导数的综合大题与其分类
- 格式:docx
- 大小:7.76 MB
- 文档页数:36
导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数f (x )=x -1x ,g (x )=a ln x (a ∈R ).(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)的最小值.[审题程序]第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围;第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值.[规范解答] (1)由题意得F (x )=x -1x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4.①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,∴F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x +a ln x ,x ∈(0,+∞) 求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,设h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , ∴x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝⎛⎭⎫1x=x -1x +⎝⎛⎭⎫-x -1x ln x -⎣⎡⎦⎤1x-x +⎝⎛⎭⎫-x -1x ·ln 1x =2⎣⎡⎦⎤⎝⎛⎭⎫-x -1x ln x +x -1x, H ′(x )=2⎝⎛⎭⎫1x 2-1ln x =2(1-x )(1+x )ln xx 2. 当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0, ∴H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),∴[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln2-3.[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1,这样将所求问题转化为研究新函数H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x 在⎝ ⎛⎭⎪⎫0,12上的最值问题,体现转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:[题型专练]1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )的单调区间;(2)当0<a <2时,求函数g (x )=f (x )-x 2-ax -1在区间[0,3]上的最小值. [解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞), ∴f ′(x )=2(1+x )-21+x =2x (x +2)x +1.由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0.∴函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1), 则g ′(x )=2-a -21+x =(2-a )x -a 1+x .∵0<a <2,∴2-a >0, 令g ′(x )=0,得x =a2-a,∴函数g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,+∞上为增函数.①当0<a 2-a<3,即0<a <32时,在区间[0,3]上,g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,3上为增函数, ∴g (x )min =g ⎝ ⎛⎭⎪⎫a 2-a =a -2ln 22-a .②当a 2-a ≥3,即32≤a <2时,g (x )在区间[0,3]上为减函数,∴g (x )min =g (3)=6-3a -2ln4.综上所述,当0<a <32时,g (x )min =a -2ln 22-a;当32≤a <2时,g (x )min =6-3a -2ln4.北京卷(19)(本小题13分)已知函数f (x )=e xcos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值.(19)(共13分)解:(Ⅰ)因为()e cos xf x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-.21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.[审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规范解答](1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x变化时,f(x)和f′(x)的变化情况如下:x (-∞,-a-1)-a-1(-a-1,+∞)f′(x)-0+f(x)故f((2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0为此方程的一个实数解,所以x=0是函数g(x)的一个零点.当x≠0时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x变化时,F(x)和F′(x)的变化情况如下:x (-∞,a) a (a,+∞)F′(x)-0+F(x)即F(x)所以F (x )的最小值F (x )min =F (a )=1-a . 因为a <1,所以F (x )min =F (a )=1-a >0, 所以对于任意x ∈R ,F (x )>0, 因此方程e x -a =x 无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.典例321.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==--由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -[解题反思] 在本例(1)中求f (x )的单调区间的关键是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -a =x 的解转化为研究函数F (x )=e x -a -x 的最值,从而确定F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·浙江金华期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 的图象如图所示.(1)求c ,d 的值;(2)若函数f (x )在x =2处的切线方程为3x +y -11=0,求函数f (x )的解析式;(3)在(2)的条件下,函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,求m 的取值范围. [解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b .(1)由图可知函数f (x )的图象过点(0,3),且f ′(1)=0,得⎩⎨⎧ d =3,3a +2b +c -3a -2b =0,解得⎩⎨⎧d =3,c =0.(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).由函数f (x )在x =2处的切线方程为3x +y -11=0,得⎩⎨⎧f (2)=5,f ′(2)=-3,所以⎩⎨⎧ 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得⎩⎨⎧a =1,b =-6,所以f (x )=x 3-6x 2+9x +3.(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9. 函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点, 等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根, 等价于g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),g ⎝⎛⎭⎫23=27-m ,g (4)=-16-m ,当且仅当⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16<m <6827. 所以m 的取值范围为⎝⎛⎭⎫-16,6827.21.(12分)已知函数)f x =(a e 2x +(a ﹣2) e x﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,(十字相乘法)(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).题型三 利用导数证明不等式题型概览:证明f (x )<g (x ),x ∈(a ,b ),可以直接构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F ′(x )的符号,可考虑分别研究f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数f (x )=e xx .(1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求f ′(x ),写出在点P 处的切线方程;第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0.