(用含Simulink图)汽车悬架的半主动控制系统MATLAB
- 格式:doc
- 大小:445.50 KB
- 文档页数:19
车辆半主动悬架改进型天棚阻尼控制算法佚名【摘要】以改善车辆乘坐舒适性为目的,通过分析车体垂向速度和垂向加速度的相互关系,设计了车辆悬架改进型天棚阻尼半主动控制算法。
以天棚阻尼控制算法为对比,对设计的算法进行性能仿真。
结果表明,与传统的天棚阻尼控制算法相比,该算法能显著降低车体加速度,提高乘坐舒适性,且具有计算量小,简单实用的优点,适用于车辆振动的控制。
%Aiming at improving vehicle ride comfort and by analyzing the mutual effects between vertical ve-locity and vertical acceleration of vehicle, a modified sky-hook damping semi-active control algorithm for vehicle suspensions is designed. With conventional sky-hook damping control algorithm as comparison reference, a suspen-sion performance simulation is conducted with the algorithm designed. The results show that compared with conven-tional sky-hook control algorithm, the modified sky-hook control algorithm can significantly reduce the acceleration and improve the ride comfort of vehicle with the merits of being simple, practical with less computation efforts, suit-able for vehicle vibration control.【期刊名称】《汽车工程》【年(卷),期】2015(000)008【总页数】5页(P931-935)【关键词】悬架;控制算法;天棚阻尼控制;改进【正文语种】中文悬架是车辆重要组成部分,其性能对车辆的乘坐舒适性、操纵稳定性和行驶安全性具有决定性影响[1-2]。
传统的悬架系统的刚度和阻尼是按经验或优化设计的方法确定的,根据这些参数设计的悬架结构,在汽车行驶过程中,其性能是不变的,也是无法进行调节的,使汽车行驶平顺性和乘坐舒适性受到一定影响。
故称传统的悬架系统为被动悬架系统。
如果悬架系统的刚度和阻尼特性能根据汽车的行驶调节(车辆的运动状态和路面状况等)进行动态自适应调节,使悬架系统始终处于最佳减振状态,则称为主动悬架。
主动悬架系统按其是否包含动力源可以分为全主动悬架(有源主动悬架)和半主动悬架(无源主动悬架)系统两大类。
全主动悬架全主动悬架是根据汽车的运动状态和路面状态,适时地调节悬架的刚度和阻尼,使其处于最佳减振状态。
它是在被动悬架(弹性元件、减振器、导向装置)中附加一个可控作用力的装置。
通常由执行机构、测量系统、反馈控制系统和能源系统4部分组成。
执行机构的作用是执行控制系统的指令,一般为发生器或转矩发生器(液压缸、气缸、伺服电动机、电磁铁等)。
测量系统的作用是测量系统各种状态,为控制系统提供依据,包括各种传感器。
控制系统的作用是处理数据和发出各种控制指令,其核心部件是电子计算机。
能源系统的作用是为以上各部分提供能量。
半主动悬架目前,主流的半主动悬架不考虑改变悬架的刚度,而只考虑改变悬架的阻尼,因此它无动力源且只由可控的阻尼元件组成。
由于半主动悬架结构简单,工作时几乎不消耗车辆动力,而且还能获得与全主动悬架相近的性能,故有较好的应用前景。
半主动悬架按阻尼级又可以分成有级式和无级式两种。
(1)有级式半主动悬架它是将悬架系统中的阻尼分为两级、三级或更多级,可由驾驶员选择或根据传感器信号自动进行选择悬架所需要的阻尼级。
也就是说,可以根据路面条件(好路或坏路)和汽车的行驶状态(转弯或制动)等来调节悬架的阻尼级,使悬架适应外界环境的变化,从而可以较大幅度地提高汽车的行驶平顺性和操纵稳定性。
半主动悬架中的三级阻尼可调减振器的旁路控制阀是由调节电动机来带动阀芯转动,使控制阀孔具有关闭,小开和大开3个位置,产生3个阻尼值。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
Simulink;是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。
.构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。
Simulink与MATLAB® 紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。
