集合间的基本关系
- 格式:pptx
- 大小:714.66 KB
- 文档页数:34
集合的三种基本关系集合的三种基本关系是包含关系、相等关系和互斥关系。
在数学中,集合是由一些确定的元素所组成的整体。
而元素则是构成集合的基本单位。
集合的关系是指集合之间的联系和相互作用。
包含关系是指一个集合包含另一个集合的所有元素。
用符号表示为A⊆B,表示集合A是集合B的子集或者等于集合B。
例如,集合A={1,2,3},集合B={1,2,3,4,5},则可以说集合A包含于集合B,即A⊆B。
在包含关系中,集合A的元素是集合B的子集。
相等关系是指两个集合具有完全相同的元素。
用符号表示为A=B,表示集合A和集合B的元素完全一样。
例如,集合A={1,2,3},集合B={1,2,3},则可以说集合A等于集合B,即A=B。
在相等关系中,集合A和集合B的元素完全相同。
互斥关系是指两个集合没有任何共同的元素。
用符号表示为A∩B=∅,表示集合A和集合B没有任何共同的元素。
例如,集合A={1,2,3},集合B={4,5,6},则可以说集合A和集合B互斥,即A∩B=∅。
在互斥关系中,集合A和集合B没有任何共同的元素。
集合的关系可以通过图形表示,如Venn图。
Venn图是一种用来表示集合之间关系的图形工具。
它由一系列的圆或椭圆组成,每个圆代表一个集合,圆内的元素属于该集合,圆之间的重叠部分表示集合之间的关系。
通过Venn图可以清楚地展示集合之间的包含关系、相等关系和互斥关系。
除了这三种基本关系,集合还可以通过运算来产生其他关系。
常见的集合运算有并集、交集和补集。
并集是指将两个或多个集合中的所有元素合并在一起形成一个新的集合。
交集是指两个或多个集合中共有的元素组成的新集合。
补集是指一个集合中不属于另一个集合的元素组成的新集合。
集合的三种基本关系是包含关系、相等关系和互斥关系。
通过这些关系,我们可以描述集合之间的联系和相互作用。
集合的关系可以通过符号表示,也可以通过图形工具如Venn图来展示。
此外,还可以通过集合运算产生其他关系。
学情分析学生在初中阶段的学习中,已经有了对集合的初步认知,在本节的学习中学生可能会对集合的基本关系会有所混淆,通过不断的练习巩固来达到标准要求。
高中学生虽有好奇,好表现的因素,厌烦空洞的说教所以一定要用生动活泼的方式讲解知识学生对于新的知识的接受能力参差不齐,要采用分类教学的方法,各个辅导,重点内容,多练,多复习,巩固所学知识。
整个教学效果还是很乐观,学生反映迅速。
教学反思集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。
这一节课,首先复习结合的含义与表示再利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。
讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。
通过反例深刻理解概念中关键字并记住。
同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。
上课时还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。
学生大多举的是方程无解的例子。
有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。
最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有个子集,个真子集,个非空子集等。
通过本节课教学,有以下想法:我们要重视学生学习兴趣的引导,要在课堂上给学生更多的时间考虑问题,充分发挥学生的主动积极性。
本节内容是选自新人教 A 版高中数学必修 1 第 1 章第 1 节第 2 部分的内容。
在此之前,学生已经接触过集合的一些基本概念,本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用。
1.2 集合间的基本关系(基础知识+基本题型) 知识点一 子集1.子集定义 一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”) 图示或 结论 (1)任何一个集合是它本身的子集,即A A ⊆;(2)对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆.2.V enn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图.表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.提示:(1)注意符号“∈”与“⊆”的区别. “⊆”只用于集合与集合之间,如{0}N ⊆,而不能写成0N ⊆;“∈”只能用于元素与元素之间,如0N ∈,而不能写成{0}N ∈.(2)“A 是B 的子集”:集合A 中的任何一个元素都是集合B 中的元素,即由任意x A ∈能推出x B ∈.(3)当A 不是B 的子集时,我们记作“A B ”(或“B A ”),读作“A 不含于B ”(或“B 不包含A ”),此时A 中至少存在一个元素不是B 中的元素,用图形语言表示如图1.1-2所示.例如,集合{,,}A a b c =不是集合{,,,,}B b c d e f =的子集,因为集合A 中的元素a 不是集合B 中的元素.知识点二 集合相等如果集合A 是集合B 的子集()A B ⊆,且集合B 是集合A 的子集()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.拓展:(1)若A B ⊆,且B A ⊆,则A B =;反之,若A B =,则A B ⊆,且B A ⊆,这就给出了证明两个集合相等的方法,即欲证A B =,只需要证A B ⊆与B A ⊆均成立即可.(2)若两个集合相等,则这两个集合中所含的元素完全相同,与元素的排列顺序无关.(3) 要判断两个集合是否相等,对于元素较少的有限集,可用列举法将元素列举出来,看两个集合中的元素是否完全相同;对于元素较多的有限集或无限集,应从“互为子集”入手进行判断.()A B B A A A AB B B 1.12-图知识点三 真子集定义 如果集合A B ⊆,但存在元素x B ∈,且x A ∈/,我们称集合A 是集合B 的真子集,记作A B (或B A )图示结论(1)若A B ⊆,且A B ≠,则AB ; (2)若AB ,且BC ,则A C . 提示(1)在证明AB ,时,应先证明A B ⊆,再证明B 中至少存在一个元素a ,使得a A ∉即可. (2) A B 对任意x A ∈都有x B ∈,但存在0x B ∈,且0x A ∉.(3)注意符号“⊆”与“”的区别. A B ⊆⇒A B =或A B ,例如,若集合{}1,2A =,{}1,2,3B =,则A 是B 的子集,也是真子集,用A B ⊆与A B 均可,但用AB 更准确. 知识点四 空集我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念。