[规范解答] (1)因为f (x )=e x x ,所以f ′(x )=e x ·x -e x x 2=e x (x -1)x 2,f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)证明:设函数g (x )=f (x )-2(x -ln x )=e xx -2x +2ln x ,x ∈(0,+∞), 则g ′(x )=e x (x -1)x 2-2+2x =(e x -2x )(x -1)x 2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x 2=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2017·福建漳州质检)已知函数f (x )=a e x-b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =⎝ ⎛⎭⎪⎫1e -1x +1.(1)求a ,b ; (2)证明:f (x )>0.[解] (1)函数f (x )的定义域为(0,+∞).f ′(x )=a e x -b x ,由题意得f (1)=1e ,f ′(1)=1e -1, 所以⎩⎪⎨⎪⎧a e =1e ,a e -b =1e -1,解得⎩⎨⎧a =1e2,b =1.(2)由(1)知f (x )=1e 2·e x-ln x . 因为f ′(x )=ex -2-1x 在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得e x 0-2=1x 0,则x 0-2=-ln x 0.故f (x )≥f (x 0)=e x 0-2-ln x 0=1x 0+x 0-2>21x 0·x 0-2=0,所以f (x )>0. 4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n()(1)(﹤m ,求m 的最小值. 21.解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1ax af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1(2)由(1)知当()1,+x ∈∞时,1>0x ln x -- 令1=1+2nx 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222nn nln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析题型四 利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.已知函数f (x )=12ln x -mx ,g (x )=x -ax (a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围. [审题程序]第一步:利用导数判断f (x )的单调性,对m 分类讨论;第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规范解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x -m , 当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(0)=0得x =12m ;由⎩⎨⎧ f ′(x )>0,x >0得0<x <12m ;由⎩⎨⎧f ′(x )<0,x >0得x >12m . 综上所述,当m ≤0时,f ′(x )的单调递增区间为(0,+∞);当m >0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12m ,单调递减区间为⎝ ⎛⎭⎪⎫12m ,+∞. (2)若m =12e 2,则f (x )=12ln x -12e 2x . 对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,g ′(x )=1+a x 2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2]上是增函数,g (x )min =g (2)=2-a 2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].[解题反思] 本例(1)的解答中要注意f (x )的定义域,(2)中问题的关键在于准确转化为两个函数f (x )、g (x )的最值问题.本题中,∀x 1,x 2有g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max .若改为:∃x 1,∀x 2都有g (x 1)≥f (x 2),则有g (x )max ≥f (x )max .若改为:∀x 1,∃x 2都有g (x 1)≥g (x 2),则有g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.[解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0), 则h ′(x )=(x +3)(x -1)x 2, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.即实数a 的取值范围是(-∞,4].(2)证明:问题等价于证明x ln x >x e x -2e (x ∈(0,+∞)). 又f (x )=x ln x ,f ′(x )=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e . 设m (x )=x e x -2e (x ∈(0,+∞)), 则m ′(x )=1-xe x , 易知m (x )max =m (1)=-1e ,从而对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立. ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.即实数a 的取值范围是(-∞,4].题型五:二阶导主要用于求函数的取值范围23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f (1)=0,即点为(1,0),函数的导数f′(x )=lnx+(x+1)•﹣4, 则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2, 则曲线y=f (x )在(1,0)处的切线方程为y=﹣2(x ﹣1)=﹣2x+2;(II )∵f (x )=(x+1)lnx ﹣a (x ﹣1), ∴f′(x )=1++lnx ﹣a ,∴f″(x )=,∵x >1,∴f″(x )>0,∴f′(x )在(1,+∞)上单调递增,∴f′(x )>f′(1)=2﹣a . ①a≤2,f′(x )>f′(1)≥0,∴f (x )在(1,+∞)上单调递增,∴f (x )>f (1)=0,满足题意; ②a >2,存在x 0∈(1,+∞),f′(x 0)=0,函数f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增, 由f (1)=0,可得存在x 0∈(1,+∞),f (x 0)<0,不合题意. 综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。
导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
高考数学复习典型题型专题讲解与练习专题83 导数综合题型复习归类【题型一】利用导数求极值 【例1】已知函数321()13f x x tx x =+++在R 上不存在极值点,则实数t 的取值范围是( )A .,1(),)1(-∞-⋃+∞B .(1,1)-C .(,1][1,)∞∞--⋃+D .[1,1]- 【答案】D【分析】首先求导数,根据0∆≤,即可求得实数t 的取值范围.【详解】2()21f x x tx '=++,因为函数()f x 在R 上不存在极值点,所以()'f x 在R 上没有变号零点,所以2Δ440t =-≤所以11t -≤≤,所以实数t 的取值范围是[1,1]-.故选:D . 【例2】若函数())e xf x x a =+存在极值点,则实数a 的取值范围是( )A .(B .⎡⎣C .()2,2-D .[]22-,【答案】C【分析】由()'f x 存在变号零点,结合三角函数的性质得出a 的取值范围.【详解】()e )e 2sin 4x x f x x x a x a π'⎡⎤⎛⎫=+=++ ⎪⎢⎥⎝⎭⎣⎦令()0f x '=,得2sin 4x a π⎛⎫+=- ⎪⎝⎭,2sin [2,2]4x π⎛⎫+∈- ⎪⎝⎭因为函数())e xf x x a =+存在极值点,所以(2,2)a -∈-,即(2,2)a ∈-选:C【例3】函数()222ln f x ax x x =-+有两个不同的极值点12,x x ,若不等式12()()f x f x λ>+恒成立,则实数λ的取值范围是A .()4ln26,∞-+B .[)4ln26,∞-+C .[)4ln3ln2,∞-+D .()4ln3ln2,∞-+ 【答案】B【分析】由题可得Δ14010a a =->⎧⎪⎨>⎪⎩,再用a 表示出12x x ,12x x +,进而可得112ln 2a a λ>-+-,构造函数()()2ln 24g x x x x =-+->,利用导数求最值即得.【详解】因为()222ln f x ax x x =-+,(0x >)所以()22222220ax x f x ax x x-+'=-+==,即210ax x -+=有两个正根,∴Δ14010a a=->⎧⎪⎨>⎪⎩,即:104a <<,又∵21110ax x -+=,22210ax x -+=,121=x x a ,121x x a +=,∴()()221112122222ln 22ln ax x x ax x f f x x x λ++-+=->+111222122ln 122ln x x x x x x =--++--+()1212112ln 22ln 2x x x x a a =-++-=-+-,令()()2ln 24g x x x x =-+->,()210g x x'=-<,∴()g x 在()4,+∞上单调递减,∴()442ln 424ln 26g λ≥=-+-=-,故选:B. 【例4】已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )x f x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值 【答案】B 【分析】令()()xf x F x e =,根据题意得到()cos F x x x '=+,设()cos ,0g x x x x =+>,利用导数求得()g x 在区间(0,)+∞单调递增,得到()0F x '>,由()()xf x e F x =⋅,得到()0f x '>,即函数()f x 为单调递增函数,得到函数无极值. 