北师大版七年级下整式及其运算相交线与平行线培优试题
- 格式:doc
- 大小:231.00 KB
- 文档页数:8
北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
北师大版七年级下册数学 单元测评培优卷(原版+解析版)第2章 相交线与平行线(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(福建南平·初一期中)如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB ∠的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是( )A .①③B .①④C .②③D .②④2.(重庆沙坪坝区·七年级期末)如图,下列说法错误的是( )A .∠1与∠3是对顶角B .∠3与∠4是内错角C .∠2与∠6是同位角D .∠3与∠5是同旁内角3.(江苏七年级期末)如图,AD BC ⊥,ED AB ⊥,表示点D 到直线AB 距离的是线段( )的长度A .DB B .DEC .DAD .AE4.(黑龙江七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°5.(河南七年级期末)如图所示,已知//AB CD ,则().A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+6.(郑州中学七年级月考)将一副直角三角尺按如图所示的不同方式摆放,则图中α∠与β∠相等的是( ).A .B .C .D .7.(山西寿阳·期末)下面出示的的尺规作图题,题中符号代表的内容正确的是( )如图,已知∠AOB ,求作:∠DEF ,使∠DEF =∠AOB作法:(1)以①为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心②长为半径画弧交EG 于点D ;(3)以点D 为圆心③长为半径画弧交(2)步中所画弧于点F ;(4)作④,∠DEF 即为所求作的角.A .①表示点EB .②表示PQC .③表示OQD .④表示射线EF8.(安徽七年级期末)如果α∠和β∠互余,则下列式子中表示α∠补角是()①180°-α∠;②α∠+2β∠;③2α∠+β∠;④β∠+90°A .①②④B .①②③C .①③④D .②③④9.(沈阳市第一二七中学初一期中)如图,下列条件:①12∠=∠;②45∠=∠;③25180+=︒∠∠;13∠=∠;⑤64180∠+∠=︒;其中能判断直线12l l //的有( )A .②③④B .②③⑤C .②④⑤D .②④10.(河北霸州·初一期末)如图,点在点北偏东方向上,点在点北偏西24︒方向上,点F 在点A 的正南方向上,点E 在CB 上, 64CEF ︒∠=,则关于点E 的位置叙述不正确的是( )A .点E 在点C 的北偏东40︒方向上 B .点E 在点F 的北偏西64︒方向上C .点E 在点F 的北偏西24︒方向上D .点E 在点B 的南偏西40︒方向上11.(石家庄市第二十七中学初一期中)如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x zyB C 40︒BA12.(四川宜宾市·七年级期末)把三角板ABC 按如图所示的位置放置,已知30CAB ∠=︒,90C ∠=︒,过三角板的顶点A 、B 分别作直线AD 、BE ,且//AD BE ,120DAE ∠=︒.给出以下结论:(1)1290∠+∠=︒;(2)2EAB ∠=∠;(3)CA 平分DAB ∠.其中正确结论有( )A .0个B .1个C .2个D .3个二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上13.(黑龙江七年级期末)两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.14.(广东揭阳·初一期中)如图一个合格的弯形管道ABCD 需要AB 边与CD 边平行,若一个拐角∠ABC =120°,则另一个拐角∠BCD =_____时,这个管道才符合要求.15.(北京七年级期末)如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.16.(四川八年级期末)已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.17.(广东八年级期末)如图,点P 、Q 分别在一组平行直线AB 、CD 上,在两直线间取一点E 使得250BPE DQE ∠+∠=︒,点F 、G 分别在BPE ∠、CQE ∠的角平分线上,且点F 、G 均在平行直线AB 、CD 之间,则PFG FGQ ∠-∠=__________.18.(江苏镇江·初一期末)镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动12°,B 灯每秒转动4°.B 灯先转动12秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 .