丰富的可扩充的预定义模块库交互式的图形编辑器来组合和管理直观的模块图以设计功能的层次性来分割模型,实现对复杂设计的管理通过Model Explorer 导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码提供API用于与其他仿真程序的连接或与手写代码集成使用Embedded MATLAB™模块在Simulink和嵌入式系统执行中调用MATLAB算法使用定步长或变步长运行仿真,根据仿真模式(Normal,Accelerator,Rapid Accelerator)来决定以解释性的方式运行或以编译C代码的形式来运行模型图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为可访问MATLAB从而对结果进行分析与可视化,定制建模环境,定义信号参数和测试数据模型分析和诊断工具来保证模型的一致性,确定模型中的错误平面连杆机构英文名称:planar linkage mechanism定义:所有构件间的相对运动均在平行平面内运动的连杆机构。
Matlab在汽车工程中的应用示例引言:汽车工程是一个综合性的学科,涉及到多个领域的知识和技术。
在汽车的设计、测试、控制和优化等方面,Matlab都有着广泛的应用。
本文将针对几个具体的应用领域,介绍Matlab在汽车工程中的应用示例。
一、汽车动力学仿真汽车动力学仿真是汽车工程中的重要组成部分。
通过建立系统的动力学模型,可以模拟汽车在不同条件下的运行行为,为汽车设计与控制提供可靠的依据。
Matlab具备强大的数值计算和仿真功能,极大地方便了汽车动力学仿真的实施。
1. 制动系统仿真:Matlab可以用来建立汽车的制动系统仿真模型,包括制动器、制动液压系统和车轮等部件。
通过对制动力、制动距离、制动时间等参数的计算,可以评估和改进汽车的制动性能。
此外,还可以通过调整摩擦系数、制动液流动压力等参数,优化制动系统的设计。
2. 悬挂系统仿真:汽车的悬挂系统对行驶的稳定性和舒适性有着重要影响。
利用Matlab,可以建立汽车悬挂系统仿真模型,预测悬挂系统的动态响应、滤波效果等性能指标,并进行悬挂系统的参数优化。
此外,还可以通过调整悬挂系统的刚度、阻尼等参数,来改善汽车的操控性和乘坐舒适性。
二、车辆动力学测试数据处理在汽车工程中,进行车辆动力学测试是评估汽车性能的重要手段之一。
通过采集汽车在实际情况下的运行数据,可以进行各种性能指标的分析和评估。
而Matlab的数据处理和分析功能,为车辆动力学测试提供了强大的支持。
1. 加速性能分析:通过采集汽车的实际加速数据,可以分析汽车的加速性能,如加速时间、加速度等指标。
在Matlab中,可以利用数据处理和统计分析的函数,快速计算出汽车的平均加速时间、最大加速度等参数,并与其他车型进行对比分析。
2. 操控性能评估:通过分析汽车在连续驱动和急转弯等情况下的动力学数据,可以评估汽车的操控性能。
利用Matlab的信号处理和频谱分析工具,可以提取出汽车的横向加速度、侧向加速度等指标,并进行综合评估。
MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
matlab汽车动力系统设计设计汽车动力系统是通过使用MATLAB软件来模拟和优化车辆动力系统的性能和效率。
下面是一些MATLAB在汽车动力系统设计中常用的工具和方法:1. 建立动力系统模型:使用Simulink来建立一个包含发动机、传动系统和车辆动力总成的模型。
可以通过连接各个子系统和组件来构建整个动力系统模型。
2. 发动机模型:使用MATLAB来创建发动机模型,包括燃烧过程、燃料喷射、排气系统和进气系统等。
可以利用MATLAB的优化工具来优化发动机性能和燃料效率。
3. 传动系统模型:使用Simulink来建立传动系统模型,包括变速器、离合器和传动轴等。
可以使用MATLAB来优化传动系统的效率和响应速度。
4. 操纵模型:使用Simulink来建立车辆操纵模型,包括转向系统、制动系统和悬挂系统等。
可以使用MATLAB进行悬挂系统的参数优化和转向系统的动态性能分析。
5. 环境模型:使用MATLAB来模拟车辆在不同环境条件下的性能,包括温度、海拔和空气密度等。
可以使用MATLAB的控制系统工具箱来设计和调优车辆的控制系统。
6. 燃料经济性分析:使用MATLAB来分析和优化车辆的燃油经济性。
可以使用MATLAB的统计工具箱来分析大量的测试数据,找出燃油经济性的关键因素,并进行改进。
7. 噪音和振动分析:使用MATLAB来分析车辆的噪音和振动性能,包括发动机噪声、风噪声和悬挂系统的振动等。
可以使用MATLAB的信号处理工具箱来分析和优化噪音和振动特性。
MATLAB提供了丰富的工具和功能来支持汽车动力系统的设计和优化。
通过使用MATLAB,可以更好地理解和改进车辆的性能和效率。
基于微分几何法的半主动油气悬架LQR控制
么鸣涛;李钊;顾亮
【期刊名称】《北京理工大学学报》
【年(卷),期】2011(31)5
【摘要】为了对某工程车辆半主动悬架的油气弹簧进行有效控制,分析了油气弹簧弹性力和阻尼力的非线性特性,建立了车辆半主动油气悬架非线性动力学模型.提出了应用微分几何理论并经过非线性状态反馈变换的方法,对半主动悬架非线性系统进行精确线性化,利用线性二次型调节器实现了非线性状态反馈最优控制,并用Matlab/Simulink编程进行仿真实验.仿真得出半主动油气悬架与被动油气悬架相比,显著地提高了车辆的平顺性.研究结果表明此方法可为车辆悬架控制的研究提供参考.
