解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.重点:列举法求概率的方法。
2.难点:如何将实际问题转化为概率问题,以及如何运用列举法解决实际问题。
五. 教学方法1.情境教学法:通过实例分析,引导学生主动探究,发现规律。
2.引导发现法:教师引导学生发现问题,分析问题,解决问题。
3.实践操作法:学生通过动手操作,加深对概率概念的理解。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.教学素材:准备相关实例和练习题,用于课堂练习。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如抛硬币实验,引导学生回顾概率的定义和求法。
然后提出本节课的学习任务:用列举法求概率。
2.呈现(10分钟)教师展示几个具体的实例,如抽签问题、抽奖问题等,让学生观察和思考如何用列举法求解。
学生分组讨论,分享解题思路。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
题目难度可以适当调整,以适应不同学生的学习需求。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师选取几名学生完成的练习题,进行讲解和分析。
人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。
本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。
但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。
三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:用列举法求概率的方法。
2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。
3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。
六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。
2.练习题:准备一些实际问题,让学生课后练习。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。
让学生意识到用列举法求概率的重要性。
2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。
25.2 用列举法求概率(第1课时)一、教学目标【知识与技能】初步掌握直接列举法计算一些简单事件的概率的方法.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度与价值观】体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】熟练掌握直接列举法计算简单事件的概率.【教学难点】能不重不漏而又简洁地列出所有可能的结果.五、课前准备课件等.六、教学过程(一)导入新课出示课件2,3:小颖为一节活动课设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。
问:游戏者获胜的概率是多少?老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?上边的问题有几种可能呢?怎样才能不重不漏地列举所有可能出现的结果呢?.(板书课题)(二)探索新知探究一用直接列举法求概率出示课件5-7:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.师生共同分析:“掷两枚硬币”所有结果如下:⑴两正;⑵一正一反;⑶一反一正;⑷两反.师生共同解决如下:解:(1)两枚硬币两面一样包括两面都是正面、两面都是反面,共两种情形,其概率为21;=42(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正、正反两种情形,其概率为21=.42出示课件8:教师归纳:上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.教师强调:直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.想一想:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?(出示课件13)师生共同分析:结论:一样.出示课件10:教师归纳:随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的.探究二用列表法求概率出示课件11:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.还有别的方法求上述事件的概率吗?教师分析:还可以用列表法求概率:出示课件13:教师分析列表法中表格构造特点,学生思考并认定.出示课件14-16:例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同.(2)两个骰子的点数之和是9.(3)至少有一个骰子的点数为2.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1,2,···,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等.(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)=61.=366(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)=41.=369(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=11.36出示课件17:教师归纳:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.巩固练习:(出示课件18-20)同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1、2、3···6.试分别计算如下各随机事件的概率.(1)抛出的点数之和等于8;(2)抛出的点数之和等于12.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1、2、···6中的每一种情况.可以用“列表法”列出所有可能的结果.学生板演:解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.(1)抛出点数之和等于8的结果(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为5;36(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点数之和等于12的这个事件发生的概率为1.36出示课件21:例2 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?