【详解】令()(),0x f x F x x e =>,可得()()()xf x f x F x e'-'=,因为()()(cos )xf x f x e x x '-=+,可得()cos F x x x '=+,设()cos ,0g x x x x =+>,可得()1sin 0g x x '=-≥,所以()g x 在区间(0,)+∞单调递增, 又由()01g =,所以()()01g x g >=,所以()0F x '>,所以()F x 单调递增, 因为()0f x >且0x e > ,可得()0F x >,因为()()xf x F x e=,可得()(),0xf x e F x x =⋅>, 则()()()[]0xf x e F x F x ''=+>,所以函数()f x 为单调递增函数,所以函数()f x 无极值.故选:B.【题型二】 利用导数求最值 【例1】已知函数2()(21)x f x ae x a x =--+,若函数()f x 在区间(0,ln 2)上有最值,则实数a 的取值范围是A .(,1)-∞-B .(1,0)-C .(2,1)--D .(,0)(0,1)-∞ 【答案】A【详解】试题分析:()()221xf x a e x '=---,()0,ln 2x ∈,∴20,210x e x -<--<.当0a ≥时,()0f x '<在()0,ln 2上恒成立,即函数()f x 在()0,ln 2上单调递减,函数()y f x =在区间()0,ln 2上无最值;当0a <时,设()()221xg x a e x =---,则()20x g x ae '=-<,()g x 在()0,ln 2上为减函数,又()()01,ln 22ln 210g a g =--=--<,若函数()f x 在区间()0,ln 2上有最值,则函数()g x 有极值,即()0g x =有解,∴()010g a =-->,得1a <-.故选A. 【例2】.已知函数()()2e 21xf x a x a x =--+,若函数()f x 在区间()0,ln 2上恰有一个最值点,则实数a 的取值范围是( ). A .(),1-∞-B .()1,0- C .()2,1--D .()(),00,1-∞ 【答案】A【分析】令'()()g x f x =,结合已知条件可知,数()f x 在区间()0,ln 2上恰有一个最值点可转化为()g x 在区间()0,ln 2上存在唯一的变号零点,然后利用零点存在的基本定理求解实数a 的取值范围,然后通过a 的取值范围检验()f x 在区间()0,ln 2上最值点的唯一性即可.【详解】令()()()'e 221xg x f x a x a ==--+,若函数()f x 在区间()0,ln 2上恰有一个最值点,则函数()f x 在区间()0,ln 2上恰有一个极值点,从而()g x 在区间()0,ln 2上存在唯一一个变号零点,故()()()()0ln 22122ln 2210g g a a a a =-----<,即10a +<,解得1a <-,此时()e 20xg x a '=-<在区间()0,ln 2上恒成立,则()g x 在区间()0,ln 2上单调递减,即()g x 在区间()0,ln 2上存在唯一一个零点,即()f x 在()0,ln 2上恰有一个最值点.从而实数a 的取值范围是(),1-∞-.故选:A. 【例3】已知函数23()(4)2ln 2f x x a x x =++-在区间(1,2)上存在最值,则实数a 的取值范围是_____________.【答案】()95--,【详解】由题可得223(4)2'()3(4)x a x f x x a x x++-=++-=,因为函数()f x 在区间(1,2)上存在最值,所以'(1)'(2)0f f ⋅<,即(5)(9)0a a ++<,解得95a -<<-,故实数a 的取值范围是(9,5)--. 【例4】若函数()e x f x kx =-在(1,)+∞上存在最值,则实数k 的取值范围为 A .(,)e +∞B .(,]e -∞- C .(2,)e +∞D .(,2e]-∞- 【答案】A【分析】首先求得导函数的解析式,然后分类讨论0k ≤和0k >两种情况即可确定实数k 的取值范围.【详解】由题可得()e x f x k '=-,当0k ≤时,()e 0x f x k '=-<,函数()f x 在(1,)+∞上单调递减,不存在最值; 当0k >时,令()e 0x f x k '=-=,可得ln x k =,易得函数()f x 在(n ),l k -∞上单调递增,在(ln ,)k +∞上单调递减, 若函数()e x f x kx =-在(1,)+∞上存在最值,则ln 1k >,即k e >, 所以实数k 的取值范围为(,)e +∞,故选A .【例5】函数()sin 24cos f x x x =-的最大值为( )A .【答案】A根据周期性只需考虑[]0,2x π∈函数最值,结合()()sin 24cos 2cos sin 2f x x x x x =-=-得3,2x ππ⎛⎫∈ ⎪⎝⎭时函数取得最大值,利用导函数分析单调性,结合隐零点求解最值. 【详解】由题()()sin 24cos 2f x x x f x π=-=+,只需考虑[]0,2x π∈函数最值即可,()()sin 24cos 2cos sin 2f x x x x x =-=-,所以当sin 0,cos 0x x <<即3,2x ππ⎛⎫∈ ⎪⎝⎭时函数取得最大值, ()()222cos 24sin 212sin 4sin 4sin 4sin 2f x x x x x x x '=+=-+=-++,考虑函数()()2442,1,0h t t t t =-++∈-,()()10,00h h -<>,所以必存在唯一零点0t ,()2000210,2t h t t +==, 且()01,t t ∈-()2442h t t t =-++递减,()0,0t t ∈()2442h t t t =-++递增,记00sin t x =,由正弦函数单调性可得:()0,x x π∈函数()f x 递增,03,2x x π⎛⎫∈ ⎪⎝⎭函数()f x 递减,所以函数()()()000max 2cos sin 2f x f x x x ==-2002sin 1sin 2x x +=,解得00sin x x ==所以()()()000max 2cos sin 222f x f x x x ⎛⎫ ==-=⨯=⎪⎪ ⎝⎭⎝故选:A【题型三】 利用导数求单调性解不等式 【例1】已知函数()23ln 6f x x kxx =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+D .k 的最小值为6ln 33+ 【答案】D【分析】原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可.【详解】由()23ln 60f x x kx x =-+>,得3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x -'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减,而()6h x kx =-的图象是一条恒过点()0,6-的直线,函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2,则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<,故k 的最小值为6ln 33+,故选:D.【例2】已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3)B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞ 【答案】A【分析】根据题目特征构造函数()(2)()g x x f x =-,先根据()f x 的对称性得到()g x 的图象关于(2,0)对称且()31g =,根据()g x 的单调性解不等式得到解集,再根据 【详解】根据题意,设()(2)()g x x f x =-,则()()111g f =-=-,则有(2)(2)g x xf x +=+,(2)(2)g x xf x -=--,即有(2)(2)g x g x +=--,故函数()g x 的图象关于(2,0)对称,则有()()311g g =-=,当2x >时,()(2)()g x x f x =-,()(2)()()g x x f x f x '=-'+,又由当2x >时,()()2()xf x f x f x ''+>,即当2x >时,()0g x '>,即函数()g x 在区间(2,)+∞为增函数,由1()2f x x <-可得(2)()1x f x -<,即()()13g x g <=,23x ∴<<,函数()g x 的图象关于(2,0)对称,∴函数()g x 在区间(,2)-∞为增函数,且()0g x <在(,2)-∞上恒成立,由1()2f x x <-可得(2)()1x f x ->,即()1g x >,此时x 不存在. 综上:不等式解集为(2,3).故选:A 【例3】在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( )A .4161,5e 2e ⎛⎤⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <,∴原不等式的解集中有无数个大于2的整数,∴0a >.∵()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12ea ≥时,设()()()()4h x f x g x x =-≥,则()()()22e 2e 2e 2e 22exxx h x x ax x '=--≤--.设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2exx x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数,即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭, ∴当4x ≥时,不等式()()f x g x <恒成立,∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则()()()()()()334455f g f g f g ⎧>⎪>⎨⎪≤⎩,即232425e 2e 4e 3e 9e 4e a a a ⎧>⎪>⎨⎪≤⎩,解得32944e 3e a ≤<.