【总页数】5页(P519-523)
【关键词】半主动悬架;油气弹簧;微分几何;非线性;线性二次型调节器(LQR)
【作者】么鸣涛;李钊;顾亮
【作者单位】北京理工大学机械与车辆学院
【正文语种】中文
【中图分类】U463.33
【相关文献】
1.基于微分几何法的车辆半主动悬架控制 [J], 么鸣涛;管继富;顾亮
2.基于微分几何的汽车半主动悬架解耦控制算法仿真 [J], 陈建国;程军圣;聂永红;
陈育荣
3.基于微分几何法的主动悬架鲁棒H∞控制 [J], 李武杰;陈从根;郭立新
4.基于微分几何法的非线性分数阶悬架主动控制 [J], 常宇健;田沃沃;金格;陈恩利;李韶华
因版权原因,仅展示原文概要,查看原文内容请购买。
基于层次分析法的汽车半主动悬架LQG控制研究张志达;李韶华;赵俊武【摘要】建立了考虑座椅的五自由度车辆动力学模型,应用最优控制理论设计了车辆半主动悬架的LQG控制器.以座椅加速度、车体加速度、车体俯仰角加速度、前后悬架动行程及前后轮胎动位移等作为评价指标,采用层次分析法(AHP)确定了各指标的加权系数.利用MATLAB/Simulink搭建车辆仿真模型,分别在A级路面90 km/h和B级路面60 km/h两种工况下验证LQG控制的有效性.结果表明:与被动悬架相比,采用LQG控制器的半主动悬架能有效地减缓车辆的振动,改善车辆的乘坐舒适性与行驶平顺性.基于层次分析法确定加权系数的LQG控制器使车辆半主动悬架对工况的适应性较好,具有良好的应用前景.【期刊名称】《农业装备与车辆工程》【年(卷),期】2018(056)001【总页数】5页(P1-5)【关键词】半主动悬架;LQG控制;层次分析法;乘坐舒适性【作者】张志达;李韶华;赵俊武【作者单位】050043 河北省石家庄市石家庄铁道大学机械工程学院;050043 河北省石家庄市石家庄铁道大学机械工程学院;050043 河北省石家庄市河北省交通安全与控制重点实验室;050043 河北省石家庄市石家庄铁道大学机械工程学院【正文语种】中文【中图分类】U461.40 引言悬架系统对车辆的乘坐舒适性和操纵稳定性有着重要的影响[1]。
由于被动悬架参数固定,无法保障车辆性能,主动和半主动悬架引起学术界与工业界更多的关注[2]。
主动悬架的复杂性和大功率要求使其难以商业化,拥有高性能与低功耗优势的半主动悬架逐渐成为研究热点 [3-6]。
汪若尘[7]等采用模糊控制策略,建立 2自由度车辆惯容器-弹簧-阻尼器半主动悬架模型,研究了半主动悬架系统对汽车平顺性和安全性的影响。
郭孔辉[8]等建立考虑悬架限位阻尼连续变化的整车模型,提出了一种基于天棚控制算法的半主动悬架自适应控制策略。
MATLAB/Simulink 与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
汽车液压主动悬架系统的设计与仿真摘要汽车悬架系统性能优劣直接影响到乘坐的舒适性和操纵稳定性。
自主动悬架的概念提出以来,许多国家先后对车辆悬架及其振动控制系统的研究和开发进行了大量的理论和试验研究。
国内在二十世纪八十年代也展开了对半主动及主动悬架的研究,但与国外相比,还存在一定差距。
随着相关学科技术的发展,研究和开发高性能的悬架系统及其振动控制系统已成为现实。
主动悬架系统需要通过附加的作用力来实现性能的改善,作用力的产生一般通过液压系统、气压系统、电磁系统和气动肌肉来完成。
本论文对以上不同的主动力产生方式进行了分析,分析表明在目前的技术条件下,采用液压系统对悬架进行控制仍然是比较理想的。
论文分析了汽车液压主动悬架的基本结构,分别选用比例阀和伺服阀控制的液压缸作为执行元件,对主动悬架液压比例控制系统进行了静态设计,包括负载分析、液压回路的确定、电液比例阀的选取。
对液压比例控制主动悬架系统和伺服控制主动悬架系统进行动态建模分析,通过对系统物理特性的分析及公式的推导得出了系统的结构模型。
通过对比例主动悬架、伺服主动悬架结构参数及其它液压参数的确定得出了系统的模型参数。
建立了被动悬架、比例主动悬架和伺服主动悬架的Simulink仿真模型。
论文还对PID控制和路面输入模型进行了分析,建立了两者的仿真模型。
在动态建模的基础上,采用PID控制对比例主动悬架和伺服主动悬架进行控制仿真研究,取得了较好的控制效果。
对被动悬架、比例主动悬架和伺服主动悬架仿真得到的加速度动态响应曲线进行对比,结果表明比例悬架系统与伺服悬架系统性能基本一致,两者都能有效地改善汽车的乘坐舒适性、操纵稳定性及安全性。
而伺服阀价格是同规格的比例阀三倍,其对油液清洁度的要求也远高于比例阀。
这表明了采用比例悬架系统具有更高的性价比。
论文对选用不同相频宽比例阀时主动悬架加速度响应特性进行了简要的分析,指出当选用频宽30Hz以上的比例阀时,能达到较好的减振效果。
