酚醛树脂的固化性能(技术汇总)
- 格式:doc
- 大小:115.00 KB
- 文档页数:8
酚醛树脂的固化与分解研究(热分析联用技术和气体分析)Anton Schranner, Stephan KnappeNETZSCH-Gerätebau GmbH, Selb/Germany编译:张红曾智强耐驰仪器(上海)有限公司引言酚醛树脂是一类应用极其广泛的热固性材料。
由于该材料的使用温度范围较宽,我们有必要对它在整个固化、使用温度范围中的热稳定性进行全面的探讨。
通常研究固化反应的手段包括差示扫描量热法(DSC)、介电固化监测法(DEA)等,但是酚醛树脂的固化反应生成了可挥发的产物(水、氨),因此热重分析(TG)也是一种有效的方法。
热重分析的另一优势在于可以精确地测量材料的热稳定性,例如分解温度等。
更进一步,我们将热重分析仪和傅立叶变换红外光谱仪(FTIR)相连接,则可以更准确地探讨酚醛树脂的固化及热分解反应。
测量原理▪应用领域:物质鉴定、质量控制和失效分析▪研究目的:使用TG-FTIR检测未固化酚醛树脂缩聚反应和分解过程▪仪器:TG 209 C Iris-FTIR VECTOR 22▪样品:酚醛树脂(粉末)实验条件▪样品质量: 8.383mg▪坩埚: Al2O3(敞口)▪气氛: N2(15ml/min),常压▪温度范围: 30~850℃▪升温速率: 10K/min▪ FTIR:光谱分辨率4cm-1,时间分辨率19s 结果与讨论图一未固化酚醛树脂的TG曲线。
失重信号和失重速率图一显示的是未固化酚醛树脂的热重实验曲线,温度范围从室温到850℃。
为了更好的分析酚醛树脂的热重曲线,我们将热重曲线分为两个部分:固化部分(室温到320℃)和分解部分(320℃~850℃)。
图二中的计算热流曲线(c-DTA)清楚的表明在148℃有一放热峰,这是酚醛树脂固化反应产生的放热效应。
常规的DSC实验可以证明酚醛树脂在密闭的高压坩埚中会以三步反应模式进行固化,而在敞口的坩埚中只会发生一步固化反应。
结合c-DTA的信息和热重曲线上的失重台阶,我们可以得到正如我们所预期的结论:酚醛树脂固化反应是一个缩聚反应。
空气干燥型酚醛树脂
空气干燥型酚醛树脂是一种特殊的酚醛树脂类型,其特点是在空气中能够自然干燥固化,而无需额外的加热或其他固化条件。
这种树脂具有多种优异的性能,因此在多个领域得到广泛应用。
一、空气干燥型酚醛树脂的特性
1. 快速固化:这种树脂在暴露于空气中时,能够迅速发生化学反应并固化,大大提高了生产效率。
2. 优异的物理性能:固化后的酚醛树脂具有高强度、高硬度、耐磨、耐冲击等特性,能够满足多种应用场景的需求。
3. 良好的化学稳定性:酚醛树脂对酸、碱等化学物质具有较好的抵抗性,能够在恶劣环境下保持其性能稳定。
4. 优良的耐热性:即使在高温条件下,酚醛树脂也能保持其形状和性能,不会发生变形或分解。
二、空气干燥型酚醛树脂的应用
1. 涂料与粘合剂:由于其快速固化和优异的物理性能,空气干燥型酚醛树脂常被用作涂料和粘合剂,用于金属、木材、塑料等材料的表面涂覆和连接。
2. 摩擦材料:酚醛树脂的高硬度和耐磨性使其成为制造刹车片、离合器片等摩擦材料的理想选择。
3. 电气绝缘材料:由于其良好的化学稳定性和耐热性,酚醛树脂也被广泛用于制造电气绝缘材料,如绝缘板、绝缘管等。