三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(河南七年级期末)画图并度量,已知点A 是直线l 上一点,点M 、N 是直线l 外两点,画图:(1)画线段MA ,并用刻度尺找出它的中点B ;(2)画直线MN ,交直线l 于点C ,并用量角器画出MCA ∠的平分线CD ;(3)画出点M 到直线l 的垂线段MH ,并度量点M 到直线l 的距离为__cm .(精确到0.1cm )20.(四川省绵阳南山中学双语学校七年级月考)如图,,120,20,10/4/AD BC DAC ACF EFC ︒︒︒∠=∠=∠=.(1)求证://EF AD .(2)连接CE ,若CE 平分BCF ∠,求FEC ∠的度数.21.(吉林七年级期末)如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题.(1)求∠AEF 的度数;(2)∠A FD '= 度.22.(全国七年级专题练习)如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒(1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.23.(浙江七年级期末)已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠= .(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠.24.(浙江七年级)已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).25.(北京海淀实验中学初二开学考试)已知AB//CD,点M,N分别在直线AB、CD上,E是平面内一点,∠AME和∠CNE的平分线所在的直线相交于点F.(1)如图1,当E、F都在直线AB、CD之间且∠MEN=80°时,∠MFN的度数为 ;(2)如图2,当E在直线AB上方,F在直线CD下方时,探究∠MEN和∠MFN之间的数量关系,并证明你的结论;(3)如图3,当E在直线AB上方,F在直线AB和CD之间时,直接写出∠MEN 和∠MFN之间的数量关系 .北师大版七年级下册数学 单元测评培优卷(原版+解析版)第2章 相交线与平行线(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(福建南平·初一期中)如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB 的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是( )A .①③B .①④C .②③D .②④【答案】B 【分析】由A 、B 为定点可得AB 长为定值,进而可判断①;当P 点移动时,∠APB 的度数发生变化,PA +PB 的长也发生变化,于是可判断②、③;由直线l ∥AB 可得P 到AB 的距离为定值,于是可判断④,从而可得答案.【解析】解:∵A 、B 为定点,∴AB 长为定值,∴①线段AB 的长不会随点P 的移动而变化;当P 点移动时,∠APB 的度数发生变化,∴②∠APB 的度数会随点P 的移动而变化;当P 点移动时,PA +PB 的长发生变化,∴③△PAB 的周长会随点P 的移动而变化;∵点A ,B 为定点,直线l ∥AB ,∴P 到AB 的距离为定值,∴④△APB 的面积不会随点P 的移动而变化;综上,不会随点P 的移动而变化的是①④.故选:B .【点睛】本题考查了平行线的性质、同底等高的三角形的面积相等以及平行线间的距离等知识,熟练掌握上述基本知识是解题的关键.2.(重庆沙坪坝区·七年级期末)如图,下列说法错误的是( )A .∠1与∠3是对顶角B .∠3与∠4是内错角C .∠2与∠6是同位角D .∠3与∠5是同旁内角【答案】C【分析】根据对顶角定义、内错角定义、同位角定义、同旁内角定义进行分析即可.【详解】A 、∠1与∠3是对顶角,故A 说法正确;B 、∠3与∠4是内错角,故B 说法正确;C 、∠2与∠6不是同位角,故C 说法错误;D 、∠3与∠5是同旁内角,故D 说法正确;故选:C .【点睛】本题考查对顶角、内错角、同位角和同旁内角的定义,掌握其定义是选择本题答案的关键.3.(江苏七年级期末)如图,AD BC ⊥,ED AB ⊥,表示点D 到直线AB 距离的是线段( )的长度A .DBB .DEC .DAD .AE【答案】B 【分析】根据从直线外一点到这直线的垂线段的长度叫做点到直线的距离解答.【详解】解:∵ED ⊥AB ,∴点D 到直线AB 距离的是线段DE 的长度.故选:B .【点睛】本题考查了点到直线的距离的定义,是基础题,熟记概念并准确识图是解题的关键.4.(黑龙江七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°【答案】D 【分析】根据对顶角相等求出∠AOC ,根据角平分线的定义计算即可求出∠COE 的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE 平分∠AOC ,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D .【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.5.