集合间的基本关系教案篇一:集合间的基本关系示范教案1.1.2 集合间的基本关系整体设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与�恋那�别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R. 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)��;(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A�罛,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A?B,但存在x∈B,且x?A,我们称集合A是集合B的真子集,记作AB(或BA).(3)实数中的“≤”类比集合中的?.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A?B时,AB或A=B.(7)方程x2+1=0没有实数解.(8)空集记为?,并规定:空集是任何集合的子集,即??A;空集是任何非空集合的真子集,即A(A≠?).(9)类比子集.讨论结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子①中A?B,但有一个元素4∈B,且4?A;而例子②中集合E和集合F中的元素完全相同.(3)若A?B,且B?A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B. ?图1-1-2-1(6)如图1-1-2-3和图1-1-2-4所示. 图1-1-2-2图1-1-2-3(7)不能.因为方程x2+1=0没有实数解.(8)空集. 图1-1-2-4(9)若A?B,B?C,则A?C;若A应用示例 B,BC,则AC.思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A?B,B?A,A?C,C?A.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A?B成立,否则A?B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:B?A,C?A.(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么. 判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有A?B;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为?,{a},{b},{a,b}.真子集为?,{a},{b}.变式训练2007山东济宁一模,1已知集合P={1,2},那么满足Q?P的集合Q的个数是( )A.4B.3C.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q?P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为?,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为?,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为?,{a},{b},{a,b},即子集的个数是4=22. ……集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.思路21.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若B?A,则实数m=_______. 活动:先让学生思考B?A的含义,根据B?A,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为B?A,所以3∈A,m2∈A.对m2的值分类讨论. 解:∵B?A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠?,由于NM,则N=?或N≠?,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠?,则N=?或N≠?.当N=?时,关于x的方程ax=1中无解,则有a=0;111,又∵NM,∴∈M.∴>2. aaa111∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是{a|0≤a<} 2222.(1)分别写出下列集合的子集及其个数:?,{a},{a,b},{a,b,c}. 当N≠?时,关于x的方程ax=1中有解,则a≠0,此时x=(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)?的子集有:?,即�劣�1个子集;{a}的子集有:?、{a},即{a}有2个子集;{a,b}的子集有:?、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:?、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A 有……( )A.3个B.4个C.5个D.6个分析:对集合A所含元素的个数分类讨论.A=?或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集.( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集.( )(4)若B?A,那么凡不属于集合A的元素,则必不属于B.( ) 分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集. 对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x?A时也必有x?B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:?、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为( ) ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}?{1,0,2}④?∈{0,1,2} ⑤?∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是 ( ) A.aMB.a?MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于?只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}?{0,1,2},④应是??{0,1,2},⑤应是??{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}答案:(1)C (2)C (3)D M.篇二:2014高中学科教学设计-集合间的基本关系我的教学设计模板篇三:《集合间的基本关系》教学设计1.1.2集合间的基本关系一、设计理念新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