三、注意事项
在使用空气干燥型酚醛树脂时,需要注意其固化过程中可能会产生的挥发物对人体和环境的影响,应确保在通风良好的环境下操作,并佩戴适当的防护设备。
同时,存储时应避免阳光直射和高温,以免影响其性能。
综上所述,空气干燥型酚醛树脂是一种性能优异、应用广泛的材料。
随着科技的进步和工艺的改进,其在更多领域的应用潜力将得到进一步挖掘。
酚醛树脂固化反应的三个阶段(1)固化反应过程的三个阶段20世纪初,酚醛树脂创始人,美国科学家巴克兰,把碱性催化剂制得的热固性酚醛树脂,根据其缩聚程度不同的反应过程,划分为巴克兰A、B、C三个阶段。
以这三个阶段的树脂特点,分别称作“可熔性酚醛树脂”、“半熔性酚醛树脂”、“不溶性酚醛树脂”。
这一科学论断及称谓,一直沿用至今。
现在,通常把酚基由亚甲基连接,不带羟甲基这样的反应官能基的热塑性树脂称为线型酚醛树脂。
把含有羟甲基或二亚甲基醚键结构且具有自固化性的树脂,称作为甲阶酚醛树脂。
由于缩聚反应推进程度的不同,所以各阶树脂的性能也不同,按照巴克兰的理论,将热固性酚醛树脂分为不溶不熔状态演变的三个阶段。
这种整个固化过程的三个阶段为:甲阶树脂、乙阶树脂和丙阶树脂。
①甲阶树脂酚和醛经缩聚、干燥脱水后得到的树脂,可呈液体、半固体或固状体。
受热时可以熔化,但随着加热的进行由于树脂分子中含有轻羟基和活泼的氢原子,可以较快地转变为不熔状.甲阶树脂能溶解于酒精,丙酮及碱的水溶液中,它具有热塑性。
又称为可熔性树脂。
②乙阶树脂甲阶树脂继续加热,分子上的一CH2OH在分子间不断相互反应而交联。
它的分子结构比可熔酚醛树脂要复杂得多,分子链产生支链,酚已经在开始充分发挥其潜在的三官能作用。
它不溶解在碱溶液中,可以部分地或全部地溶解在酒精、丙酮中,加热后能转变为不溶不熔的产物。
热塑性较可熔性树脂差。
又称为半熔性树脂。
③丙阶树脂乙阶树脂进一步受热,交联反应继续深入,分子量增加得很大,具有复杂的网状结构,并完全硬化,去其热塑性及可熔性,为不溶不熔的固体物质。
又称为不熔性树脂。
丙阶树脂的网状(体型)结构可以如图6-2—1所示。
由甲阶树脂结构向乙阶、丙阶树脂结构的固化过程变化,如图6—2—2所示.(2)对生产实际的指导热固性酚醛树脂的固化反应过程及其机理是一个十分复杂的问题。
至今一些理论问题,在高分子树脂合成的学术界仍是争论不休,无法取得统一的认识.作为覆铜板制造业的工作者,也没必要更深地追究其更复杂的反应机理。
酚醛树脂功能特点工艺应用配方!酚醛树脂是一种常见的热固性树脂,具有广泛的功能和应用领域。
下面将从功能、特点、工艺、应用以及配方等方面进行详细介绍,并确保字数超过1200字。
一、功能:1.优异的耐热性:酚醛树脂具有出色的耐热性能,在高温下能保持稳定性,并且能够承受高温下的长期使用。
2.良好的电性能:酚醛树脂具有良好的电绝缘性能,能够在高电压和高频率下工作,并具有较低的介电常数和介电损耗。
3.优异的机械性能:酚醛树脂具有较高的硬度、强度和刚性,具有良好的耐磨性和耐冲击性,适用于制造各种耐磨、耐冲击的工程零件。
4.优秀的耐化学性能:酚醛树脂能够抵抗酸、碱等化学物质的侵蚀,不易受腐蚀。
二、特点:1.耐候性强:酚醛树脂具有较好的耐候性,能够长期抵御紫外线、湿度等外界环境对材料的影响,不易退色和老化。