自适应半主动悬架系统控制策略作者:郭孔辉余五辉章新杰马芳武赵福全来源:《湖南大学学报·自然科学版》2013年第02期摘要:建立了一种自适应半主动悬架的控制策略,能更好地权衡舒适性、操纵稳定性和安全性.首先建立集成了考虑悬架限位的阻尼连续变化(CVD)天棚控制算法的整车模型,并在不同路面和车速下进行仿真分析,建立由悬架动行程均方值估计路面不平度等级的方法;其次,提出一种考虑路面不平度等级的自适应型半主动悬架控制策略;然后采用遗传算法对不同工况下的控制参数进行离线优化;最后将优化后的控制参数用于在线控制,并与传统的被动悬架以及天棚控制的半主动悬架进行对比分析.仿真结果表明:汽车在复杂工况行驶时能有效识别路况信息并进行控制模式切换;在Comfort模式时能有效提高汽车平顺性;在Sport模式时能有效提高汽车的行驶稳定性;在Safe模式时能有效提高汽车行驶安全性.关键词:半主动悬架;路面不平度等级;路面辨识;工况自适应算法;遗传算法中图分类号:U4611 文献标识码:A现代汽车正朝着安全、舒适、节能、环保、智能化的方向发展,人们对汽车的舒适性和整体品质的追求日益提升,半主动悬架能很好地兼顾舒适性、操纵稳定性,且辅助能量需求小,是当前关注的热点,国内外学者对半主动悬架的控制策略做了较多研究,其中基于天棚阻尼原理的半主动控制简单有效,易于实现,具有一定优势\[1-3\].目前的天棚阻尼控制算法主要有“ONOFF”和“CVD”两种模式.文献\[4\]在频域分析了SkyHook,ADD,Mixed SHADD几种“ONOFF”控制算法,并得出在系统高频区和低频区,SHADD算法都能有效衰减振动.文献\[5\]在SHADD算法基础上提出了一种单个传感器控制策略,它兼顾了控制效果与成本,能有效减振(虽然没有SHADD 算法效果好),而且可以节省4个传感器,大幅度节省了控制成本.Daniel和Douglas在文献\[6\]中提出了连续阻尼控制天棚算法,并把“ONOFF”和“CVD”两种控制模式进行比较,得出后者能更好地提高汽车的行驶平顺性,但是并没有对控制系统进行鲁棒分析或自适应优化,当汽车在复杂工况下运行时,不能很好地表现出其性能.Kim和Lee在文献\[7\]中提出了将减振器分为Comfort,Auto以及Sport 3个模式,以满足不同车主在不同行驶工况下的不同要求,目前很多高档车都采用了这一思路.以上各种算法都采用单一的控制参数,但汽车行驶的工况复杂,很难找到一组能满足所有工况的控制参数.本文首先用悬架动行程均方值大致估计了路面不平度等级;其次提出一种基于路面辨识的自适应型半主动悬架控制策略;然后采用遗传算法对不同工况时的控制参数进行离线优化;最后将优化后的参数用于在线系统.由表5,表6可以看出,车辆在好路中低速行驶以及较差路面上低速行驶时,自适应CVD 能牺牲一部分操纵稳定性来减小车身的振动;而在好路以及较差路面高速行驶时,自适应CVD能牺牲一部分平顺性来提高车辆的操纵稳定性;同时在很差路面上行驶时,自适应CVD 能很好地保证安全性.简而言之,相对传统CVD、被动悬架,自适应CVD具有以下优势:1)当车速较低车辆操纵稳定性较好时,能有效提高汽车的舒适性;2)当车速较高汽车操纵稳定性较差时,能有效提高系统的操纵稳定性;3)在很差路面上行驶时,能在保证行车安全的基础上提高舒适性.值得指出的是表5中加星号的部分,它表明传统CVD悬架在差路上行驶以及以较高车速行驶于较差路面上时,其车轮动载不满足约束条件式(10),此时车轮的抓地能力会很差,导致安全性变差.而且此时悬架动行程过大,会经常撞击限位块,导致舒适性变差,这一点表6中并没表现出来,主要是因为此时,传统CVD悬架已有一定概率撞击限位块,导致其加速度响应局部峰值很大,而其均方根值并未增加多少,但这时局部的冲击感带来的平顺性恶化会比均方根值更多.换句话说,这时加速度均方根值并不能很好地评价平顺性.此外,为了评价自适应CVD系统的低频响应特性,以及CVD控制算法对由路面不平引起的俯仰侧倾的控制效果.定义如下工况,车速36 km/h,车辆左侧通过图5所示的凹坑,这样车辆的俯仰,侧倾,垂向运动都能很好地表现出来.车辆的侧倾角加速度、俯仰角加速度和垂向加速度仿真结果如图6~8所示.通过比较可以得出,自适应半主动控制相对被动最优悬架,低频响应有了明显的改善.5结论在Simulink中建立了考虑悬架限位的带CVD控制算法的7自由度整车模型,并利用Matlab中的遗传算法工具箱对模型中的参数进行离线优化,得到3组不同的控制系统反馈参数,对应这3组参数将控制系统分为Comfort,Sport,Safe 3个控制模式对不同路面输入悬架系统的响应进行了批量仿真,得到了一种路面不平度等级的识别方法,并设计了一种路面与车速自适应的半主动减振器控制逻辑仿真结果表明本文的控制方案能更好地权衡舒适性、操纵稳定性和安全性,自动调整控制参数,提高了汽车对复杂行驶工况的适应能力,可以提高汽车的整体品质.参考文献[1]CAO D P, SONG X B,AHMADIAN M. Editors’ perspectives: road vehicle suspension design, dynamics, and control \[J\]. Vehicle System Dynamics, 2011,49(1/2):3-28.