1.1.2 集合间的基本关系教材分析集合语言是现代数学的基本语言,可以简洁、准确地表达数学内容,是学习后续知识的基础.本节课是集合章节的第二课,了解集合之间包含与相等的含义,理解子集与真子集的概念,是本章中的主要内容之一.课时分配 1课时教学目标重点: 集合间的包含与相等关系,子集与其子集的概念.难点: 属于关系与包含关系的区别.知识点: 了解集合之间包含与相等的含义,理解子集、真子集的概念.能力点:分类讨论思想的运用.教育点: 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.自主探究点:例题及变式中解题思路的获取.考试点:包含关系中含参问题的求解.易错易混点:忽视空集.拓展点:实数间可以运算,集合间是否也能运算.教具准备 教学案、三角板课堂模式一、引入新课:探究1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,观察下面几个例子,你能发现两个集合间有什么关系吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为枣庄三中高一年级男生的全体组成的集合,B 为枣庄三中高一年级学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形【设计意图】通过几组实例,体会集合间的包含关系,引出子集、真子集、相等概念.二、探究新知1. 子集:对于两个集合A ,B,如果集合A 中任意一个元素都是集合B 中的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集, 记作:()A B B A ⊆⊇或.读作:A 包含于B(或B 包含A). 探究2:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论?2. 集合相等:如果集合A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等.(即若A B B A ⊆⊆且,则A=B)如(3)中的两集合C=D .图 1 图2BC (D )3. 真子集:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集,记作: A B. 读作:A 真包含于B (或B 真包含A ). 如:(1)和(2)中 A B.4. 空集:不含任何元素的集合称为空集,记作:∅.用适当的符号填空:∅{}0; 0 ∉ ∅;5. 几个重要的结论:(1) 空集是任何集合的子集,是任何非空集合的真子集.(2) 任何一个集合是它本身的子集;(3) 对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆.三、理解新知含参数问题时,空集是学生容易忽略的问题,养成优先考虑空集的好习惯,至关重要.四、运用新知例1.写出集合{a ,b}的所有子集,并指出哪些是它的真子集.解:集合{a ,b}的所有子集为{}{}{},,,,a b a b ∅,真子集为{}{},,a b ∅.【设计意图】概念运用,培养学生按照一定的规律列举问题的良好习惯.练习1完成课本第7页练习1,2,3.【设计意图】进一步巩固所学例2 已知集合A ={x |1<ax <2},B ={x ||x |<1},满足A ⊆B ,求实数a 的取值范围.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A =⎭⎬⎫⎩⎨⎧<<a x a x 21|.∵A ⊆B ,∴⎪⎪⎩⎪⎪⎨⎧≤-≥1211a a∴a ≥2(3)当a <0时,A =⎭⎬⎫⎩⎨⎧<<a x a x 12|.∵A ⊆B ,∴⎪⎪⎩⎪⎪⎨⎧-≥≤1211a a∴a ≤-2.综合(1)(2)(3)知,a 的取值范围{a |a ≤-2或a =0或a ≥2}.【设计意图】利用分类讨论解决问题;通过实例提示学生考虑包含关系时勿忘对空集的讨论.练习2 已知A ={x |0652=+-x x },B ={x |1=mx },若 B A ,求实数m 所构成的集合M . 答案:⎭⎬⎫⎩⎨⎧=31,21,0M【设计意图】由学生独立完成,提高学生的独立解题能力.例3 已知集合A ={2,,x y },B ={2x ,2,2y }且A =B ,求,x y 的值. 答案: ,x y 的取值为⎩⎨⎧==10y x 或⎪⎪⎩⎪⎪⎨⎧==2141y x【设计意图】通过实例,提示学生解决集合问题,勿忘集合元素互异性要求.练习3 含有三个实数的集合可表示为⎭⎬⎫⎩⎨⎧1,,a b a ,也可表示为{2a ,a +b ,0},求a ,b . 答案:a =-1,b =0【设计意图】由学生独立完成,提高学生的独立解题能力.五、课堂小结 教师提问:本节课我们学习了哪些知识,涉及到哪些数学方法?学生:知识上: 1、子集、真子集、集合相等的含义. 2、空集的含义与表示.思想上: 归纳、分类讨论的数学思想教师: 我们这节课学习了集合之间的关系,这要与上节课学习的集合与元素的关系区别开来.集合与元素是“属于”“不属于”的关系,而集合与集合是“包含于”“不包含于”的关系;另外在含参问题求解中大家不要忘记对空集的讨论.六、布置作业1.阅读教材67P P -2.书面作业(1)必做题:课本12P 习题1.1 A 组 5(2)选做题:1).下列命题中正确的个数是( A )①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;A .0B .1C .2D .32).下列结论正确的是( C ).A.∅A B. {0}∅∈ C. {1,2}Z ⊆ D. {0}{0,1}∈3).设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( B ).A. 1a <B. 1a ≤C. 1a >D. 1a ≥4).若2{1,2}{|0}x x bx c =++=,则( A ).A. 3,2b c =-=B. 3,2b c ==-C. 2,3b c =-=D. 2,3b c ==-5).