2.高强度:酚醛树脂具有较高的强度,可以制造出具有较高承载能力的零件和产品。
3.耐磨性好:酚醛树脂具有优异的耐磨性能,可以制造出具有较长寿命的耐磨件。
4.抗裂纹性:酚醛树脂含有交联结构,在受力时不易产生裂纹,具有较好的抗裂纹性能。
三、工艺:1.配料:按照配方要求,将酚醛树脂粉末与其它填料、增韧剂等进行配比。
2.反应:将配料加入反应釜中,加热并搅拌反应,将树脂粉末与填料、增韧剂等进行反应交联。
3.压制成型:将反应得到的树脂糊液注入模具中,在高温高压条件下进行压制成型。
4.固化:在一定温度条件下,树脂糊液中的酚醛树脂与填料、增韧剂等进行交联固化。
四、应用:1.电子电器领域:酚醛树脂具有优良的电绝缘性能,广泛应用于电子电器产品中的绝缘零件、绝缘包装材料等。
2.机械领域:由于酚醛树脂具有较高的硬度和强度,能够制造出各种机械零件和磨具。
3.汽车制造:酚醛树脂由于其耐热性和优良的机械性能,被广泛应用于汽车制造中的发动机零部件、离合器片等。
4.化工领域:酚醛树脂能够抵抗酸碱和其他化学物质的侵蚀,被广泛应用于管道、储罐、阀门等化工设备中。
酚醛树脂机理(三)固化3热固固化(2)酚醛树脂泛指酚(苯酚、甲酚、二甲酚、间苯二酚等)与醛(甲醛、乙醛、糠醛等)合成的树脂,其中以苯酚与甲醛合成的苯酚甲醛树脂最为重要,它的产量占酚醛类树脂的首位,应用也最广泛。
合成酚醛树脂的催化剂有酸、碱两大类,前者多用盐酸、草酸,有时也用磷酸、硫酸等其他酸;后者多用氨水、氢氧化钠,有时也用氢氧化钡、氧化镁、苯胺等作为辅助催化剂。
近年来对采用金属盐类作为酚醛树脂合成的催化剂,有了更多的研究和应用。
此外还有用酶、其他有机酸作为催化剂的报道。
据中国酚醛树脂网()专家介绍,酚醛树脂在合成反应阶段分子量逐步增长,合成终点维持在线型及带支链的结构,相对分子质量一般均低于1000,特殊应用场合要高一些,甚至高于4000。
酚醛树脂在应用于各种制品的成型过程必须要发生交联反应,使之形成三向网络大分子结构,相对分子量可谓无限大。
三向网络结构可促进制品使用性能更加理想。
促进交联的助剂包含固化剂和固化促进剂,六亚甲基四胺是最常用的固化剂,而固化促进剂可采用对甲苯磺酰氯和苯磺酰氯。
固化反应据中国酚醛树脂网()专家介绍,还可发生其他类型的反应,例如酚羟基与羟甲基的缩合:Resole树脂在低于170℃固化时,在酚核间主要形成亚甲基键及醚键,其中亚甲基键是酚醛树脂固化时形成的最稳定和最重要的化学键。
据中国酚醛树脂网()专家介绍,酸和碱都是有效的亚甲基键形成的催化剂,在酸性条件下、中等温度下的固化速率正比于氢离子浓度;强碱条件下,在反应的早期,当pH超过一定的值后,固化速率与碱的浓度无关。
在固化过程中形成的醚键既可以是固化结构中的最终产物,也可以是过渡的产物。
酚醇在中性条件下加热(低于160℃)很易形成二苄基醚,然而超过160℃,二苄基醚易分解成亚甲基键,并逸出甲醛:同时在酚醇分子中取代基的大小与性质对醚键的形成也有很大的影响,如下表。
酚醛树脂的性能及改性概述酚醛树脂是一种广泛应用于工业中的合成树脂,由苯酚、甲醛和碱催化剂经聚合反应制得。
它具有以下优点:高硬度、高强度、高耐热、耐化学腐蚀性强、电绝缘性好和阻燃性好等。
性能物理性能酚醛树脂的物理性质主要取决于其交联度和与反应物的摩尔比。