[2]PAZOOKI A, RAKHEJA S, CAO D P. Modeling and validation of offroad vehicle ride dynamics \[J\]. Mechanical Systems and Signal Processing, 2012,28:679-695[3]GEORGIOU G, VERROS G, NATSIAVAS S. Multiobjective optimization of quartercar models with a passive or semiactive suspension system\[J\].Vehicle System Dynamics, 2007,45(1):77-92.[4]SERGIO M, CRISTIANO S. A singlesensor control strategy for semiactive suspensions \[J\]. IEEE Transactions on Control Systems Technology, 2009,17(1):143-152.[5]MILANO P, VINCI P. Accelerationdrivendamper (ADD): an optimal control algorithm for comfortoriented semiactive suspensions \[J\]. ASME, 2005, 127: 218-229.[6]DANIEL S M, DOUGLAS E Z , ALLAN K A P. Optimization of a vehicle suspension using a semiactive damper \[C\]//SAE Paper. 2000-01-3304.[7]KIM W, LEE J, YOON S,et al . Development of mando’s new continuously controlled semiactive suspension system \[C\]//SAE Paper.2005-01-1721.[8]POUSSOTVASSAL C, SPELTA C, SENAME O,et al. Survey and performance evaluation on some automotive semiactive suspension control methods: a comparative study on a singlecorner model \[J\]. Annual Reviews in Control, 2012, 36:148-160.[9]CAPONETTO R, DIAMANTE O, FARGIONE G, et al.A soft computing approach to fuzzy skyhook control of semiactive suspension\[J\].IEEE Transactions on Control Systems Technology, 2003,11(6): 786-798[10]喻凡,郭孔辉.自适应悬架对车辆性能改进的潜力\[J\].中国机械工程, 1988, 9(6):67-69.YU Fan, GUO Konghui. The potential of an adaptive suspension to improve vehicle performance \[J\].Chinese Journal of Mechanical Engineering, 1988, 9(6):67-69.(In Chinese)[11]郭孔辉.汽车振动与载荷的统计分析及悬挂系统参数的选择\[J\].汽车技术,1976:1-15.GUO Konghui. Statistic analysis of vehicle vibration and its application to suspension system design\[J\].Automobile Technology, 1976:1-15.(In Chinese)\[12\]刘献栋,邓志党,高峰.公路路面不平度的数值模拟方法研究\[J\].北京航空航天大学学报, 2003,19(2):843-846.LIU Xiandong,DENG Zhidang, GAO Feng. Research on the method of simulating road roughness numerically \[J\]. Journal of Beijing University of Aeronautics and Astronautics,2003, 19(2):843-846.(In Chinese)。
汽车磁流变半主动悬架控制策略研究与仿真的开题报告一、选题背景与研究意义磁流变半主动悬架技术是一种能够调节车身刚度和阻尼的新型悬架系统,在汽车行业有着广泛的应用。
对于长时间的行驶与不同路况的变化,磁流变半主动悬架系统能够使汽车保持较好的行驶稳定性与舒适性。
因此,磁流变半主动悬架技术的研究在汽车工程中显得十分有意义。
在悬架控制的研究中,磁流变半主动悬架系统作为一种新兴技术,随着汽车技术领域的发展,在提高车辆运动性和驾驶舒适性等方面具有广泛的应用前景。