师生共同解决如下:(出示课件22)解:利用表格列出所有可能的结果:次摸出红球4(2)=.9P ∴拓展延伸:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?(出示课件23)师生共同解决如下:解:利用表格列出所有可能的结果:次摸出红球21(2)=.63P ∴=出示课件24:教师强调:通过例2及拓展延伸的讲解,放回与不放回列举的过程是不同的,解答问题时,注意明确,若无明确,具体问题具体分析.巩固练习:(出示课件25,26)如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.学生思考交流后自主解决,一生板演.解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1.6出示课件27,28:例3 甲乙两人要去风景区游玩,仅知道每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如果比第1辆车好就乘坐,比第1辆车差就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适程度上等的车?学生独立思考后师生共同解决.解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:(上中下),(上下中),(中上下),(中下上),(下上中),(下中上).假定6种顺序出现的可能性相等,在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:甲乘到上等、中等、下等3种汽车的概率都是13;乙乘坐到上等汽车的概率是31=62,乘坐到下等汽车的概率只有16.答:乙的乘车办法有有利于乘上舒适度较好的车.巩固练习:(出示课件29-31)小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1、2、3、4、5、6,小明建议:“我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜.”如果你是小亮,你愿意接受这个游戏的规则吗?你能求出小亮得分的概率吗?师生共同分析:用表格表示解:由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等.满足两张牌的数字之积为奇数(记为事件A)的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这9种情况,所以P(A)=936=1. 4(三)课堂练习(出示课件32-39)1.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用列表的方法,求该同学两次摸出的小球所标字母相同的概率.2.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是()A.49B.13C.12D.193.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是()A.14B.12C.18D.1164.如果有两组牌,它们的牌面数字分别是1、2、3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?5.在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?参考答案:1.解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种.所以该同学两次摸出的小球所标字母相同的概率=31.932.B3.D4.解:列表,得(1)P(数字之和为4)=1.3(2)P(数字相等)=1.35.解:列表,得由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)=147.3618(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课通过以学生喜闻乐见的掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。
25.2 用列举法求概率(第一课时)一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十五章“概率初步”25.2 用列举法求概率(第一课时列表法求概率),内容包括:用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法. 当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举法,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法中进一步运用.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标1)会用直接列举法、列表法列举所有可能出现的结果.2)用列举法(列表法)计算简单事件发生的概率.2.目标解析达成目标1)的标志是:对于结果种数有限且每种结果等可能的随机事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地表示出来.达成目标2)的标志是:掌握列表法求概率的步骤:1)列表;2)通过表格计数,确定所有等可能的结果数n和符合条件的结果数m的值;,计算出事件的概率.3)利用概率公式P(A)=mn三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何不重不漏地列举出试验所有可能的结果这对学生而言是一种考验,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.基于以上分析,本节课的教学难点是:掌握列表法求概率的步骤.四、教学过程设计(一)复习巩固【提问】简述概率计算公式?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾上节课所学内容,为接下来学习利用列表法求概率打好基础.(二)探究新知【问题一】老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,学生赢. 你们觉得这个游戏公平吗?师生活动:教师提出问题,学生尝试思考.【设计意图】通过现实生活中的实际问题,激发学生学习数学的兴趣.【问题二】同时掷两枚硬币,求下列事件的概率:1)两枚硬币两面一样.2)一枚硬币正面朝上,一枚硬币反面朝上.3)问题一中的游戏公平吗?师生活动:教师提出问题,先要求学生说出可能出现的情况.部分学生认为:上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;另一位学生认为:出现结果为:正正、正反、反正、反反,其中“正反”与“反正”应分别算作两种可能的结果,故上述事件的概率分别为14,14和12.教师强调:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.师:你觉得问题一中的游戏公平吗?师生活动:学生通过刚才的结论得出:学生赢的概率与教师赢的概率相等,所以该游戏是公平的. 