通常情况下,其密度为1.41.5g/cm³95之间的岩石硬度,伸长率很小,而且容易成型。
,硬度为75机械性能酚醛树脂具有优异的机械性能,表现在下面几个方面:1.抗弯强度高:酚醛树脂的抗弯强度高达120~150MPa。
2.抗拉强度高:酚醛树脂的抗拉强度高达60~80MPa。
3.硬度高:酚醛树脂的洛氏硬度高达85~105。
耐化学性酚醛树脂具有很好的耐化学腐蚀性,它能耐受酸、碱等一般腐蚀介质,但是不能耐受氢氧化钠等高浓度腐蚀介质。
耐高温性酚醛树脂的耐高温性是其最突出的特点,可在高达150℃的高温下工作,在较低的温度下仍然具有良好的机械性能和绝缘性能。
但由于硬度高,容易发生疲劳开裂。
改性填充改性填充改性是最常用的一种改性方式,常用的填充物有玻璃纤维、炭黑、木屑、麦秸等。
通过填充物的添加和改性处理,可以减少树脂的成本,同时还能提高酚醛树脂的力学性能和耐磨损性能。
共混改性共混改性是指将两种或两种以上相互溶解或部分溶解的物质混合在一起,并加入适量的添加剂进行改性。
常用的添加剂有改性剂、助剂、稳定剂等。
共混改性的主要优点是可以改善酚醛树脂的力学性能、热稳定性和加工性,同时还可以增强其防冲击性、耐久性和环保性。
成环改性酚醛树脂的桥环长链结构存在着一定的不稳定性,容易发生水解反应,导致失效。
利用酚醛树脂包括多层的分子结构,通过成环反应可以解决其不稳定性,提高其机械性能和耐热性。
结论酚醛树脂具有很优良的性能,经过改性后可进一步提升其力学性能和稳定性。
但是,酚醛树脂在应用过程中还存在着一些问题,比如容易产生疲劳开裂和水解反应等。
因此,需要对其进行改良和优化,以提高其应用范围和性能。
碱性酚醛树脂及配套固化剂
产品特征:
>> 树脂和固化剂中不含有N、S、P等有害元素,可消除由上述元素引起的铸件表面渗S、渗P、渗N引起的气孔缺陷,也防止由于S、P引起的球墨铸铁球化不良的缺陷。
>> 对原砂适用性好。
碱性酚醛树脂不仅适用于酸耗值低的石英砂、锆砂、南非铬铁矿砂,也适用于各种酸耗值较高的海砂,铬铁矿砂和美橄榄石砂等。
>> 具有独特的高温特性,用碱性酚醛树脂制成的砂芯在高温浇注时具有热塑性和二次硬化特性,因此也可以防止铸件产生热裂、毛刺等缺陷。
>> 碱性酚醛树脂自硬砂有较低的发气量和较好的溃散性。
>> 碱性酚醛树脂游离甲醛含量低,仅为0.2%,使用的固化剂没有异味,劳动卫生条件好。
>> 固化性能好,起模时间可调,配以三种型号的固化剂,可以满足一年不同季节对型(芯)砂固化。
>> 在铝铜合金铸件方面,铸件所产生的气孔率大为减少;气密性得以改善,型芯溃散性好,铸件尺寸精度高,使成品率大幅度提高。
使用范围:
各种合金钢、碳钢、高锰钢、球墨铸件、铝铜合金铸件。
性能指标:
碱性酚醛树脂主要技术性能表:
配套使用的固化剂主要技术性能表:
使用方法:
工艺配比推荐配比
>> 混砂设备和工艺推荐采用高效树脂混砂机,用量较小时,宜采用间隙式碗形树脂混砂机或双搅拌强碾混砂机;用量较大时,宜采用叶片式连续混砂机。
>> 混砂工艺
原砂+固化剂→+碱性树脂→出砂
包装规格:
铁桶包装,净重200kg。
酚醛树脂功能、特点、工艺、应用、配方!一、定义酚醛树脂也叫电木,又称电木粉。
原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状.耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。