因此,对磁流变半主动悬架系统进行研究和探索,探讨其在不同场景下的运用情况和优势,将对提升汽车的性能和行驶质量产生积极影响。
二、研究内容及研究思路本次研究主要探讨汽车磁流变半主动悬架控制策略的研究和仿真,旨在提高汽车行驶的稳定性和舒适性。
研究内容主要包括以下两个方面:1.磁流变半主动悬架原理探究介绍磁流变半主动悬架的基本结构和原理,探讨其在汽车工程领域中的应用和优势,并对磁流变半主动悬架的控制方法和策略进行研究。
2.磁流变半主动悬架控制策略仿真研究借助 MATLAB 等仿真软件,建立磁流变半主动悬架控制系统的仿真模型,通过仿真分析磁流变半主动悬架控制策略的运行情况及其对车辆驾驶性能的影响,探索其在汽车工程中的实际应用。
三、研究预期成果与进度安排通过本次研究,我们预期获得以下几方面成果:1.建立汽车磁流变半主动悬架控制模型,分析其在不同路况条件下的适用性与优劣;2.针对磁流变半主动悬架的控制策略,通过仿真研究探讨其对车辆驾驶性能的影响和优化;3.撰写论文并进行口头报告,对本次研究内容进行归纳总结。
研究进度安排如下:第一周:查阅磁流变半主动悬架技术相关文献资料,了解其基本原理和发展历程。
第二周:根据查阅的资料,建立汽车磁流变半主动悬架控制仿真模型,并进行初步的仿真实验。
第三周至第四周:进一步完善磁流变半主动悬架控制仿真模型,并进行针对性的改进、优化实验。
第五周至第六周:撰写论文并进行口头报告,对本次研究内容进行归纳和总结。
汽车主动悬架控制策略综述 摘 要 首先介绍了主动悬架的发展情况和应用情况,然后引入了作性能分析所需的车辆主动悬架动力学模型,以1/4动力学模型为基础,得出了运动微分方程以及控制状态方程组。最后,介绍了现在流行的主动悬架控制策略,包括PID控制、鲁棒控制、神经网络控制、滑模变控制、模糊控制和自适应控制。 关键词:主动悬架;控制策略 Automotive Active Suspension Control Strategies
Abstract: Firstly, introducing active development and application of suspension, then introduced as the performance required for the analysis of vehicle active suspension dynamics model, through 1/4 kinetic model, derived differential equations of motion and control state equations . At last, Introduced the now popular active
suspension control strategy, including PID control, robust control, neural network control, sliding mode control, fuzzy control and adaptive control. Keywords: Active Suspension; Control Strategy
0 引言 传统的被动悬架的刚度和阻尼是按经验或优化设计的方法确定的,在汽车行驶过程中其性能是不变的,也是无法进行调节的。虽然随着近年来,悬架在设计和工艺上得到不断改善,实现了低成本、高可靠性的目标,但无法彻底解决平顺性和操纵稳定性之间的矛盾。20世纪50年代提出了全主动悬架的概念,主动悬架就是根据汽车的运动和路面的状况,适时地调节悬架的刚度和阻尼系数,使其处于最佳的减振状态。从20世纪80年代以来,世界各大汽车公司和生产厂家都在竞相研制开发这种新型的悬架系统。丰田、洛特斯、沃尔沃等汽车公司,已在汽车上进行了较成功的实验。[1] 1 汽车主动悬架动力学模型 建立如图所示的具有2自由度的1 / 4车辆动力学模型,该主动悬架装置主要包括弹簧和执行器两大部分,执行器通常为作动器,并通过对作动器力的控制来实现悬架系统的性能优化。[2] 图1 主动悬架动力学模型 系统的运动微分方程如下: ()()0()()()0ssssussuduussussudturmxkxxcxxFmxkxxcxxFkxx
实验四:基于Simulink 的控制系统仿真实验目的1. 掌握MATLAB 软件的Simulink 平台的基本操作; 2. 能够利用Simulink 平台研究PID 控制器对系统的影响;实验原理PID (比例-积分-微分)控制器是目前在实际工程中应用最为广泛的一种控制策略。
PID 算法简单实用,不要求受控对象的精确数学模型。
1.模拟PID 控制器典型的PID 控制结构如图1所示。
`图1 典型PID 控制结构 连续系统PID 控制器的表达式为()()()()tp I Dde t x t K e t K e d K dt ττ=++⎰ (1)式中,P K ,IK 和DK 分别为比例系数,积分系数和微分系数,分别是这些运算的加权系数。