教师补充说明:上述这种列举法我们称为直接列举法(枚举法)并给出使用直接列举法的注意事项.【设计意图】让学生掌握用列举法求概率的使用条件:①所有可能出现的结果是有限个.②每个结果出现的可能性相等.【问题三】“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?由此你发现了什么?师生活动:教师共同作答,得出:同时掷两枚硬币,会出现:两正、两反,一正一反和一反一正;先后两次掷一枚硬币,也会出现:两正、两反,一正一反和一反一正.所以这两种实验的所有可能的结果一样.教师指出:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的,因此作此改动对所得结果没有影响.当试验涉及两个因素时,可以“分步”对问题进行分析.【设计意图】让学生理解当试验涉及两个因素时,可以“分步”对问题进行分析.(三)典例分析与针对训练例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是_________【针对训练】1. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为____________2. 如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为______________3.(2020·江苏南通·统考中考真题)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:1)写出这三辆车按先后顺序出发的所有可能结果;2)两人中,谁乘坐到甲车的可能性大?请说明理由.4.(2022·江苏南京·统考中考真题)甲城市有2个景点A、B,乙城市由3个景点C、D、E,从中随机选取景点游览,求下列事件的概率:(1)选取1个景点,恰好在甲城市;(2)选取2个景点,恰好在同一个城市.【设计意图】巩固用列举法求概率.(四)探究新知【问题三】同时投掷两个质地均匀的骰子,观察向上一面的点数,求下列事件的概率.1)两个骰子的点数相同.2)两个骰子点数的和是9.3)至少有一个骰子的点数为2.师生活动:师生分析得出,与问题二类似,问题三的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比问题二多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.师:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相同.1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= 636= 16 2)两枚骰子的点数相同(记为事件B)的结果有4种,即(3,6),(6,3),(5,4),(4,5) 所以P(B)= 436= 193)至少有一个骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2) (2,1),(2,3),(2,4),(2,5),(2,6)所以P(B)= 1136【设计意图】明确列表法.【问题四】简述列表法求概率的步骤?师生活动:教师提出问题,学生尝试回答.教师引导与归纳得出:1)列表;2)通过表格计数,确定所有等可能的结果数n 和符合条件的结果数m 的值;3)利用概率公式P (A )=mn ,计算出事件的概率.【设计意图】让学生掌握列表法求概率的方法.(五)典例分析与针对训练例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是_______________【针对训练】1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行调查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______________2.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛.(1)若甲一定被选中参加比赛,再从其余3名学生中任意选取1名,恰好选中乙的概率是___________;(2)任意选取2名学生参加比赛,求一定有丁的概率.3.在一个不透明的口袋中装有大小材质完全相同的三个小球,分别标有数字3,4,5, 另有四张背面完全一样的卡片,卡片正面分别标有数字2,3,4,5,四张卡片背面朝上放在桌面上.小明先从口袋中随机摸出一个小球,记下小球上的数字为x,小红再从桌面上随机抽出一张卡片,记下卡片上的数字为y.(1)从口袋中摸出一个小球恰好标有数字3的概率是___________;(2)求点P(x,y)在直线y=x−1上的概率.【设计意图】巩固列表法求概率的方法.(六)直击中考1.(2023·安徽中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59 B.12C.13D.292.(2023·湖南中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16 B.14C.13D.123.(2023·黑龙江齐齐哈尔中考真题)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.12 B.13C.14D.16【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点. (七)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 用列举法求概率应该注意哪些问题?3. 列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?(八)布置作业P138:练习五、教学反思。
25.2用列举法求概率第1课时用列表法求概率教学目标1.会用列举法(直接列举、列表法)求简单事件的概率,进一步培养随机观念.2.感受分步分析对思考较复杂问题时起到的作用.教学重点用列表法求简单随机事件的概率.教学难点如何使用列表法.教学设计教学过程设计一、创设情景明确目标1.掷一枚质地均匀的硬币有几种可能的结果?它们的可能性相等吗?正面向上的概率是多少?2.“把掷一枚质地均匀的硬币〞改为“同时掷两枚质地均匀的硬币〞有几种可能的结果?它们的可能性相等吗?两个硬币全部正面向上的概率是多少?问题2与问题1相比,条件发生了哪些变化?如何解答?二、自主学习指向目标1.自读教材第136至137页.2.学习至此:请完成学生用书“课前预习〞局部.三、合作探究达成目标探究点一用列举法求概率活动一:出示教材第136页例1,思考以下问题:(1)使用两枚硬币作抛掷硬币试验,理解“所有可能的结果共有4种,并且这4种结果出现的可能性相等〞;(2)“正反〞与“反正〞是一样的结果吗?(3)随机事件“一枚硬币正面朝上,一枚硬币反面朝上〞包含哪几种结果?【展示点评】当第一枚硬币正面向上,第二枚硬币有正、反两种情况;同理,第一枚硬币为反面的情况下,第二枚有正、反两种情况,所有的结果共有4个,并且这4个结果的可能性相等.【小组讨论】两枚硬币可以编上序号以示区分,再完成例2中的3个问题,看与例2解答有何区别?