(河南七年级期末)如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+【答案】A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠ ;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD ∴3ABO ∠=∠ ∵1801AOB ∠=-∠ 又∵1802ABO ABO ∠=-∠-∠ ∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.6.(郑州中学七年级月考)将一副直角三角尺按如图所示的不同方式摆放,则图中α∠与β∠相等的是( ).A .B .C .D .【答案】D 【分析】结合题意,根据平行线、角的和差性质分析,即可得到答案.【详解】如下图选项A 中,12453075β∠=∠+∠=+= ,60α∠= ∴α∠与β∠不相等,故选项A 错误;如下图选项B 中,1β∠=∠,2α∠=∠∵12∠≠∠ ∴α∠与β∠不相等,故选项B 错误;如下图选项C 中,190β∠+∠=,190α∠+∠≠ ∴α∠与β∠不相等,故选项C 错误;如下图:选项D 中,190β∠+∠=,190α∠+∠= ∴α∠与β∠相等;故选:D .【点睛】本题考查了平行线、角的和差的知识;解题的关键是熟练掌握平行线、角的和差的性质,从而完成求解.7.(山西寿阳·期末)下面出示的的尺规作图题,题中符号代表的内容正确的是( )如图,已知∠AOB ,求作:∠DEF ,使∠DEF =∠AOB作法:(1)以①为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心②长为半径画弧交EG 于点D ;(3)以点D 为圆心③长为半径画弧交(2)步中所画弧于点F ;(4)作④,∠DEF 即为所求作的角.A .①表示点EB .②表示PQC .③表示OQD .④表示射线EF【答案】D 【分析】根据尺规作图作一个角等于已知角的方法即可判断.【解析】尺规作图作一个角等于已知角作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心OP 长为半径画弧交EG 于点D ;(3)以点D 为圆心PQ 长为半径画弧交(2)步中所画弧于点F ;(4)作射线EF ,∠DEF 即为所求作的角.所以A ,B ,C 选项都错误,D 选项正确.故选:D .【点睛】本题考查了作图-基本作图,解决本题的关键是掌握基本作图方法.8.(安徽七年级期末)如果α∠和β∠互余,则下列式子中表示α∠补角是()①180°-α∠;②α∠+2β∠;③2α∠+β∠;④β∠+90°A .①②④B .①②③C .①③④D .②③④【答案】A【分析】根据补角和余角的定义逐项判断即可.【详解】∵(180)180αα︒-∠+∠=︒,∴180α︒-∠是α∠的补角,故①正确.∵αβ∠∠,互余,∴(2)2()290180αβααβ∠+∠+∠=∠+∠=⨯︒=︒.∴2αβ∠+∠是α∠的补角,故②正确.∵αβ∠∠,互余,∴(2)290αβαα∠+∠+∠=∠+︒,∵无法判断α∠的大小,∴无法判断2αβ∠+∠是否为α∠的补角,故③无法确定.∵αβ∠∠,互余,∴(90)90=180βααβ∠+︒+∠=∠+∠+︒︒.∴90β∠+︒是α∠的补角,故④正确.综上可知:①②④正确.故选:A .【点睛】本题考查补角和余角的定义.掌握两个角互余,那么这两个角相加等于90︒;两个角互补,那么这两个角相加等于180︒是解答本题的关键.9.(沈阳市第一二七中学初一期中)如图,下列条件:①12∠=∠;②45∠=∠;③25180+=︒∠∠;13∠=∠;⑤64180∠+∠=︒;其中能判断直线12l l //的有( )A .②③④B .②③⑤C .②④⑤D .②④【答案】D 【分析】根据平行线的判定方法,对每一项进行分析判断即可解决.【解析】根据同为角相等两直线平行可以判断②45∠=∠,④13∠=∠正确;①12∠=∠非同位角非内错角无法判断直线平行,错误③25180+=︒∠∠,⑤64180∠+∠=︒非同旁内角,无法判断两直线平行.故选D.【点睛】本题考查了平行线的判定,解决本题的关键:正确理解题意能够从图形中找到同位角、同旁内角、内错角,熟练掌握平行线的判定方法.10.(河北霸州·初一期末)如图,点在点北偏东方向上,点在点北偏西24︒方向上,点F 在点A 的正南方向上,点E 在CB 上, 64CEF ︒∠=,则关于点E 的位置叙述不正确的是( )A .点E 在点C 的北偏东40︒方向上 B .点E 在点F 的北偏西64︒方向上C .点E 在点F 的北偏西24︒方向上D .点E 在点B 的南偏西40︒方向上【答案】B【分析】过B 点作BM//CD ,结合已知条件得出40︒∠=∠=DCB MBC ,24︒∠=∠=NAB MBA ,从而得出64CBA ︒∠=,证得EF//AB ,得出24︒∠=∠=NAB F ,根据角度逐一对各项进行判断即可∵∴【解析】解: 过B 点作BM//CD ,则BM//CD//FN ;∴40︒∠=∠=DCB MBC ,24︒∠=∠=NAB MBA ∴402464︒︒︒∠=+=ABC B C 40︒BA∵64CEF ︒∠=∴∠=∠CEF ABC ∴EF//AB ∴24︒∠=∠=NAB F ;∴点E 在点F 的北偏西24︒方向上;选项C 正确;选项B 不正确;∵点E 在CB 上,∴点E 在点C 的北偏东40︒方向上,选项A 正确;∵40︒∠=∠=DCB MBC ∴点E 在点F 的南偏西40︒方向上,选项D 正确;故选:B【点睛】本题考查了方向角问题,涉及到平行线的性质与判定,熟练掌握相关知识是解题的关键11.