不溶于水,溶于丙酮、酒精等有机溶剂中。
苯酚醛或其衍生物缩聚而得.二、主要性能固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,实体的比重平均1。
7左右,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。
由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。
因选用催化剂的不同,可分为热固性和热塑性两类。
酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。
液体酚醛树脂为黄色、深棕色液体,如:碱性酚醛树脂主要做铸造黏结剂。
高温性能酚醛树脂最重要的特征就是耐高温性,即使在非常高的温度下,也能保持其结构的整体性和尺寸的稳定性。
正因为这个原因,酚醛树脂才被应用于一些高温领域,例如耐火材料,摩擦材料,粘结剂和铸造行业。
粘结强度酚醛树脂一个重要的应用就是作为粘结剂.酚醛树脂是一种多功能,与各种各样的有机和无机填料都能相容的物质。
设计正确的酚醛树脂,润湿速度特别快。
并且在交联后可以为模具、耐火材料,摩擦材料以及电木粉提供所需要的机械强度,耐热性能和电性能。
水溶性酚醛树脂或醇溶性酚醛树脂被用来浸渍纸、棉布、玻璃、石棉和其它类似的物质,为它们提供机械强度,电性能等.典型的例子包括电绝缘和机械层压制造,离合器片和汽车滤清器用滤纸。
高残碳率在温度大约为1000℃的惰性气体条件下,酚醛树脂会产生很高的残碳,这有利于维持酚醛树脂的结构稳定性。
酚醛树脂的这种特性,也是它能用于耐火材料领域的一个重要原因.低烟低毒与其他树脂系统相比,酚醛树脂系统具有低烟低毒的优势。
在燃烧的情况下,用科学配方生产出的酚醛树脂系统,将会缓慢分解产生氢气、碳氢化合物、水蒸气和碳氧化物.分解过程中所产生的烟相对少,毒性也相对低。
酚醛树脂的固化性能(技术汇总)
(一)定义
酚和醛在合成反应设备中,通过加成和适当缩聚反应所得到的树脂,通常都是分子量不高的低聚物和各种羟甲基酚的混合体系,虽然Novolaks及Resoles以如上节所述,结构上是有差异的,但从物性上它们均应为可溶及可熔。
这样的可溶、可熔性使得它们便于浸渍填充增强材料制成各种类型的塑料用于生产形态及性能多种多样的塑料制品,也便于用作黏结剂、成模剂、功能性助剂等应用于耐火材料、铸造造型材料、摩擦材料、涂料、电子封装材
料等多种府用领域。
然而,酚醛树脂只有在形成交联网状(或称体型)结构之后才具有优良的使用性能,包括力学性能、电绝缘性能、化学稳定性、热稳定性等。
酚醛树脂的固化就是使其转变为网状结构的过程,表现出凝胶化和完全固化的两个阶段,这一转变不仅是物理过程,更要强调的是,这是一个化学过程。
所以酚醛树脂的固化绝不是熔体冷却到熔点以下的一般意义上的固化,而是高分子化学概念上的由线(支)型分子交联(c ure)成网状分子导致失去可溶、可熔性的固化。
酚醛树脂固化后,在获得优良物理性质的同时,又失去了可溶、可熔性,不再有可加工性。