则实数a 的取值范围为3294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【例4】若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是 A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭C .932,2ln 2ln 5⎛⎤⎥⎝⎦D .9,2ln 2⎛⎫+∞ ⎪⎝⎭【答案】C【分析】由题可知,设函数()ln(1)f x a x =+,32()2g x x x =-,根据导数求出()g x 的极值点,得出单调性,根据32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,转化为()()f x g x >在区间(0,)+∞内的解集中有且仅有三个整数,结合图象,可求出实数a 的取值范围.【详解】设函数()ln(1)f x a x =+,32()2g x x x =-,因为2()34g x x x '=-,所以()0g x '=,0x ∴=或43x =,因为403x << 时,()0g x '<,43x >或0x <时,()0g x '>,(0)(2)0g g ==,其图象如下:当0a 时,()()f x g x >至多一个整数根;当0a >时,()()f x g x >在(0,)+∞内的解集中仅有三个整数,只需(3)(3)(4)(4)f g f g >⎧⎨⎩,3232ln 4323ln 5424a a ⎧>-⨯∴⎨-⨯⎩,所以9322ln 2ln 5a <.故选:C. 【题型四】利用导数定义求切线倾斜角 【例1】曲线2y x x=-在1x =处的切线的倾斜角为α,则cos 21tan αα=+( )A .1-B .15-C .2【答案】B【分析】先求出2y x x=-的导函数,进而求出1x =时,123y '=+=,由导函数的几何意义和倾斜角与斜率的关系,求出tan 3α=,利用万能公式求出结果. 【详解】221y x '=+,当1x =时,123y '=+=,所以tan 3α=,由万能公式得:222222cos sin 1tan 194cos 2cos sin 1tan 195ααααααα---====-+++所以cos 24111tan 545αα=-⨯=-+故选:B【例2】设点P 是曲线上的任意一点,点P 处切线的倾斜角为,则角的取值范围是 A .B .C .D .【答案】B【详解】试题分析:因23y x ='k ≥α的取值范围是20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.【例3】已知M 是曲线()21ln 12y x x a x=++-上的任一点,若曲线在M 点处的切线的倾斜角均是不小于4π的锐角,则实数a 的取值范围是( )A .[)2,+∞B .[)4,+∞C .(],2-∞D .(],4-∞ 【答案】C【分析】求y ',结合已知根据导数的几何意义可得tan14y π'≥=,即1x a x +≥对任意0x >恒成立,再利用基本不等式求出min1x x ⎛⎫+ ⎪⎝⎭即可. 【详解】因为()21ln 12y x x a x =++-,所以11y x a x'=++-,因为曲线在M 处的切线的倾斜角是均不小于4π的锐角,所以tan14y π'≥=对于任意的0x >恒成立,即111x a x++-≥对任意0x >恒成立, 所以1x a x +≥,又12x x+≥,当且仅当1x x=,即1x =时,等号成立, 故2a ≤,所以a 的取值范围是(],2-∞.故选:C【例4】已知点P在曲线y =上,θ为曲线在点P 处的切线的倾斜角,则θ的取值范围是( )A .0,3π⎛⎤ ⎥⎝⎦B .,32ππ⎡⎫⎪⎢⎣⎭C .2,23ππ⎛⎤⎥⎝⎦D .2,3ππ⎡⎫⎪⎢⎣⎭【答案】D【分析】首先根据导数的几何意义求得切线斜率的取值范围,再根据倾斜角与斜率之间的关系求得倾斜角的取值范围.【详解】因为12x x x y e e e==+'++,由于124xx e e ++≥,所以[y ∈', 根据导数的几何意义可知:tan [θ∈,所以2[,)3πθπ∈,故选:D.【题型五】 利用导数研究函数零点 【例1】若函数()()2e ln x bf x x b x x x x +=+++-有零点,则b 的取值范围是( )A .(],1-∞-B .[)1,0-C .(),0∞-D .()0,∞+ 【答案】C【分析】将零点问题转化为两个函数交点问题,构造函数,考察函数的极值及变化速率的关系可得.【详解】易知,当0b =时,函数()0f x >恒成立,不满足题意因为e ()1(1ln )x b f x x b x x x +⎡⎤=+++-⎢⎥⎣⎦所以函数()()2eln x bf x x b x x x x +=+++-有零点,有零点,则方程e 1(1ln )0x b x b x x x +⎡⎤+++-=⎢⎥⎣⎦有解,即方程e 1(ln 1)x bb x x x++=--有解 即函数e ()1x bg x x+=+与()(ln 1)h x b x x =--的图象在(0,)+∞上有交点 2(1)e ()x b x g x x+-'=,易知1x >时()0g x '>,01x <<时()0g x '<,故1min ()(1)e 1bg x g +==+, (1)()b x h x x-'=,当0b >时,易知1x >时()0h x <,01x <<时()0h x >,故max ()(1)2h x h b ==-,因为1e 12b b ++>-恒成立,所以此时无交点;当0b <时,易知1x >时()0h x >,01x <<时()0h x <,故min ()(1)2h x h b ==-,易知,当x →+∞时,必有()()g x h x >,所以当1e 12b b ++≤-时,两函数图象一定有交点. 令1()e 21b u b b +=++,因为1()e 20b u b +'=+>,故函数()u b 单调递增,且0(1)e 210u -=-+=,所以,当1b ≤-时,1e 210b b +++≤,即1e 12b b ++≤-成立. 当10b -<<,01x <<时,22(1)e (1)(1)(e )()()x b x b x b x x bx h x g x x x x ++---+''-=-= 当0x →时,()()h x g x ''-→-∞,此时1e 12b b ++>-,故两函数图象在(0,1)上有交点. 综上,b 的取值范围为(,0)-∞故选:C 【例2】已知函数()244,0ln 2,0x ax x f x x ax x ⎧-+≤=⎨+>⎩恰有两个零点,则实数a 的取值范围是( )A .11,,022e ⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭B .()1,1,0e ⎛⎫-∞-- ⎪⎝⎭C .()1,1,02e ⎛⎫-∞-- ⎪⎝⎭D .()1,01,2e ⎛⎫-+∞ ⎪⎝⎭【答案】C【分析】分类讨论,当0a ≥时利用函数的单调性可得函数()f x 至多有一个零点;当0a <时,分别讨论函数()ln 2f x x ax =+,,()0x ∈+∞,()244f x x ax =-+,],(0x ∈-∞,的零点情况,进而可得12e 1a a ⎧<-⎪⎨⎪<-⎩,或{a =−12ea =−1,或102e 10a a ⎧-<<⎪⎨⎪-<<⎩,即求. 【详解】当0a ≥时,()244f x x ax =-+在(,0]-∞上单调递减,又()04f =,所以函数()f x 在(,0]-∞上没有零点,()ln 2f x x ax =+在(0,)+∞上单调递增,所以函数()f x 在(0,)+∞上至多有一个零点,故当0a ≥时,函数()f x 在R 上至多有一个零点,不合题意; 当0a <时,()ln 2f x x ax =+,,()0x ∈+∞()1212ax f x a xx+'=+=,令()0f x '=,得12x a =-,∴1(0,)2x a ∈-时,()0f x '>,函数()f x 单调递增;1(,)2x a∈-∞时,()0f x '<,函数()f x 单调递减, ∴12x a =-时,函数()f x 有最大值,11ln 122f a a ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭, ∴当11ln 1022f a a ⎛⎫⎛⎫-=--< ⎪ ⎪⎝⎭⎝⎭,即12e a <-时,函数()f x 在(0,)+∞上没有零点,当11ln 1022f a a ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,即12e a =-时,函数()f x 在(0,)+∞上有一个零点,当11ln 1022f a a ⎛⎫⎛⎫-=--> ⎪ ⎪⎝⎭⎝⎭,即102a e -<<时,函数()f x 在(0,)+∞上有两个零点;对于()244f x x ax =-+,],(0x ∈-∞,对称轴为2x a =,函数()244f x x ax =-+在(,0]-∞上最小值为()()222242444f a a a a a =-⋅+=-,又()04f =,∴当()20f a >,即10a -<<,函数()f x 在(,0]-∞上没有零点,当()20f a =,即1a =-,函数()f x 在(,0]-∞上有一个零点, 当()20f a <,即1a <-,函数()f x 在(,0]-∞上有两个零点;所以要使函数()f x 恰有两个零点则12e 1a a ⎧<-⎪⎨⎪<-⎩,或{a =−12ea =−1,或102e 10a a ⎧-<<⎪⎨⎪-<<⎩, 解得1a <-或102a e -<<;综上,实数a 的取值范围是1a <-或102a e-<<.故选:C. 【例3】已知()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .(),2-∞-C .()1,+∞D .(),1-∞ 【答案】B【分析】分类讨论:当0a ≥时,容易判断出不符合题意;当0a <时,求出函数的导数,利用导数和极值之间的关系转化为求极小值20f a⎛⎫> ⎪⎝⎭,解出即可.