已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( B )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅6).在以下六个写法中:①{0}∈{0,1};②∅={0};③{0,-1,1}⊆{-1,0,1};④0∈∅;⑤Z ={正整数};⑥{(0,0)}={0},其中错误写法的个数是( C )A .3个B .4个C .5个D .6个8).若B ={0,1,2,3,4,7,8},C ={0,3,4,7,9},则满足A ⊆B ,A ⊆C 的集合A 有___16__个.9).设M ={x |210x -=},N ={x |01=-ax },若N ⊆M ,则a 的值为 ±1或0. 10).已知集合{}{}25,821A x x B x m x m =-<≤=-≤<-且A B ⊆,求实数m 的取值范围. 答案:实数m 的取值范围{}36m m <≤11).设集合A ={1,a ,b },B ={a ,2a ,ab },且A =B ,求实数b a , 的值. 答案: a =-1,b =0 12).设集合A ={x |2560x x -+=},B ={x |22(21)0x a x a a -+++= },若B ⊆A ,求a 的值.答案:a =23.预习任务:根据下列预习提纲预习1.1.3集合间的运算.(1).一般地,由所有属于 的元素组成的集合,称为集合A 与集合B 的并集,记作A ∪B (读作“A 并B ”),即A ∪B = .(2).由属于 的所有元素组成的集合,称为集合A 与B 的交集,记作A ∩B ,读作A 交B ,即A ∩B =(3).A ∩A =____,A ∪A =____,A ∩∅= ,A ∪∅=(4).若A ⊆B ,则A ∩B =__ __,A ∪B =__ __.(5).A ∩B A ,A ∩B B ,A A ∪B ,A ∩B A ∪B .【设计意图】作业1是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的必做题,是为了让学生掌握基本的知识,达成本节课的教学目标.选做题难度递进,供学有余力的同学,加深理解,提高解题的能力.预习作业的安排是为了培养学生预习的习惯,为下一节课的学习打下必备的基础. 七、教后反思1.本教案的亮点是例题覆盖全面,变式与例题衔接好,有讲有练,课后题针对例题,有助于学生掌握知识.预习提纲任务明确.2.本节课的弱项是课容量大,例2难度高,在新授课中还要降低难度,照顾绝大多数学生的发展.八、板书设计 1.1.2集合间的基本关系1.子集:2.真子集: 例1: 例3:记作: 记作:图示: 图示:2.集合的相等: 4.空集: 例2:图示: 记作:注:。
集合间的基本关系教案集合间的基本关系教案1(一)教学目标;1.知识与技能(1)理解集合的包含和相等的关系.(2)了解使用Venn图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.2.过程与方法(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.3.情感、态度与价值观应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.(二)教学重点与难点重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.(三)教学方法在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.(四)教学过程教学环节教学内容师生互动设计意图创设情境提出问题思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.师:对两个数a、b,应有a>b或a = b或a<b.而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系.类比生疑,引入课题概念形成分析示例:示例1:考察下列三组集合,并说明两集合内存在怎样的关系(1)A = {1,2,3}B = {1,2,3,4,5}(2)A = {新华中学高(一)6班的全体女生}B = {新华中学高(一)6 班的全体学生}(3)C = {x | x是两条边相等的三角形}D = {x | x是等腰三角形}1.子集:一般地,对于两个集合A、B,如果A中任意一个元素都是B 的元素,称集合A是集合B的子集,记作,读作:“A含于B”(或B包含A)2.集合相等:若,且,则A=B.生:实例(1)、(2)的共同特点是A的每一个元素都是B 的元素.师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的'子集怎样定义呢?学生合作:讨论归纳子集的共性.生:C是D的子集,同时D是C的子集.师:类似(3)的两个集合称为相等集合.师生合作得出子集、相等两概念的数学定义.通过实例的共性探究、感知子集、相等概念,通过归纳共性,形成子集、相等的概念.初步了解子集、相等两个概念.概念深化示例1:考察下列各组集合,并指明两集合的关系:(1)A = Z,B = N;(2)A = {长方形},B = {平行四边形};(3)A={x| x2–3x+2=0},B ={1,2}.1.Venn图用平面上封闭曲线的内部代表集合.如果,则Venn图表示为:2.真子集如果集合,但存在元素x∈B,且x A,称A是B的真子集,记作AB (或B A).示例3 考察下列集合. 并指出集合中的元素是什么?(1)A = {(x,y) | x + y =2}.(2)B = {x | x2 + 1 = 0,x∈R}.3.空集称不含任何元素的集合为空集,记作 .规定:空集是任何集合的子集;空集是任何非空集合的真子集.示例1 学生思考并回答.生:(1)(2)(3)A = B师:进一步考察(1)、(2)不难发现:A的任意元素都在B中,而B中存在元素不在A 中,具有这种关系时,称A是B的真子集.示例3 学生思考并回答.生:(1)直线x+y=2上的所有点(2)没有元素师:对于类似(2)的集合称这样的集合为空集.师生合作归纳空集的定义.再次感知子集相等关系,加深对概念的理解,并利用韦恩图从“形”的角度理解包含关系,层层递进形成真子集、空集的概念.能力提升一般结论:① .②若,,则 .③A = B ,且 .师:若a≤a,类比 .若a≤b,b≤c,则a≤c类比.若,,则 .师生合作完成:(1)对于集合A,显然A中的任何元素都在A中,故 .(2)已知集合,同时,即任意x∈A x∈B x∈C,故 .升华并体会类比数学思想的意义.应用举例例1(1)写出集合{a、b}的所有子集;(2)写出集合{a、b、c}的所有子集;(3)写出集合{a、b、c、d}的所有子集;一般地:集合A含有n个元素则A的子集共有2n个.A的真子集共有2n – 1个.