因而其固化过程必然应在以酚醛树脂(Novolaks或Resoles)为黏结剂组成的塑料、油漆涂料及各种各样工程材料的使用或成型过程中完成。
正由于酚醛树脂的固化过程本质上是一种化学反应过程,所以表现出以下一些特点:
(1)树脂在固化前的结构因素(组成、分子量大小、反应官能度等)影响显著;(2)固化反应受催化剂、固化剂、树脂pH值等的影响显著;(3)固化过程有热效应;(4)固化速率受温度、压力的影响显著;(5)固化过程有副产物(如水、甲醛等)产生;(6)固化反应是不可逆过程。
(二)热塑性酚醛树脂固化
Novolak型树脂的结构,一般可表示为:
n一般为4~12,其值大小与起始反应原料中苯酚过量多少及反应时间有关。
工业生产的
此类树脂视应用领域不同而控制掌握n的大小,也就是分子量的大小。
例如当竹值平均为5时,其平均分子量(Mn)约在500左右。
Novolak型树脂合成的基本条件之一是在摩尔比上,苯酚过量,甲醛不足,所以它的结构中基本不会有未反应的羟甲基存在,这样Novolaks就不可能自行发生交联反应而固化。
但是这样树脂结构中的酚核还有未反应的活化点,只要补充甲醛,在加热条件下就可进行交联反应形成网状结构并固化。
为使Novolak型树脂交联固化,最常用的固化剂是六亚甲基四胺(乌洛托品),其他还可用多聚甲醛、Resole型酚醛树脂、苯胺。
六亚甲基四胺(HMTA)是氨与甲醛的加成物,它在超过100℃下发生分解,形成二甲醇胺并释放出甲醛和氨,从而与线型酚醛树脂分子反应,发生交联。
六亚甲基四胺的受热分解可表示为:
用HMTA作为Novolak固化剂的固化反应历程至今未研究清楚,不过也有一些初步的研究成果。
(1)HMTA加入到含少量游离酚(约5%)及少于1%水分的Novolak中,加热后HMTA中任何一个氮原子上连接的三个化学键可依次打开与三个Novolak树脂分子上的活性点反应,导致它们的交联:
(2)上述交联结构仅是过渡状态,在进一步的加热交联过程中,继续分解,最后有NH。
放出。
并有少量的氮保留在交联固化的树脂结构中。
(3)交联过程中可能有多种邻位(o位)和对位(p位)的中间结构,如图2-10所示。
图2-10 Novolak树脂交联过程中的各种结构中间体
(4)交联固化后的Novolak,其结构与所用HMTA的比例及固化前NovoIak树脂起始结构中邻、对位(o,p位)活性点的比例有关。
(5)HMTA用量比对NovoIak交联反应和结构的影响是多方面的。
表2-6及图2-11是一些实验结果。
图2-6 HMTA用量比对Novolak交联的影响
(第二阶段),至凝胶化结束,树脂已很难流动,至固化阶段结束,树脂已成网状结构,不溶亦不熔。
其全过程的结构变化可示意如图2-15。
(三)热固性酚醛树脂的固化
前已述及,Resoles树脂是在醛与酚摩尔比大于1,碱性催化剂(如NaOH)作用下加热反应合成的,其结构在A(甲)阶段主要是一元、二元及三元羟甲基酚的混合物,有时也含有一定量的二聚体,它实际是缩聚控制在一定程度内的活性中间产物,因此很容易在适当条件下继续进行反应而凝胶化,甚至交联固化成网状结构大分子。
虽然常温下和在pH大于7的碱性条件下也可以使Resole化,但大多数场合为了加速其固化而需要适当加热和改变为酸性条件。
Resoles固化机理相当复杂,至今仍不完全清楚,比较一致的观点是主要由羟甲基酚之间的下列反应的不断发生导致Resoles先实现凝胶化,进而交联固化。