【详解】解:当0a =时,()2310f x x =-+=,解得x =,函数()f x 有两个零点,不符合题意,应舍去; 当0a >时,令()'223630f x ax x ax x a⎛⎫=-=-= ⎪⎝⎭,解得0x =或20x a=>, 列表如下:x →-∞,()f x →-∞,而()010f =>,∴存在0x <,使得()0f x =,不符合条件:()f x 存在唯一的零点0x ,且00x >,应舍去,当0a <时,()'223630f x ax x ax x a ⎛⎫=-=-= ⎪⎝⎭,解得0x =或20x a=<,列表如下:而,x →+∞时,,存在00x >,使得0,()f x 存在唯一的零点0x ,且00x >,∴极小值32222()3()10f a a a a ⎛⎫=-+> ⎪⎝⎭,化为24a >,0a <,2∴<-a ,综上可知:a 的取值范围是()2-∞-,.故选:B . 【例4】已知函数()e 2(ln )x f x x a x x =-+有两个零点,则a 的最小整数值为( ) A .0B .1C .2D .3 【答案】C【分析】先将函数化为ln ()e 2(ln )x x f x a x x +=-+,令ln t x x =+,进而只需说明()e 2tg t at =-在R 上有两个零点,然后对函数求导,讨论出函数的单调区间和最值,最后通过放缩法解决问题.【详解】ln ()e 2(ln )e 2(ln )x x x f x x a x x a x x +=-+=-+,设ln (0)t x x x =+>,110t x=+>',即函数在()0,∞+上单调递增,易得R t ∈,于是问题等价于函数()e 2t g t at =-在R 上有两个零点,()e 2tg t a ='-,若0a ≤,则()0g t '>,函数()g t 在R 上单调递增,至多有1个零点,不合题意,舍去; 若0a >,则(),ln 2x a ∈-∞时,()0g t '<,()g t 单调递减,()ln 2,x a ∈+∞时,()0g t '>,()g t 单调递增.因为函数()g t 在R 上有两个零点,所以()()()min e ln 221ln 202g a a a g a t ==-<⇒>, 而()010g =>,限定1t > ,记()e t t t ϕ=-,()e 10tt ϕ='->,即()t ϕ在()1,+∞上单调递增,于是()()e 1e 10e ttt t t ϕϕ=->=->⇒>,则2t >时 ,22e e 24t tt t >⇒>,此时()()22844t t g t at t a >-=-,因为2e a >,所以84e 1a >>,于是8t a >时,()0g t >.综上:当2e a >时,有两个交点,a 的最小整数值为2. 故选:C.【题型六】 利用导数求函数切线 【例1】已知函数()()),0x f x e g x a ==≠,若函数()y f x =的图象上存在点()00,P x y ,使得()y f x =在点()00,P x y 处的切线与()y g x =的图象也相切,则a 的取值范围是( )A .(]0,1B .(C .(D .e ⎤⎥⎦【答案】B【分析】由两条直线的公切线,表示出切点坐标,构造函数()h t ,利用导函数求得极值点;根据极值点,求出两侧的单调性,再根据单调性求得()h t 的最大值.【详解】()()e ,x f x g x ==00(,e )xP x ,设切线与()y g x =的图象相切与点(,t()00','()x f x e g t ==由题意可得000x x e e ⎧=>⎪=⎩ ,解得01x t =-所以01,0x t a t -==>令1(),0t h t t -=>则()111'()12t t t h t t ----=-令'()0h t =,解得12t = 当0t > 时,()0h t > 当102t <<时,()'0h t > ,函数()h t 在10,2⎛⎫⎪⎝⎭上单调递增当12t < 时,()'0h t < ,函数()h t 在10,2⎛⎫ ⎪⎝⎭上单调递减当t 从右侧趋近于0时,(0)h 趋近于012h ⎛⎫= ⎪⎝⎭当t 趋近于+∞ 时,(0)h 趋近于0所以(a ∈ 所以选B 【例2】已知函数2y x 的图象在点200(,)x x 处的切线为l ,若l 也与函数ln y x =,(0,1)x ∈的图象相切,则0x 必满足A .0102x <<B .0112x <<C0x <<0x <<【答案】D【详解】函数2y x 的导数为2y'x =,图像在点200(,)x x 处的切线的斜率为02k x =,切线方程为20002()y x x x x -=-,即2002y x x x =-,设切线与ln y x =相切的切点为(,ln )m m ,01m <<,由ln y x =的导数为1'y x =,切线方程为1ln ()y m x m m -=-,即11ln y x m m =-+,∴012x m=,201ln x m =-.由01m <<,可得012x >,且201x >,解得01x >,消去m ,可得200ln(2)10x x --=,令2()ln(2)1,1f x x x x =-->,1'()20f x x x=->,()f x 在()1,+∞上单调递增,且2ln 10f =-<,3ln 10f =->,所以有200ln(2)10x x --=的根0x ∈,故选D.【例3】已知曲线()322f x x ax x =-+-与直线1y kx =-相切,且满足条件的k 值有且只有3个,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞ C .[)3,+∞D .()3,+∞ 【答案】D【分析】设切点坐标为()32,2t t at t -+-,求出曲线()y f x =在x t =处的切线方程,将点()0,1-的坐标代入切线方程可得出2321at t =+,可知关于t 的方程2321at t =+有三个解,由参变量分离法可得出()2120a t t t =+≠,构造函数()()2120g t t t t =+≠,利用导数分析函数()g t 的单调性与极值,数形结合可得出实数a 的取值范围.【详解】设切点坐标为()32,2t t at t -+-,对函数()f x 求导得()2322f x x ax '=-+-,所以,曲线()y f x =在x t =处的切线方程为()()()3222322y t at t t at x t --+-=-+--,因为直线1y kx =-过定点()0,1-,将点()0,1-的坐标代入切线方程()()()3222322y t at t t at x t --+-=-+--得2321at t =+,由题意可知,关于t 的方程2321at t =+有三个解, 显然0=t 不满足方程2321at t =+,则()2120a t t t =+≠,令()()2120g t t t t =+≠,则()()3332122t g t t t-'=-=,列表如下:所以,函数()g t 的极小值为()13g =,且0g ⎛= ⎝,如下图所示: 由题意可知,当3a >时,直线y a =与曲线()y g t =有三个交点,故选:D.【例4】已知过点(0,1)-与曲线323()6(0)2a f x x x x x =-+->相切的直线有且仅有两条,则实数a 的取值范围是( ) A .(2,)+∞B .(0,)+∞C .(,2)-∞D .(,0)-∞ 【答案】A【分析】设出切点坐标,求出函数的导数,求出切线的斜率,得到切线方程,代入(0,-1) ,利用方程.由两个不相同的实数解,构造函数通过函数的导数,利用函数的极值转化求解即可.【详解】由曲线323()6(0)2a f x x x x x =-+->,可设切点坐标为()323,602a t t t t t ⎛⎫-+-> ⎪⎝⎭,且2()336f x x ax '=-+-,即切线的斜率2336k t at =-+-可得切线方程为()()322363362a y t t t t at x t =-+-+-+--,又因为切线过点(0,1)-,即()()3223163362a t t t t at t -=-+-+-+--,整理得324320t at -+= 题中相切的直线有且仅有两条等价于方程324320t at -+=由两个不相同的正实数解;令()32432h t t at =-+,即函数有两个正的零点。
导数的综合大题及其分类②当a>2时, A >0,设F '(x) = 0的两根为 a —寸a 2—4,X 2 =a + ” a 2—4 其定义域为导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、 极值、最值;利用导数研究不等式;利用导数研究方程的根 (或函数的零点);利用导数研究恒成立问题等•体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用 .题型一利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于 零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.⑶最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在 极值和区间端点函数值中最大的为最大值,最小的为最小值.1已知函数 f(x) = x — -, g(x)= alnx(a € R). X (1)当a>— 2时,求F(x) = f(x) — g(x)的单调区间;1、⑵设h(x) = f(x) + g(x),且h(x)有两个极值点为 X 1,X 2,其中X 1 € 0,2,求h(x”一 h(X 2)的最小值.[审题程序]第步: 在定义域内,依据F '(X) - 0根的情况对F '(X)的符号讨论; 第二步: 整合讨论结果,确定单调区间; 第三步: 建立X 1、X 2及a 间的关系及取值范围;第四步: 通过代换转化为关于X 1(或X 2)的函数,求出最小值.1[规范解答](1)由题意得F(x) = x — X — alnx , x 2— ax + 1(0,+-),贝U F '(x)二X^—令 m(x) = x 2— ax+ 1,贝U △= a 2— 4.①当一2<a<2时,A<0,从而F'(x)>0,二F(x)的单调递增区间为(0,+-);••• F(x)的单调递增区间为0 a—a2 —4和a+产4 +8 ,2F(x)的单调递减区间为a- f二4, a+供二4综上,当一2<a<2时,F(x)的单调递增区间为(0, 当a>2时,F(x)的单调递增区间为0, L F-4和时{J 4 , +8 ,F(x)的单调递减区间为a- f -4, a+童二41(2)对h(x) = x—x+ alnx, x € (0,+ 8)x2+ ax+ 1x2设h'(x)= 0的两根分别为x i, X2,则有X1X2=1 , X1 + X2= —a,1ln_x1 1••• xeX1,从而有 a= — X1—易令 H(x)= h(x)— h 1=X—1+ — X —- Inx —x=2 -x-十nx + x-匕,(x) = 2— nx = 21二X1+皿x x21当 x € 0 , 2 时,H '(x)<0,1••• H(x)在0 , 2上单调递减,又 H(x i) = h(x i)— h 丄=h(x i) — h(X2),X11•••[h(x i) — h(X2)]min = H ㊁=5ln2 — 3.