学习练习求解,老师点评总结.师:根据问题(1)、(2)、(3),子集个数的探究,提出问题:已知A = {a1,a2,a3…an},求A的子集共有多少个?通过练习加深对子集、真子集概念的理解.培养学生归纳能力.归纳总结子集:任意x∈A x∈B真子集:A B 任意x∈A x∈B,但存在x0∈B,且x0 A.集合相等:A = B 且空集():不含任何元素的集合性质:①,若A非空,则 A.② .③, .师生合作共同归纳—总结—交流—完善.师:请同学合作交流整理本节知识体系引导学生整理知识,体会知识的生成,发展、完善的过程.课后作业1.1 第二课时习案学生独立完成巩固基础提升能力备选训练题例1 能满足关系{a,b} {a,b,c,d,e}的集合的数目是( A )A.8个B.6个C.4个D.3个【解析】由关系式知集合A中必须含有元素a,b,且为{a,b,c,d,e}的子集,所以A中元素就是在a,b元素基础上,把{c,d,e}的子集中元素加上即可,故A = {a,b},A = {a,b,c},A = {a,b,d},A = {a,b,e},A = {a,b,c,d},A = {a,b,c,e},A = {a,b,d,e},A = {a,b,c,d,e},共8个,故应选A.例2 已知A = {0,1}且B = {x | },求B.【解析】集合A的子集共有4个,它们分别是:,{0},{1},{0,1}.由题意可知B = { ,{0},{1},{0,1}}.例3 设集合A = {x – y,x + y,xy},B = {x2 + y2,x2 – y2,0},且A = B,求实数x和y的值及集合A、B.【解析】∵A = B,0∈B,∴0∈A.若x + y = 0或x – y = 0,则x2 – y2 = 0,这样集合B = {x2 + y2,0,0},根据集合元素的互异性知:x + y≠0,x – y≠0.∴(I)或(II)由(I)得:或或由(II)得:或或∴当x = 0,y = 0时,x – y = 0,故舍去.当x = 1,y = 0时,x – y = x + y = 1,故也舍去.∴或,∴A = B = {0,1,–1}.例4 设A = {x | x2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若,求实数a组成的集合,并写出它的所有非空真子集.【解析】A = {3,5},∵,所以(1)若B = ,则a = 0;(2)若B≠,则a≠0,这时有或,即a = 或a = .综上所述,由实数a组成的集合为 .其所有的非空真子集为:{0},共6个.集合间的基本关系教案2一、预习目标:初步理解子集的含义,能说明集合的基本关系。
(教师独具内容) 课程标准:1.理解子集、真子集的概念,能识别给定集合的子集.2.理解两个集合包含与相等的含义,能用子集的观点解释两个集合的相等关系.教学重点:1.子集、真子集定义的理解.2.写出给定集合的子集.3.两个集合之间关系的判定.4.用子集观点解释两个集合的相等关系.教学难点:1.两个集合之间关系的判定.2.一些关系符号(⊆,⊇,,,∈,∉)的准确使用.3.具体问题中易忽视空集的情况.【知识导学】知识点一子集一般地,对于两个集合A,B,如果集合A中任意一个元素□01都是集合B中的元素,就称集合A为集合B的□02子集,记作A⊆B(或B⊇A),读作“A包含于B”(或“B包含A”).注意:(1)子集是刻画两个集合之间关系的,它反映的是局部与整体之间的关系(而元素与集合之间的关系是个体与整体之间的关系).(2)并不是任意两个集合之间都具有包含关系.例如:A={1,2},B={1,3},因为2∈A,但2∉B,所以A不是B的子集;同理,因为3∈B,但3∉A,所以B 也不是A的子集.(3)子集有下列两个性质:①自反性:任何一个集合都是它本身的子集,即A⊆A;②传递性:对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.知识点二Venn图为了直观地表示集合间的关系,常用平面上封闭曲线的内部代表集合,这种图称为□01Venn图.因此,A⊆B可用□02Venn图表示为知识点三集合相等一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B□01相等,记作A=B.也就是说,若A⊆B,且B⊆A,则A=B.很明显,若两个集合相等,则它们的元素完全相同;若集合A与B中有不相同的元素,则这两个集合不相等,可记为A≠B.知识点四真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的□01真子集(proper subset)□02A B(或B A).从真子集的定义可以看出,要想证明A是B的真子集,需要两步:一是证明□03A⊆B(即A中的任何元素都属于B),二是证明□04A≠B(即B中的元素不是都属于A,或者说B中至少有一个元素不属于A).知识点五空集一般地,我们把不含任何元素的集合叫做□01空集,记为□02∅,并规定:□03空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念,可以得到:(1)空集□04只有一个子集,即□05它本身;(2)空集是□06任何非空集合的真子集.【新知拓展】1.对子集、真子集有关概念的理解(1)集合A中的任何一个元素都是集合B中的元素,即由x∈A,能推出x∈B,这是判断A⊆B的常用方法.(2)不能简单地把“A⊆B”理解成“A是B中部分元素组成的集合”.因为若A=∅时,则A中不含任何元素;若A=B,则A中含有B中的所有元素.(3)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.2.集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n个元素的集合有2n个子集,有(2n -1)个真子集,有(2n-2)个非空真子集.写集合的子集时,空集和集合本身易漏掉.3.0,{0},∅,{∅}的关系∅与0∅与{0}∅与{∅} 相同点都表示无的意思都是集合都是集合不同点∅是集合;0是实数∅中不含任何元素;{0}含一个元素0∅不含任何元素;{∅}含一个元素,该元素是∅关系0∉∅∅{0}∅{∅}或∅∈{∅}1.判一判(正确的打“√”,错误的打“×”)(1)若A⊆B,则B中至少有一个元素不属于A.()(2)若A⊆B,则要么A B,要么A=B.()(3)空集没有真子集.()(4)若A⊆B,则B不会是空集.()(5)若A=B,则必有A⊆B.()答案(1)×(2)√(3)√(4)×(5)√2.做一做(请把正确的答案写在横线上)(1)用适当的符号(⊆,⊇,,,=)填空:N*________N,R________Q,{x|x2=1}________{-1,1},{(x,y)|x+y=1}________⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x,y)⎪⎪⎪⎪⎩⎨⎧x+y=1,x-y=0.