【反思小结】“同时掷两枚硬币〞与“先掷一枚硬币再掷一枚硬币〞这两种试验所出现的结果是一样的.有的随机事件发生的概率可以转化成与之发生概率一样的随机事件进展研究.【针对训练】见学生用书“当堂练习〞知识点一探究点二用列表法求概率活动二:出示教材第136页例2,思考以下问题:(1)当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重复不遗漏地列举出所有可能的结果,通常用什么方法?(2)例2中的表左边的一列表示第二个骰子的点数共有几种等可能的结果?上边一行表示第一个骰子的点数共有几种等可能的结果?其他局部像(1,6)这样的单元格共有多少种情况?【展示点评】由表可以得到:两个骰子点数一样的结果有:____________________________;两个骰子点数和是9的结果有:_____________________________;至少有一个骰子点数为2的结果有:_____________________________.【小组讨论】如果把例2中的“同时掷两个骰子〞改为“把一个骰子掷两次〞,所得到的结果共有多少种?试用列表法分析.【反思小结】用列表法求概率的前提是一次试验涉及的因素只有两个,并且各种结果出现的可能性都相等.求符合列表法求概率的等可能随机事件的概率的几个根本步骤:一列表;二描述表中可能出现的结果的总数n及各种结果出现的可能性相等;三统计满足某种随机事件发生的结果的数目m,并列举出来;四用公式P=m,n计算概率.【针对训练】见学生用书“当堂练习〞知识点二四、总结梳理内化目标1.在一次试验中,当可能出现的结果只有________个,且各种结果出现的可能性大小________时,我们可以用________试验结果的方法,求出随机事件发生的概率.2.列举法求概率目前学到两种方法:一是直接列举法;二是通过表格列举法.3.用表格列举法求概率的步骤:(1)列表;(2)分析表中的结果的特征:有多少种可能出现的结果,并且各种结果出现的可能性一样;(3)计算概率:用公式P=m,n计算.五、达标检测反思目标1.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,假设任意组合穿着,那么穿着“衣裤同色〞的概率是__1,6__.2.(2021 ·衡阳)某校学生会正筹备一个“庆毕业〞文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,求选出的两名主持人“恰好为一男一女〞的概率__2,3__.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,那么这个两位数能被3整除的概率是( A )A.1,3 B.1,4 C.1,6 D.2,12六、布置作业稳固目标1.上交作业:教材第140页第3,5,7题.2.课后作业:见学生用书的“课后作业〞局部.教学反思第2课时用树状图法求概率教学目标理解并掌握树形图法求概率的方法.教学重点理解树形图的应用方法及条件,用画树形图的方法求概率.教学难点用树形图列举出各种可能,求实际问题中的概率.教学设计教学过程设计一、创设情景明确目标国庆长假期间,小军跟爸爸开车到A地游玩,途中要经过两个十字路口(每个路口都有红、绿、黄三种灯各种灯亮的时间一样).(1)请列举出小军和爸爸经过两个路口时的红绿灯的所有情况;(2)他们的车一路绿灯的概率是多少?【思考】1.用列表法能解决吗?为什么?二、自主学习指向目标1.自读教材第138至139页.2.学习至此:请完成学生用书“课前预习〞局部.三、合作探究达成目标探究点用树状图法求简单事件的概率出示教材第138页例3,思考以下问题:(1)取出3个小球,可以看作需要几步来完成?每一步里有哪几种结果?(2)怎样引导学生画出树状图表示所有等可能出现的结果?(3)你知道元音字母有哪些?此题中涉及的元音字母是________;辅音字母有哪些?此题中涉及的辅音字母是________.【展示点评】画树形图要分清一次试验的几个因素.此题中第一个因素是:从甲口袋中抽取一个小球上面写的字母;第二个因素是从乙口袋中抽取一个小球上面写的字母;第三个因素是从丙口袋中抽取一个小球上面写的字母.树形图可以从上面向下倒着画,也可以从左边向右方画.【小组讨论】如何根据题目的特点,选择适宜的列举法?【反思小结】当一次试验涉及两因素或包含两步时,列表法比拟方便,当然也可以用画树形图法;当试验存在三步或三步以上时,只能用画树形图法解决概率问题.【针对训练】见学生用书“当堂练习〞.四、总结梳理内化目标1.本节课学习后我们共学会了三种列举方法求概率:一是直接列举法;二是表格列举法;三是画树形图法.2.用列表法和树状图法求随机事件的概率各有什么特点?五、达标检测反思目标1.连续抛掷一枚均匀的硬币三次,每次都正面向上的概率是__1,8__.2.甲、乙、丙三人坐在一排照相留念,那么甲、乙两人坐在相邻的位置上的概率是__2,3__.3.(2021 ·兰州)为了参加中考体育测试,甲、乙、丙三位同学进展足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的时机是均等的,由甲开场传球,共传三次.那么三次传球后,球回到甲脚下的概率是( C )A.1,2B.1,3C.1,4D.3,8六、布置作业稳固目标1.上交作业:教材第140,第4,6,8题;2.课后作业:见学生用书的“课后作业〞局部.教学反思。
人教版数学九年级上册25.2.1《用列举法求概率》教学设计一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第2节的一部分,本节课的主要内容是通过列举法来求解事件的概率。
教材通过简单的实例引导学生理解概率的概念,学会使用列举法求解概率,并能够解决一些实际问题。
本节课的内容是学生学习概率的基础,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,对于一些简单的概率问题已经有了一定的认识。
但是,对于使用列举法求解概率的方法和步骤可能还不够熟悉。
因此,在教学过程中,教师需要引导学生回顾以前学过的概率知识,并逐步引入列举法求解概率的方法。
三. 教学目标1.知识与技能目标:学生能够理解概率的概念,学会使用列举法求解概率,并能够解决一些实际问题。
2.过程与方法目标:学生通过观察、分析、归纳等方法,培养逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。
四. 教学重难点1.重点:学生能够理解概率的概念,学会使用列举法求解概率。
2.难点:学生能够灵活运用列举法求解实际问题中的概率。
五. 教学方法1.引导法:教师通过提问、引导等方式,引导学生主动思考和探索,激发学生的学习兴趣。
2.互动法:教师与学生进行互动,共同讨论和解决问题,培养学生的合作能力和解决问题的能力。
3.实例分析法:教师通过给出具体的实例,引导学生观察和分析,让学生在实践中学会使用列举法求解概率。
六. 教学准备1.教学课件:教师准备课件,包括相关的实例和练习题,以便进行课堂教学。
2.教学素材:教师准备一些实际的例子和问题,用于引导学生进行观察和分析。
3.粉笔和黑板:教师准备粉笔和黑板,以便进行板书和解释。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾以前学过的概率知识,如概率的定义和一些简单的概率问题。