[解题反思]本例(1)中求F(x)的单调区间,需先求出F(x)的定义域,同时在解不等式F '(x)>0 时需根据方程x2— ax + 1 = 0的根的情况求出不等式的解集,故以判别式“ △”的取值作为分类讨论的依据.在⑵中求出h(X1)— h(X2)的最小值,需先求出其解析式.由题可知X1, X2是h '(x) = 0 的两根,可得到X1X2 = 1, X1 + X2=— a,从而将h(X1)— h(X2)只用一个变量 X1导出.从而得到 H(X1)1 、 1 1=h(X1) — h —,这样将所求问题转化为研究新函数H(x)= h(x)— h -在0,-上的最值问题,体现X1 X 2转为与化归数学思想.[答题模板]解决这类问题的答题模板如下:求定义域 — 求出函数的定义域.1求导数准确求出函数的导数J1根据参数的取值范围,结合极值点与 给定区间的位置对导函数的符号进 行分类讨论,确定函数的单调性.讨论单调性 —根据函数的单调性,确定极值、最值 的取得情况.讨论极值最値根据分类讨论的结果,对结论进行整合,做到不重不漏.整合结论 —[题型专练]1.设函数 f(x) = (1 + X )2— 2ln(1 + x).(1)求f(x)的单调区间;⑵当0<a<2时,求函数g(x) = f(x) — x 2— ax — 1在区间[0,3]上的最小值. [解](1)f(x)的定义域为(—1,+乂).V f(x)= (1+ x)2— 2ln(1 + x), x € (— 1,+乂),由 f ' (x)>0,得 x>0;由 f ' (x)<0,得一1<x<0.二函数f(x)的单调递增区间为(0,+x ),单调递减区间为(—1,0). ⑵由题意可知 g(x) = (2 — a)x — 2ln(1 + x)(x>— 1), 2则 g ‘ (x)= 2 — a — 1++x =(x) = 2(1 + x)—2 2x x + 21 + x _x + 1-0<a<2,…2 — a>0,令 g‘ (x)= 0,得 x = 2^,a a•••函数g(x)在0, 于上为减函数,在芦a,+乂上为增函数.a 3①当0<严<3,即0vav2时,在区间[0,3]上,2 — a 2a ag(x)在0, 亍上为减函数,在汪,3上为增函数,a 2…g(x)m in = g 2 —a= a —2ln2T^.a 3②当一>3,即3<a<2时,g(x)在区间[0,3]上为减函数,2— a 2…g(x)min = g(3) = 6— 3a—2ln4.3 2综上所述,当 0<a<3时,g(x)min = a— 21 门2——a;3当a<2 时,g(x)min = 6 — 3a — 2ln4.北京卷(19)(本小题13分)已知函数f (x) =e x cos x-x.(I)求曲线y= f (x)在点(0, f (0))处的切线方程;(H)求函数f (x)在区间[0 ,亍]上的最大值和最小值.(19)(共13 分)解:(I)因为f(x) e x cosx x,所以 f (x) e x(cosx sinx) 1, f (0) 0 . 又因为f(0) 1,所以曲线y f(x)在点(0,f(0))处的切线方程为y(H)设h(x) e x(cos x sin x) 1 则h(x) e x(cos x sin x sin x cos x) 2e x sin x21. (12 分) 已知函数 (1) 求 a ;(2) 证明: 21.解: (1)fx的定义域为0,+ 设g x = ax - a - I nx ,贝卩 f x =xg x , f x 0等价于g 因为g 1 =0, g x 0,故g' 1 =0,而g' x a - , g' 1 =a 1,得axf (x) ax 3 ax x Inx,且f (x)f(x)存在唯一的极大值点x 0, 且e 2f(x 。
导数综合大题类型一:讨论单调性(含参类型)◉以“0”临界1.已知f(x)=lnx+a(1-x),(a∈R)讨论其单调性2.已知f(x)=ax-x e(a∈R)讨论其单调性3.已知f(x)=x e-ax-2,求函数f(x)的单调区间4.已知f(x)=lnx-ax²(a∈R)讨论其单调性◉讨论“△”类型1.已知f(x)=(x-1)²+mlnx(m∈R)讨论其单调性1mx²-2x+2lnx(m∈R)讨论其单调性2.已知f(x)=23.已知f(x)=x²-mx+2lnx(m∈R)讨论其单调性◉十字相乘类型1.已知f(x)=x³+ax²-a²x+1(a∈R),求函数f(x)的单调区间2. 已知f (x )=),()(R ∈++m x x 1-m x x 31-223,求函数f (x )的单调区间 3. 已知f (x )=a ²lnx-x ²+ax (a ∈R ),求函数f (x )的单调区间4. 已知f (x )=lnx 1-a ax -x 212)(+(a ∈R ),求函数f (x )的单调区间5. 已知f (x )=1-xa-1ax -lnx +(a ∈R ),求函数f (x )的单调区间6. 已知f (x )=2x 1-x a e 2-x )()(+(a ∈R ),求函数f (x )的单调区间◉讨论x 1,x 2大小类型 1. 已知f (x )=x1a ax lnx +++(a ∈R ),求函数f (x )的单调区间类型二:求参数取值范围◉分参转化成求最值/恒成立处理成最值问题 1. f (x )=x (x e +1)-a (x e -1)当x ∈(0,+∞)时,f (x )>0恒成立,求a 的取值范围。
2.已知函数f (x )=ax x e -x ²-2x+1(a ∈R )当x ≥1时,f (x )≥0恒成立,求a 的取值范围。
导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
导数难题归类一.导数中与零点相关问题1.已知函数ln 1()ax f x x+= (0a >). (Ⅰ)求函数()f x 的最大值;(Ⅱ)如果关于x 的方程ln 1x bx +=有两解,写出b 的取值范围(只需写出结论);2.已知函数2()ln (1)2x f x a x a x =+-+,a ∈R . (Ⅰ) 当1a =-时,求函数()f x 的最小值;(Ⅱ) 当1a ≤时,讨论函数()f x 的零点个数.3.(本小题共13分) 已知函数1()ln ()f x a x a R x=+∈. (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果函数()()2g x f x x =-在(0,)+∞上单调递减,求a 的取值范围;(Ⅲ)当0a >时,讨论函数()y f x =零点的个数.4. 已知函数2()ln =-f x x x .(Ⅰ)求曲线()=y f x 在点(1,(1))f 处的切线方程;(Ⅱ)设2()=-+g x x x t ,若函数()()()=-h x f x g x 在1[,]e e上(这里 2.718≈e )恰有两个不同的零点,求实数t 的取值范围.5.已知函数e ()xf x x=. (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;(Ⅱ)当0x >时,求证:()f x x >;(Ⅲ)问集合{()0}x f x bx ∈-=R (b ∈R 且为常数)的元素有多少个?(只需写出结论)6.(本小题共13分)设函数()e (R)axf x a =∈.(Ⅰ)当2a =-时,求函数2()()g x x f x =在区间(0,)+∞内的最大值; (Ⅱ)若函数2()1()x h x f x =-在区间(0,16)内有两个零点,求实数a 的取值范围.二.利用二阶导数解决问题1.(本小题满分13分) 已知函数()()e x a f x x x=+,a ∈R .(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.2.(本小题共13分)设函数f (x )=xe a ﹣x +bx ,曲线y=f (x )在点(2,f (2))处的切线方程为y=(e ﹣1)x+4,(Ⅰ)求a ,b 的值;(Ⅱ)求f (x )的单调区间.三.导数中出现三角函数如何解决1.已知函数()sin cos f x x x x =-.(Ⅰ)求曲线)(x f y =在点(())πf π,处的切线方程; (Ⅱ)求证:当(0)2x ∈,π时,31()3f x x <; (Ⅲ)若()cos f x kx x x >-对(0)2x ∈,π恒成立,求实数的最大值.2. 已知函数f(x)=x 2+xsin x+cos x.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b 相切,求a 与b 的值。