(2)给出下列集合:A={x|x是平行四边形},B={x|x是矩形},C={x|x是菱形},D={x|x是正方形},它们的关系可以表示为________________.答案(1)=(2)D B A,D C A题型一判断集合之间的关系例1判断下列各组集合之间的关系:(1)A={1,2,4},B={x|x是8的正约数};(2)A={x|x是等边三角形},B={x|x是有一个内角是60°的等腰三角形};(3)A={x|x=2n-1,n∈N*},B={x|x=2n+1,n∈N*}.[解](1)集合A中的元素1,2,4都是8的正约数,从而这三个元素都属于B,即A⊆B;但B中的元素8不属于A,从而A≠B,所以A B.(2)等边三角形都是有一个内角是60°的等腰三角形,即A⊆B;有一个内角是60°的等腰三角形是等边三角形,即B⊆A,所以A=B.(3)解法一:两个集合都表示一些正奇数组成的集合,但由于n∈N*,因此集合A含有元素“1”,而集合B不含元素“1”,故B A.解法二:由列举法知A={1,3,5,7,…},B={3,5,7,9,…},所以B A.金版点睛集合之间的关系是由两集合中元素的关系确定的,因此,要判定集合之间的关系,必须根据集合的表示方法,弄清集合中的元素是什么,再根据元素之间的关系给出结果;很明显当A B或者A=B时,不宜表示为A⊆B.[跟踪训练1]例1中(3),两集合中条件“n∈N*”改为n∈Z,结果如何?解A=B.题型二写出集合的子集例2写出集合{a,b,c}的所有子集.[解]因为集合{a,b,c}中有3个元素,所以其子集中的元素个数只能是0,1,2,3.有0个元素的子集:∅;有1个元素的子集:{a},{b},{c};有2个元素的子集:{a,b},{a,c},{b,c};有3个元素的子集:{a,b,c}.因此集合{a,b,c}的所有子集为∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.金版点睛本例采用分类列举的方法,分类的标准是子集中元素的个数,这样做,所写的子集不重不漏,是一种思路清晰、条理明确的解题方法.[跟踪训练2]写出集合{1,2,3}的所有子集.解∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.题型三有限集子集个数探究例3令集合A0=∅,集合A n={a1,a2,a3,…,a n}(n∈N*),试探究集合A n子集的个数.[解]为了方便,不妨设集合A n的子集数为m(A n).我们把A n的子集分为两类,第一类:含元素a n;第二类:不含元素a n.易知,第二类就是集合A n-1的子集,且第一类和第二类同样多.因此,m(A n)=2m(A n-1).从而,m(A n-1)=2m(A n-),…,m(A1)=2m(A0),易知m(A0)=1.所以m(A n)=2m(A n-1)=22m(A n-2)=23m(A n 2)=…=2n m(A0)=2n.-3金版点睛若一组对象分为甲、乙两类,当两类对象同样多时,我们只要知道其中一类对象的个数,也就知道了另一类对象的个数,从而也就知道了这组对象的总个数.“同样多”是一种一一对应的观点.如下例:注意:如果非空集合A 中有n (n ∈N *)个元素,那么集合A 的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个.[跟踪训练3] 满足{1,2}M ⊆{1,2,3,4,5}的集合M 有多少个?解 由{1,2}M 可知,M 中必定有1,2两个元素,且至少还有异于1,2的“其他”一个元素;由M ⊆{1,2,3,4,5}可知,上面所说的“其他”应当来自于3,4,5这三个数:可以是其中的1个(三种情况),2个(三种情况),3个(一种情况).故满足条件的集合M 有7个(也就是集合{3,4,5}的非空子集的个数).题型四 含参问题探究例4 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.若B A ,求实数m 的取值范围.[解] ①当B ≠∅时,如图所示:∴⎩⎨⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎨⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.②当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}.金版点睛本例的难点是解读集合B ,事实上,集合B 就是不等式组⎩⎪⎨⎪⎧x ≥m +1,x ≤2m -1的解集(只是写法不同),易知当m +1>2m -1,即m <2时,不等式组无解,即B =∅;当m =2时,B ={3};当m >2时,从几何角度讲,集合B 是数轴上一条变端点、变长度的线段.[跟踪训练4]已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.解B⊆A,分两种情况考虑:①当B=∅时,m+1≤2m-1,解得m≥2.②当B≠∅时,有⎩⎪⎨⎪⎧-3≤2m-1,m+1≤4,2m-1<m+1,解得-1≤m<2,综上得实数m的取值范围为{m|m≥-1}.1.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的有()A.0个B.1个C.2个D.3个答案 B解析①空集是它本身的子集;②空集只有一个子集;③空集不是它本身的真子集;④空集是任何非空集合的真子集.因此,①②③错误,④正确.2.集合P={0,1},Q={y|x2+y2=1,x∈N},则集合P,Q间的关系是() A.P=Q B.P QC.Q P D.不确定答案 B解析由x2+y2=1,x∈N,得y=±1,0,即Q={-1,0,1},所以P Q.故选B.3.已知集合A={x|x2-1=0},则下列式子表示正确的有()①1∈A;②{-1}∈A;③∅⊆A;④{1,-1}⊆A.A.1个B.2个C.3个D.4个答案 C解析A={x|x2-1=0}={-1,1},故①③④正确,②不正确.4.满足{a}⊆M{a,b,c,d}的集合M共有()A.6个B.7个C.8个D.15个答案 B解析依题意a∈M,且M{a,b,c,d},因此M中必含有元素a,且可含有元素b,c,d中的0个、1个或2个,即M的个数等于集合{b,c,d}的真子集的个数,有23-1=7(个).5.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.解(1)若A B,由图可知a>2.(2)若B⊆A,由图可知1≤a≤2.(3)由A=B,可得a=2.A级:“四基”巩固训练一、选择题1.下列关系式不正确的是()A .{1}⊆{1,2}B .