对式(7-21)进行拉普拉斯变换,整理后得到连续PID 控制器的传递函数为1()(1)I C P D P D I K G s K K s K T s s T s =++=++ (2)显然P K ,IK 和DK 这3个参数一旦确定(注意/,/I P I D D PT K K T K K ==),PID 控制器的性能也就确定下来。
为了避免微分运算,通常采用近似的PID 控制器,气传递函数为1()(1)0.11D C P I D T s G s K T s T s =+++ (3)实验过程PID 控制器的P K ,I K 和D K 这3三个参数的大小决定了PID 控制器的比例,积分和微分控制作用的强弱。
下面请通过一个直流电动机调速系统,利用MA TLAB 软件中的Simulink 平台,使用期望特性法来确定这3个参数的过程。
并且分析这3个参数分别是如何影响控制系统性能的。
【问题】某直流电动机速度控制系统如图2所示,采用PID 控制方案,使用期望特性法来确定P K ,IK 和DK 这3三个参数。
期望系统对应的闭环特征根为:-300,-300,-30+j30和-30-j30。
请建立该系统的Simulink 模型,观察其单位阶跃响应曲线,并且分析这3个参数分别对控制性能的影响。
汽车悬架的半主动控制系统MATLAB/SIMULNK仿真 S0705234 沙小伟 摘要:分析当前轿车的悬架系统,对之进行简化。首先建立其1/4模型,利用仿真软件MATLAB里面的附件Simulink对悬架的简化模型进行仿真,考察其加速度,输出位移等特性。在此基础上进一步建立悬架系统的1/2模型,继续考察车身的加速度,输出位移,转角等系列特性。Simulink软件在整个的仿真过程中显示出强大的能力。
关键词: 汽车悬架,半主动控制,仿真 Abstract: Analyze the suspension system of modern car, and then simplify it. First the model was analyzed with 2 degrees of freedom by the software simulink. Based on this, and then building 12 degrees of the suspension system. Inspect the acceleration and rotation angle and some other characters. In the whole process, the software simulink displayed powerful capacity. Keywords: car suspension, semi – active control, simulation
引言 汽车悬架系统简介。悬架系统是车辆的一个重要组成部分。车辆悬架性能是影响车辆行驶
平顺性、操作稳定性和行驶速度的重要因素。传统的被动悬架一般由具有固定参数的弹性元件和阻尼元件组成,被设计为适应某一种路面,限制了车辆性能的进一步提高。20世纪70年代以来工业发达国家就已经开始研究基于振动主动控制的主动、半主动悬架系统。 近年来随着电子技术、测试技术、机械动力等学科的快速发展,使车辆悬架系统由传统被动隔振发展到振动主动控制。特别是信息科学中对最优控制、自适应控制、模糊控制、人工神经网络等的研究,不仅使悬架系统振动控制技术在现代控制理论指导下更加趋于完善,同时已经开始应用于车辆悬架系统的振动控制[1],使悬架系统振动控制技术得以快速发展。随着车辆结构和功能的不断改进和完善,研究车辆振动,设计新型悬架系统,将悬架的振动控制到最低水平是提高现代车辆质量的重要措施。 当代轿车的悬架系统。当代轿车悬架系统最常见的形式有:摇臂滑柱式(麦弗逊)、双A臂
与多连杆式悬架系统。摇臂滑柱式悬架具有结构简单、成本低廉等优点。常见的欧洲车采用的较多。它存在的问题是:在持续颠簸的路面行驶,驾驶员容易疲劳,即车辆的操作稳定性不好,舒适性欠佳。但是由于其结构简单、易维修保养及成本低,因此在一些中低价位车上广泛地用着。 一些新型轿车上常见的多连杆式悬架系统,具有极佳的舒适性。多连杆式悬架系统的最大的优点是:其可平衡的达到其它悬架系统所达不到的性能要求,它是目前最先进的悬架系统。以日产兼具舒适性和操作稳定性智能型“QT悬架系统”为例,它具有极佳的操作稳定性转弯及直线行驶稳定性,能有效的克服路面的颠簸状况及改善制动时汽车的点头现象,可有效地降低车辆行驶的噪音[2],使车内更加宁静,全面提高的汽车的舒适性,且具备结构简单,体积更小,噪音更小的优点。此种悬架极有可能成为未来悬架系统的主流。 双A臂悬架系统是一种兼具舒适性条件和操作稳定性的组合方案。但其成本高昂,生产工艺难度大,且要求具有极高的定位精度,因此只有在赛车和高价位车上才应用。双A臂悬架再加上防倾平衡杆,能很好的适应急转弯的操作。丰田LUXUS IS 200就装用了此类悬架,再加上低高宽比轮胎、创立了驾车者十分信赖的行车稳定性。 在悬架系统部件的选择上往往出现悬架“偏硬”与容易失掉乘坐舒适性,以及“偏软”和让人晕车的两难境地。汽车制造商为此采取折中的方案,既照顾全面,且又有所偏好。在处理操作稳定性和舒适性方面,德国BMW公司开发出一套EDC电子减振器。EDC自动检测出悬架系统中减振器的行程及行车的路面情况,并根据当时的车速计算出最适宜的悬架软硬度,从而最大限度的保证行车及乘坐的舒适性。在极颠簸的路面也能获得车轮与路面的最佳接触,从而提高行车的安全性。也就是说EDC能依据路面状况调整悬架的软硬程度,可满足人们操控车辆和乘坐舒适性的双重需用。 汽车悬架系统的类型和工作原理。根据现代车辆对悬架提出的各种性能要求,悬架的结