导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.1已知函数f(x)=x-,g(x)=alnx(a∈R).x(1)当a≥-2时,求F(x)=f(x)-g(x)的单调区间;(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中x1∈0,12,求h(x1)-h(x2)的最小值.[审题程序]第一步:在定义域内,依据F′(x)=0根的情况对F′(x)的符号讨论;第二步:整合讨论结果,确定单调区间;第三步:建立x1、x2及a间的关系及取值范围;第四步:通过代换转化为关于x1(或x2)的函数,求出最小值.1[规范解答](1)由题意得F(x)=x--alnx,x2-ax+1x其定义域为(0,+∞),则F′(x)=2,x令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,∴F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=2-42-4a-aa+a,x2=,22∴F(x)的单调递增区间为2-4 a -a 0,2和2-4a +a,+∞,22-42-4a -aa +aF(x)的单调递减区间为2.,2综上,当-2≤a ≤2时,F(x)的单调递增区间为(0,+∞); 当a>2时,F(x)的单调递增区间为2-4 a -a 0,2 和2-4a +a,+∞,22-42-4a -aa +aF(x)的单调递减区间为 ,22.1(2)对h (x)=x -+alnx ,x ∈(0,+∞)x求导得,h ′(x)=1+2+ax +1 1ax2+=2, xxx设h ′(x)=0的两根分别为x1,x2,则有x 1·x 2=1,x1+x2=-a , ∴x 2=1 ,从而有a =-x 1- x 11 x 1.令H(x)=h(x)-h1 x =x -11 +-x -xlnx -x11 -x +-x - x ·ln x 1 x11=2-x -xlnx +x - x,H ′(x)=2 1 2-1lnx = x21-x1+xlnx 2.x当x ∈0, 1 2 时,H ′(x)<0,∴H(x)在0,1 2上单调递减,又H(x1)=h(x1)-h 1x1=h(x1)-h(x2),∴[h(x1)-h(x2)]min=H 12=5ln2-3.[解题反思]本例(1)中求F(x)的单调区间,需先求出F(x)的定义域,同时在解不等式F′(x)>0 时需根据方程x2-ax+1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h(x1)-h(x2)的最小值,需先求出其解析式.由题可知x1,x2是h′(x)=0的两根,可得到x1x2=1,x1+x2=-a,从而将h(x1)-h(x2)只用一个变量x1导出.从而得到H(x1)=h(x1)-h 1x1,这样将所求问题转化为研究新函数H(x)=h(x)-h1x12在0,上的最值问题,体现转为与化归数学思想.[答题模板]解决这类问题的答题模板如下:[题型专练]2-2ln(1+x).1.设函数f(x)=(1+x)(1)求f(x)的单调区间;2-ax-1在区间[0,3]上的最小值.(2)当0<a<2时,求函数g(x)=f(x)-x[解](1)f(x)的定义域为(-1,+∞).∵f(x)=(1+x)2-2ln(1+x),x∈(-1,+∞),2∴f′(x)=2(1+x)-=1+x 2xx+2 x+1.由f′(x)>0,得x>0;由f′(x)<0,得-1<x<0.∴函数f(x)的单调递增区间为(0,+∞),单调递减区间为(-1,0).(2)由题意可知g(x)=(2-a)x-2ln(1+x)(x>-1),2则g′(x)=2-a-=1+x 2-ax-a 1+x.∵0<a<2,∴2-a>0,a令g′(x)=0,得x=2-a,a ∴函数g(x)在0,2-a 上为减函数,在a,+∞上为增函数.2-aa3①当0<<3,即0<a<时,在区间[0,3]上,22-aa g(x)在0,2-a 上为减函数,在a,3上为增函数,2-a∴g(x)min=ga2-a2=a-2ln.2-a②当a≥3,即2-a3≤a<2时,g(x)在区间[0,3]上为减函数,2∴g(x)min=g(3)=6-3a-2ln4.32综上所述,当0<a<时,g(x)min=a-2ln;22-aWOIRD 格式当3≤a<2时,g(x)min=6-3a-2ln4. 2北京卷(19)(本小题13分)已知函数f(x)=ex cosx-x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)在区间[0,π]上的最大值和最小值.2(19)(共13分)xx解:(Ⅰ)因为f(x)ecosxx,所以f(x)e(cosxsinx)1,f(0)0.又因为f(0)1,所以曲线yf(x)在点(0,f(0))处的切线方程为y1.xxx(Ⅱ)设h(x)e(cosxsinx)1,则h(x)e(cosxsinxsinxcosx)2esinx.当πx(0,)时,h(x)0,2π所以h(x)在区间[0,]2上单调递减.π所以对任意x(0,]有h(x)h(0)0,即f(x)0.2π所以函数f(x)在区间[0,]2上单调递减.π因此f(x)在区间[0,]2ππf().22 上的最大值为f(0)1,最小值为21.(12分)已知函数3f(x)axaxxlnx,且f(x)0.(1)求a;(2)证明:f(x)存在唯一的极大值点x,且23ef(x)2.21.解:(1)fx的定义域为0,+设gx=ax-a-lnx,则f x=xgx,fx0等价于gx01 因为g1=0,gx0,故g'1=0,而g'xa,g'1=a1,得a1 x若a=1,则g 'x=11x.当0<x <1时,g'x <0,gx 单调递减;当x >1时,g'x >0,gx 单调递增.所以x=1是gx 的极小值点,故gxg1=0综上,a=12ln,'()22ln(2)由(1)知fxxxxxfxxx设hx2x2lnx,则h'(x)2 1 x当1x0,时,h'x<0;当21x,+时,h'x>0,所以hx在20,12单调递减,在12,+ 单调递增又21hehh,所以hx在>0,<0,1020,12有唯一零点x0,在12,+ 有唯一零点1,且当x0,x时,hx>0;当xx0,1时,hx<0,当x1,+时,hx>0.因为f'xhx,所以x=x0是f(x)的唯一极大值点由f'x0得lnx2(x1),故fx=x(1x)000000由x得00,1 f'x<14因为x=x0是f(x)在(0,1)的最大值点,由10,1,'10efe得12fxfee0>所以2-2e<fx<2题型二利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.;(1)求函数f(x)的单调区间2的零点个数,并说明理由.(2)当a<1时,试确定函数g(x)=f(x-a)-x[审题程序];第一步:利用导数求函数的单调区间第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.x,x∈R,[规范解答](1)因为f(x)=(x+a)ex.所以f′(x)=(x+a+1)e令f′(x)=0,得x=-a-1.当x变化时,f(x)和f′(x)的变化情况如下:x(-∞,-a-1)-a-1(-a-1,+∞)f′(x)-0+f(x)(-a-1,+∞).为故f(x)的单调递减区间为(-∞,-a-1),单调递增区间(2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-xa=x2,2=0,得方程xe x-显然x=0为此方程的一个实数解,所以x=0是函数g(x)的一个零点.x-a=x.当x≠0时,方程可化简为ex-a-x,则F′(x)=e x-a-1,设函数F(x)=e令F′(x)=0,得x=a.当x变化时,F(x)和F′(x)的变化情况如下:x(-∞,a)a(a,+∞)F′(x)-0+F(x)间为(-∞,a).减区为(a,+∞),单调递即F(x)的单调递增区间所以F(x)的最小值F(x)min=F(a)=1-a.因为a<1,所以F(x)min=F(a)=1-a>0,所以对于任意x∈R,F(x)>0,x-a=x无实数解.因此方程e所以当x≠0时,函数g(x)不存在零点.综上,函数g(x)有且仅有一个零点.典例321.(12分)已知函数3f(x)axaxxlnx,且f(x)0.(1)求a;(2)证明:f(x)存在唯一的极大值点x,且23ef(x)2.21.解:(1)fx的定义域为0,+设gx=ax-a-lnx,则f x=xgx,fx0等价于gx0因为g1=0,gx0,故g'1=0,而g'xa1,g'1=a1,得a1x若a=1,则g'x= 11x.当0<x<1时,g'x<0,gx单调递减;当x>1时,g'x>0,gx单调递增.所以x=1是gx的极小值点,故gxg1=0综上,a=12ln,'()22ln(2)由(1)知fxxxxxfxxx设hx2x2lnx,则h'(x)2 1 x当1x0,时,h'x<0;当21x,+时,h'x>0,所以hx在20,12单调递减,在12,+ 单调递增又21hehh,所以hx在>0,<0,1020,12有唯一零点x0,在12,+ 有唯一零点1,且当x0,x时,hx>0;当xx0,1时,hx<0,当x1,+时,hx>0.因为f'xhx,所以x=x0是f(x)的唯一极大值点由f'x0得lnx2(x1),故fx=x(1x)000000由x得00,1 f'x<14因为x=x0是f(x)在(0,1)的最大值点,由10,1,'10efe得12fxfee0>所以2-2e<fx<2[解题反思]在本例(1)中求f(x)的单调区间的关键是准确求出f′(x),注意到ex>0即可.(2)中由g(x)=0得xe x-a=x2,解此方程易将x约去,从而产生丢解情况.研究e x-a=x的解转化为研究函数F(x)=e x-a-x的最值,从而确定F(x)零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板]解决这类问题的答题模板如下:[题型专练]3+bx2+(c-3a-2b)x+d的图象如图所示.2.(2017·浙江金华期中)已知函数f(x)=ax(1)求c,d的值;(2)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式;1(3)在(2)的条件下,函数y=f(x)与y=3f′(x)+5x+m的图象有三个不同的交点,求m的取值范围.2+2bx+c-3a-2b.[解]函数f(x)的导函数为f′(x)=3ax(1)由图可知函数f(x)的图象过点(0,3),且f′(1)=0,得d=3,3a+2b+c-3a-2b=0,解得d=3,c=0.32(2)由(1)得,f(x)=ax+bx-(3a+2b)x+3,所以f′(x)=3ax2+2bx-(3a+2b).由函数f(x)在x=2处的切线方程为3x+y-11=0,得f2=5,f′2=-3,所以8a+4b-6a-4b+3=5,12a+4b-3a-2b=-3,解得a=1,b=-6,所以f(x)=x3-6x2+9x+3.3-6x2+9x+3,所以f′(x)=3x2-12x+9.(3)由(2)知f(x)=x函数y=f(x)与y=13f′(x)+5x+m的图象有三个不同的交点,等价于x3-6x2+9x+3=(x2-4x+3)+5x+m有三个不等实根,等价于g(x)=x3-7x2+8x-m的图象与x轴有三个交点.因为g′(x)=3x2-14x+8=(3x-2)(x-4),x-∞,232323,44(4,+∞)g′(x)+0-0+g(x)极大值极小值g 236827=-m,g(4)=-16-m,当且仅当26827g=-m>0,3g4=-16-m<068时,g(x)图象与x轴有三个交点,解得-16<m<.所以m的取值范围为-16,276827.21.(12分)已知函数(f x)ae2x+(a﹣2)e2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.解:(1)f(x)的定义域为(,),2xxxxf(x)2ae(a2)e1(ae1)(2e1),(十字相乘法)(ⅰ)若a0,则f(x)0,所以f(x)在(,)单调递减.