{0}⊆{1,2}C .{2}⊆{1,2}D .1∈{1,2}答案 B解析 ∵0∉{1,2},∴{0}⊆{1,2}不正确;根据子集的概念可知A ,C 正确;D 显然正确.2.若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =m +16,m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n 2-13,n ∈Z,P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =p 2+16,p ∈Z,则M ,N ,P 的关系是( )A .M =N PB .M N =PC .M N PD .NP M答案 B解析 M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =6m +16,m ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =3n -26,n ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =3q +16,q ∈Z(n ∈Z ,q =n -1∈Z ),P ={|x x =3p +16},p ∈Z .∴MN =P .3.若集合A 满足A ⊆B ,A ⊆C ,B ={0,1,2,3},C ={0,2,4,8},则满足上述条件的集合A 的个数为( )A .0B .1C .2D .4答案 D解析 ∵A ⊆B ,A ⊆C ,∴A 中最多能含有0,2两个元素,∴A =∅,{0},{2},{0,2}共4个.4.已知集合A ={(x ,y )|y =x }和B =,则下列结论正确的是( )A.1∈AB.B ⊆AC.(1,1)⊆BD.∅∈A答案 B解析 B =={(1,1)},故B ⊆A .5.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案 D解析因为B⊆A,所以当B≠∅,即a≠0时,B=,因此有-1a∈A,所以a=±1;当B=∅,即a=0时满足条件.综上可得实数a的所有可能取值的集合是{-1,0,1}.二、填空题6.满足条件{x|x2+1=0}M⊆{x|x2-1=0}的集合M共有________个.答案 3解析因为{x|x2+1=0}=∅,{x|x2-1=0}={-1,1},其非空子集为{-1},{1},{-1,1},所以满足条件{x|x2+1=0}M⊆{x|x2-1=0}的集合M共有3个.7.设A={x|-1<x≤3},B={x|x>a},若A B,则a的取值范围是________.答案a≤-1解析从几何角度看,集合A是数轴上一条定线段,集合B是方向向右的动射线,因为A B,所以射线应当“盖住”线段,如图所示.从图上看,a=-1也符合题意,所以a≤-1.8.给出四个对象:0,{0},∅,{∅},用适当的关系符号表示它们之间的一些关系(写出你认为正确的所有关系):____________________________________.答案0∈{0},0∉∅,0∉{∅},∅{0},∅{∅},∅∈{∅}解析由元素与集合、集合与集合之间的关系可得.三、解答题9.设集合A={y|y=x2+2x+2,x∈R},B={s|s=t2+4t+5,t∈R},试判断集合A与B的关系.新教材·数学·必修·第一册[A] 解 因为x 2+2x +2=(x +1)2+1(x ∈R )和t 2+4t +5=(t +2)2+1(t ∈R )都表示大于或等于1的实数,所以集合A 与B 都表示所有大于或等于1的实数构成的集合,从而A =B .10.已知集合A ={x |2m ≤x ≤m +2},集合B ={x |-3≤x ≤5},若A ⊆B ,求实数m 的取值范围.解 ①当A =∅时,满足题意,此时,2m >m +2,即m >2;②当A ≠∅时,由A ⊆B ,得⎩⎪⎨⎪⎧ 2m ≤m +2,2m ≥-3,m +2≤5,解得-32≤m ≤2.综上可得,实数m 的取值范围是m ≥-32.B 级:“四能”提升训练1.已知集合A ={0,1},B ={x |x ⊆A },试用列举法表示集合B ,并判断A 与B 的关系.解 对于集合B ,从“x ⊆A ”可知,B 中的元素是集合A 的子集.所以B ={∅,{0},{1},{0,1}}很明显,集合A 是集合B 的一个元素,从而A ∈B .2.设集合A ={x |x 2+4x =0},集合B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R },若B ⊆A ,求实数a 的取值范围.解 易知A ={-4,0},因为B ⊆A ,所以分B =A 和B A 两种情况.①当A =B 时,B ={-4,0},则有-4,0是方程x 2+2(a +1)x +a 2-1=0的两根,于是得a =1.②当B A 时,若B =∅,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;若B ≠∅,则B ={-4}或{0},Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,验证知B ={0}满足条件,综上可知,所求实数a 的值满足a =1或a ≤-1.。
§1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和Venn 图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一 子集、真子集、集合相等 1.子集、真子集、集合相等的相关概念定义符号表示 图形表示子集如果集合A 中的任意一个元素都是集合B 中的元素,就称集合A 是集合B 的子集A ⊆B (或B ⊇A )真子集如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A是集合B的真子集AB (或B A )集合相等如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等A =B2.Venn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 3.子集的性质(1)任何一个集合是它本身的子集,即A ⊆A .(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C . 思考1 任何两个集合之间是否有包含关系?答案 不一定.如集合A ={0,1,2},B ={-1,0,1},这两个集合就没有包含关系. 思考2 符号“∈”与“⊆”有何不同?答案符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相同吗?答案不同.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.