构形式和振动控制方法随时都在更新和完善[3]。一般地说悬架的形式和结构很多,分类也不尽相同,导向构的形式,可分为独立悬架和非独立悬架。按控制力则可分为被动悬架、半主动悬架、主动悬架三种基本类型,其简化模型如图所示
k1k2m1m2x2x1x0ck1k2m1m2x2x1x0ck1
k2
m1
m2
x2
x1
x0
c力发生器
图1 悬架简化模型 被动悬架。一般的车辆绝大都装有由弹簧和减振器组成的机械式悬架,简化模型如图1中第
一个图所示。其中弹簧主要用来支撑簧上质量的静载荷。而减振器主要用于控制响应特性。这种悬架系统的刚度和阻尼参数一般通过经验设计或优化设计而选择。一旦确定就不能在车辆行驶的过程中随外部变化而改变。而对车辆悬架的要求:一是提高制动、转弯等过程的稳定性,要求悬架具有较高的阻尼系数;二是为隔开随机路面不平及车扰动,提高乘坐舒适性,要求较低的阻尼系数。被动悬架的参数不能任意调节和选择,限制了起性能的进一步提高,因此减振性能很差。 半主动悬架。半主动悬架的简化模型如图1第二个图所示由可变刚度的弹簧和减振器组成。
其基本控制原理是根据簧上质量对车轮的速度响应和加速度响应等反馈信号,调节可调弹簧的刚度或可调减振器的阻尼力。半主动悬架在产生力的方面近似于被动悬架,但其阻尼系数或刚度系数是可调的。通常以改变减振器的阻尼力为主,将阻尼分为两级或三级,由人工选择或由传感器信号自动确定阻尼级。另外可以改变弹簧刚度达到半主动控制的目的。目前主要应用的是空气弹簧。 主动悬架。主动悬架的简化模型如图1第三个图所示,由弹性元件和一个力发生器组成,力
发生器的作用是改进系统中能源的消耗并供给系统以能量,该装置的控制目的是实现一个优质的隔振系统,而无须对系统作出较大的变化。因此,只需使力发生器产生一个正比于绝对速度负值的主动力,即可实现该控制目标。这种悬架系统的减振效果非常的明显。但是,该系统的商品化存在较大的困难,主要是硬件价格昂贵以及消耗能量过大,现在只用于少量排量较大的高档轿车。 汽车悬架控制系统的控制方法。车辆悬架控制系统是一个含有许多不确定因素的非线性
机、电、液一体化系统,基于模型的线性控制策略受到很大的限制,也即用传统的控制方法难以达到预定的性能要求。目前应用于车辆悬架控制系统的控制方法主要有现代控制方法(如自适应控制方法、预见控制方法、最优控制方法及鲁棒控制方法)和智能控制方法(如模糊、神经网络控制)以及复合控制方法。 自适应控制方法。自适应控制是针对具有一定不确定性的系统而设计的。自适应控制方法
可自动检测系统的参数变化,从而时刻保持系统的指标性能为最优[4]。其基本出发点是根剧系统当前输入的相关信息,从预先计算并存储的参数中选取当前最合适的参数。其设计关键是选取能准确反映输入变化的参考变量。只要参数选择适当,控制器就能快速、方便地改变控制参数,以适应当前输入的变化。 应用于车辆悬架控制系统的自适应控制方法主要有自校正控制和模型参考自适应控制两类控制策略。自校正控制是一种将受控在线识别与控制器参数相整定相结合的控制方法。如图所示。 模型参考自适应控制的原理是当外界激励条件和车身自身参数状态变化时,被动车辆的振动输出仍能跟踪所选中的理想参考模型。采用自适应控制车辆悬架减振器在德国大众汽车公司的汽车上得到了应用。合肥工业大学的陈无畏等人将自适应控制应用于汽车半主动悬架,在实车应用过程中,振动性能明显优于被动悬架
道路输入悬架系统
输出
自适应控制器执行器 图2 自校正自适应控制框图 预见控制方法。预见控制方法是利用车辆前轮的扰动信息预估路面的干扰输入,将测量的
状态反馈给前后控制器实施最优控制。由于这种控制技术可以通过某种方法提测量到前方路面的状态和变化,将使控制器系统有足够的时间采取措施。因此大大降低系统的能耗,且改善系统的控制性能。根据预见信息的测量和利用方法不同,可构成不同的预见控制系统。如对四轮进行预见控制和利用前轮扰动信息对后轮进行预见控制。 一个控制系统,如果在决定控制指令时,不仅考虑系统当前状态,而且还对系统未来的目标值或干扰予以考虑,这样一种预见控制的方法,往往能弥补因系统响应速度不足所带来的缺陷而提高控制性能,降低系统控制能量峰值和控制系统能量消耗。 最优控制方法。最优控制首先要提出一个目标函数,通过一定的数学方法计算出使函数取
峰值的控制输入。一般地说,目标函数的确定要靠经验,最优控制的解只有在极少数的情况下才得出解析,有的可以通过计算机得到数值解。 智能控制方法。智能控制是一门新兴的学科领域,是针对系统及其控制环境和任务的不确
定而提出来的。智能控制过程是含有复杂性,不确定性,且一般不存在已知算法的非传统数学公式化的过程。在智能控制过程中,以知识信息进行推理和学习,用启发式方法来引导求