上面这(1)、(2)两种反应有下列几点不同:即反应(1)是酚核上的羟甲基与另一羟甲基酚的酚核上的氢脱去一分子水而形成-CH2一桥,而反应(2)是两个羟甲基酚上的羟甲基之间脱去一分子水而形成-CH2-0-CH2一桥;另外,反应(1)生成亚甲基键的活化能较低,为57.4kJ/m ol,而反应(2)生成醚键的活化热较高,约为114.7kJ/mol。
固化反应除以上反应外还可发生其他类型的反应,例如酚羟基与羟甲基的缩合:
Resole树脂在低于170℃固化时,在酚核间主要形成亚甲基键及醚键,其中亚甲基键是酚醛树脂固化时形成的最稳定和最重要的化学键。
酸和碱都是有效的亚甲基键形成的催化剂,在酸性条件下、中等温度下的固化速率正比于氢离子浓度;强碱条件下,在反应的早期,当pH超过一定的值后,固化速率与碱的浓度无关。
在固化过程中形成的醚键既可以是固化结构中的最终产物,也可以是过渡的产物。
酚醇在中性条件下加热(低于160℃)很易形成二苄基醚,然而超过160℃,二苄基醚易分解成亚甲基键,并逸出甲醛:
同时在酚醇分子中取代基的大小与性质对醚键的形成也有很大的影响,如表2-7所示。
表2-7酚醇的对位取代基对醚键形成的影响
的固化结构中,亚甲基键是主要的连接形式。
此外还生成亚甲基苯醌和它们的聚合物以及氧化-还原产物。
固化过程中产生的4-亚甲基-2,5-环己二烯-1-酮或6-亚甲基-2,4-环己二烯-1-酮具有如下结构:
这些化合物可进一步反应,既可与不饱和键进行Diels-Alder反应,也可与羟甲基苯酚发生氧化还原反应,生成醛产物:
Resoles树脂中添加酸使之固化的反应,在许多方面都与Novolak酚醛树脂合成过程中的反应类似,它们的主要区别在Resole树脂的酸固化过程中醛相对酚有较高的比例,以及当酸添加时醛以化学结合至树脂分子结构之中。
因此,其酸固化时的主要反应是在树脂分子间形成亚甲基键。
然而,若酸的用量较少、固化温度较低以及树脂分子中的羟甲基含量较高时,二苄基醚也可形成。
Resoles酚醛树脂酸固化时的另一特点是反应剧烈,并放出大量的热,酚与醛在酸催化下缩聚反应的高度放热对制备自发泡的酚醛树脂极为有用。
反应放热也使树脂温度升高,又加速了固化反应。
Resole型酚醛树脂的固化过程最好在较低的pH值下进行。
已经发现对各类型的Resole
树脂而言,最稳定的pH值范围与树脂合成时所用酚的类型和固化温度有关。
间苯二酚类型的树脂最稳定的pH值为3,而苯酚类型的树脂最稳定的pH值约为4左右。
显然,在pH值低于3时固化反应由氢离子催化,而在较高的pH值时(约从5开始),固化过程由氢氧根离子催化。
影响Resole型树脂固化速率的另一些因素如下。
(1)树脂合成时的酚醛投料比一阶热固性树脂在固化时的反应速度与合成树脂时的甲醛投料量有关,即甲醛含量增加,树脂的凝胶时间缩短(图2-16)。
图2-16在150℃合成一阶固体树脂时开始甲醛/苯酚的摩尔比对反应性的影响
(2)酸碱性Resole型树脂的热固性能受体系酸、碱性的影响很大。
当固化体系的pH=4时为中性点,固化反应极慢,增加碱性导致快速凝胶,增加酸性导致极快的凝胶。
(3)温度随固化温度升高,A阶树脂的凝胶时间明显缩短,每增加10℃,凝胶时间缩短一半。