已知集合M={x|x是菱形},N={x|x是正方形},则集合M与集合N的关系为________.答案N M解析因为正方形是菱形,所以N M.2.用“⊆”或“∈”填空:{0,2}________{2,1,0},2________{2,1,0}.答案⊆∈3.设a∈R,若集合{2,9}={1-a,9},则a=________.答案-1解析1-a=2,解得a=-1.4.集合{0,1}的子集有________个.答案 4解析集合{0,1}的子集有∅,{0},{1},{0,1},共4个.一、集合间关系的判断例1指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|-1<x<4},B={x|x-5<0};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解(1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.(2)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(3)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.反思感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.跟踪训练1(1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是() A.A⊆B B.A=BC.A B D.B A(1)答案 C解析解方程x2-3x+2=0得x=2或x=1,则M={1,2},因为1∈M且1∈N,2∈M 且2∈N,所以M⊆N.又因为0∈N但0∉M,所以M N.(2)答案 D解析因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.二、确定集合的子集、真子集例2设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集.解由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1或x=4.故集合A={-4,-1,4}.由0个元素构成的子集为∅;由1个元素构成的子集为{-4},{-1},{4};由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为{-4,-1,4}.因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}.真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.反思感悟 求集合子集、真子集的3个步骤跟踪训练2 满足{1,2} M ⊆{1,2,3,4,5}的集合M 有________个. 答案 7解析 由题意可得{1,2} M ⊆{1,2,3,4,5},可以确定集合M 必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M 的元素个数分类如下: 含有三个元素:{1,2,3},{1,2,4},{1,2,5}; 含有四个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}; 含有五个元素:{1,2,3,4,5}. 故满足题意的集合M 共有7个.三、由集合间的关系求参数例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B A ,求实数m 的取值范围.解 (1)当B ≠∅时,如图所示.∴m +1≥-2,2m -1<5,2m -1≥m +1或m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.(2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}.延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2.(2)当B ≠∅时,如图所示.∴m +1>-2,2m -1<5,m +1≤2m -1,解得m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴2m -1>m +1,m +1≤-2,2m -1≥5,即m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B .反思感悟 利用集合关系求参数的关注点(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误.一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还要注意“空集”的情况,因为空集是任何集合的子集.跟踪训练3 已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.解 (1)当B =∅时,2a >a +3,即a >3.显然满足题意.(2)当B ≠∅时,根据题意作出如图所示的数轴,可得a +3≥2a ,a +3<-1或a +3≥2a ,2a >4,解得a <-4或2<a ≤3. 综上可得,实数a 的取值范围为{a |a <-4或a >2}.1.下列六个关系式:①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.其中正确的个数是()A.1 B.3 C.4 D.62.集合{1,2}的子集有()A.4个 B.3个 C.2个 D.1个3.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()4.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.【答案与解析】1、答案 C解析①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{∅}表示的是含∅这个元素的集合,是元素与集合的关系,应改为∅∈{∅};④错误,∅表示空集,而{0}表示含有一个元素0的集合,并非空集,应改为∅ {0};⑤正确,空集是任何非空集合的真子集;⑥正确,是元素与集合的关系.2、答案 A解析集合{1,2}的子集有∅,{1},{2},{1,2},共4个.3、答案 B解析x2-x=0得x=1或x=0,故N={0,1},易得N是M的真子集,其对应的Venn图如选项B所示.4、答案 4解析∵B⊆A,B={3,4},A={-1,3,m},∴4∈A,∴m=4.5、答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。