(ⅱ)若a0,则由f(x)0得xlna.当x(,lna)时,f(x)0;当x(lna,)时,f(x)0,所以f(x)在(,lna)单调递减,在(lna,)单调递增.(2)(ⅰ)若a0,由(1)知,f(x)至多有一个零点.(ⅱ)若a0,由(1)知,当xlna时,f(x)取得最小值,最小值为1f(lna)1lnaa.(观察特殊值1)①当a1时,由于f(lna)0,故f(x)只有一个零点;②当a(1,)时,由于11lna0a,即f(lna)0,故f(x)没有零点;③当a(0,1)时,11lna0a,即f(lna)0.又422f(2)ae(a2)e22e20,故f(x)在(,lna)有一个零点.设正整数n满足n3ln(1)a,则nnnnf(n)e0(ae0a2)ne0n20n0.0000由于ln(31)lnaa,因此f(x)在(lna,)有一个零点.综上,a的取值范围为(0,1).题型三利用导数证明不等式题型概览:证明f(x)<g(x),x∈(a,b),可以直接构造函数F(x)=f(x)-g(x),如果F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F′(x)的符号,可考虑分别研究f(x)、g(x)的单调性与最值情况,有时需对不等式进行等价转化.xe (2017·陕西西安三模)已知函数f(x)=x.(1)求曲线y=f(x)在点P2,2e2处的切线方程;(2)证明:f(x)>2(x-lnx).[审题程序]第一步:求f′(x),写出在点P处的切线方程;第二步:直接构造g(x)=f(x)-2(x-lnx),利用导数证明g(x)min>0.xe [规范解答](1)因为f(x)=,所以f′(x)=xx·x-e xx x-12eee2=2,f′(2)=,又切点为2,xx42e2,所以切线方程为y-2e=22e2x-4y=0.4(x-2),即e(2)证明:设函数g(x)=f(x)-2(x-lnx)=xe-2x+2lnx,x∈(0,+∞),x则g′(x)=ex x-122-2+=xxx-2xx-1e2,x∈(0,+∞).x设h(x)=ex-2x,x∈(0,+∞),则h′(x)=ex-2,令h′(x)=0,则x=ln2.当x∈(0,ln2)时,h′(x)<0;当x∈(ln2,+∞)时,h′(x)>0.所以h(x)min=h(ln2)=2-2ln2>0,故h(x)=ex-2x>0.令g′(x)=x-2xx-1e2=0,则x=1.x当x∈(0,1)时,g′(x)<0;当x∈(1,+∞)时,g′(x)>0.所以g(x)min=g(1)=e-2>0,故g(x)=f(x)-2(x-lnx)>0,从而有f(x)>2(x-lnx).]本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g(x).求g(x) [解题反思g′(x)的正负,而此时g′(x)的式子中有一项e x-2x的符号的最值来完成.在求g(x)的最值过程中,需要探讨h(x)的正负问题,此不易确定,这时可以单独拿出e x-2x这一项,再重新构造新函数h(x)=e x-2x(x>0),考虑题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板]解决这类问题的答题模板如下:[题型专练]x-blnx,曲线y=f(x)在点(1,f(1))处的切线方程为y=3.(2017·福建漳州质检)已知函数f(x)=ae 1-1x+e1.(1)求a,b;(2)证明:f(x)>0.[解](1)函数f(x)的定义域为(0,+∞).x-b1f′(x)=ae,由题意得f(1)=,f′(1)=xe 1-1,e所以1ae=,eae-b=1-1,e解得1a=2,eb=1.1x-lnx.(2)由(1)知f(x)=2·ee1x-2-因为f′(x)=e在(0,+∞)上单调递增,又f′(1)<0,f′(2)>0,x所以f′(x)=0在(0,+∞)上有唯一实根x0,且x0∈(1,2).当x∈(0,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取极小值,也是最小值.x0-2=1由f′(x0)=0,得e,则x0-2=-lnx0.x0故f(x)≥f(x0)=e x0-2-lnx0=1+x0-2>2x01·x0-2=0,所以f(x)>0.x04、【2017高考三卷】21.(12分)已知函数f(x)=x﹣1﹣a lnx.(1)若f(x)0,求a的值;111 (2)设m为整数,且对于任意正整数n,()(1)(﹤m,求m的最小值.1++1+)2n22221.解:(1)fx的定义域为0,+.①若a0,因为11faln,所以不满足题意;=-+2<022②若a>0,由1f'x a xaxx知,当x0,a时,f'x<0;当xa,+时,f'x>0,所以fx在0,a单调递减,在a,+单调递增,故x=a是fx在x0,+的唯一最小值点.由于f10,所以当且仅当a=1时,fx0.故a=1(2)由(1)知当x1,+时,x1lnx>0令1x得=1+n211ln1+<,从而nn221111111ln1++ln1+++ln1+<+++=1-<12n2nn2222222故1111+1+1+n<e2222而1111+1+1+>223222,所以m的最小值为3.21.(12分)2+(2a+1)x.已知函数f(x)=lnx+ax(1)讨论f(x)的单调性;(2)当a﹤0时,证明3f(x)24a.1【答案】(1)当a0时,f(x)在(0,)单调递增;当a0时,则f(x)在(0,)2a 1单调递增,在(,)2a单调递减;(2)详见解析题型四利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.1a已知函数f(x)=2lnx-mx,g(x)=x-x(a>0).(1)求函数f(x)的单调区间;1(2)若m=2,对?x1,x2∈[2,2e2]都有g(x1)≥f(x2)成立,求实数a的取值范围.2e[审题程序]第一步:利用导数判断f(x)的单调性,对m分类讨论;第二步:对不等式进行等价转化,将g(x1)≥f(x2)转化为g(x)min≥f(x)max;第三步:求函数的导数并判断其单调性进而求极值(最值);第四步:确定结果.11[规范解答](1)f(x)=-m,2lnx-mx,x>0,所以f′(x)=2x当m≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.1当m>0时,由f′(0)=0得x=;由2m f′x>0,x>01得0<x<;由2mf′x<0,x>01得x>2m.综上所述,当m≤0时,f′(x)的单调递增区间为(0,+∞);当m>0时,f(x)的单调递增区间为0,12m,单调递减区间为1,+∞.2m(2)若m=112,则f(x)=2lnx-2e12x. 2e2]都有g(x1)≥f(x2)成立,对?x1,x2∈[2,2e2]都有g(x)min≥f(x)max,等价于对?x∈[2,2e1 由(1)知在[2,2e2]上f(x)的最大值为f(e2)=,2ag′(x)=1+2>0(a>0),x∈[2,2e2],函数g(x)在[2,2e2]上是增函数,g(x)min=g(2)=2-2],函数g(x)在[2,2e2]上是增函数,g(x)min=g(2)=2-x a,由2-2a2≥12,得a≤3,又a>0,所以a∈(0,3],所以实数a的取值范围为(0,3].[解题反思]本例(1)的解答中要注意f(x)的定义域,(2)中问题的关键在于准确转化为两个函数f(x)、g(x)的最值问题.本题中,?x1,x2有g(x1)≥f(x2)?g(x)min≥f(x)max.若改为:?x1,?x2都有g(x1)≥f(x2),则有g(x)max≥f(x)max. 若改为:?x1,?x2都有g(x1)≥g(x2),则有g(x)min≥f(x)min要仔细体会,转化准确.[答题模板]解决这类问题的答题模板如下:[题型专练]2+ax-3.4.已知f(x)=xlnx,g(x)=-xx∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(1)对一切12x∈(0,+∞),lnx>x-(2)证明:对一切恒成立.eexWOIRD 格式2+ax-3对一切x∈(0,+∞)恒成立,[解](1)由题意知2xlnx≥-x则a≤2lnx+x+3,x3设h(x)=2lnx+x+x(x>0),则h′(x)=x+3x-12,x①当x∈(0,1)时,h′(x)<0,h(x)单调递减,②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4.即实数a的取值范围是(-∞,4].x2(2)证明:问题等价于证明xlnx>x-e(x∈(0,+∞)).e又f(x)=xlnx,f′(x)=lnx+1,1e 当x∈0,时,f′(x)<0,f(x)单调递减;当x∈1,+∞时,f′(x)>0,f(x)单调递增,所以f(x)min=fe1e=-1e.设m(x)=xx-e2e(x∈(0,+∞)),1-x则m′(x)=x,e易知m(x)max=m(1)=-1,e12从而对一切x∈(0,+∞),lnx>eexx-恒成立.②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,x∈(0,+∞),2f(x)≥g(x)恒成立,所以h(x)min=h(1)=4,对一切所以a≤h(x)min=4.(-∞,4].是a的取值范围即实数题型五:二阶导主要用于求函数的取值范围a(x﹣1).23.(12分)已知函数f(x)=(x+1)lnx﹣(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.1).4(x﹣【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4,f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)?﹣2,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣1)=﹣2x+2;2(x﹣则曲线y=f(x)在(1,0)处的切线方程为y=﹣a(x﹣1),(II)∵f(x)=(x+1)lnx﹣∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.1).23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f(′x)=lnx+(x+1)?﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。