(石家庄市第二十七中学初一期中)如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y【答案】B【分析】根据平行线的性质可得∠CEF=180°-y ,x=z+∠CEF ,利用等量代换可得x=z+180°-y ,再变形即可.【解析】解:∵CD ∥EF ,∴∠C+∠CEF=180°,∴∠CEF=180°-y ,∵AB ∥CD ,∴x=z+∠CEF ,∴x=z+180°-y ,∴x+y-z=180°,故选:B .12.(四川宜宾市·七年级期末)把三角板ABC 按如图所示的位置放置,已知30CAB ∠=︒,90C ∠=︒,过三角板的顶点A 、B 分别作直线AD 、BE ,且//AD BE ,120DAE ∠=︒.给出以下结论:(1)1290∠+∠=︒;(2)2EAB ∠=∠;(3)CA 平分DAB ∠.其中正确结论有( )A .0个B .1个C .2个D .3个【答案】C【分析】根据//AD BE 和90BAC ABC ∠+∠=︒易证1290∠+∠=︒,故(1)正确.再由角的等量关系可知901BAE ∠=︒-∠,即证明出2BAE ∠=∠.故(2)正确.根据1∠的大小随BAE ∠的大小变化而变化,而30CAB ∠=︒固定,所以CA 不一定平分DAB ∠.故(3)错误.即可选出结果.【详解】∵//AD BE ,∴(1)(2)180BAC ABC ∠+∠+∠+∠=︒.∵90BAC ABC ∠+∠=︒.∴1290∠+∠=︒,故(1)正确.∵1120301901BAE DAE CAB ∠=∠-∠-∠=︒-︒-∠=︒-∠,∵1290∠+∠=︒,∴90(902)2BAE ∠=︒-︒-∠=∠.故(2)正确.∵11203090DAE CAB BAE BAE BAE ∠=∠-∠-∠=︒-︒-∠=︒-∠,∴1∠的大小随BAE ∠的大小变化而变化,∵30CAB ∠=︒固定,∴CA 不一定平分DAB ∠.故(3)错误.综上,正确的结论有两个.故选:C .【点睛】本题考查平行线的性质、余角以及判断角平分线.根据平行线的性质与余角得出角之间的数量关系是解答本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上13.(黑龙江七年级期末)两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.【答案】72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-,解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点.14.(广东揭阳·初一期中)如图一个合格的弯形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=120°,则另一个拐角∠BCD=_____时,这个管道才符合要求.【答案】60°【分析】根据平行线的性质得出∠ABC+∠BCD=180°,代入求出即可.【解析】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=120°,∴∠BCD=60°,故答案为:60°.【点睛】此题考查的是平行线性质的应用,掌握两直线平行,同旁内角互补是解决此题的关键.15.(北京七年级期末)如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B 到直线m的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.【答案】c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,由题意得:AD=a , BH=b ,AB=c ;根据点到直线垂线段最短,可知AB >AD ,AB >BH ∴c >a ,c >b ;∴c 最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.16.(四川八年级期末)已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.【答案】126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l 1∥l 2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l 1∥l 2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.17.(广东八年级期末)如图,点P 、Q 分别在一组平行直线AB 、CD 上,在两直线间取一点E 使得250BPE DQE ∠+∠=︒,点F 、G 分别在BPE ∠、CQE ∠的角平分线上,且点F 、G 均在平行直线AB 、CD 之间,则PFG FGQ ∠-∠=__________.【答案】35°【分析】过点F 作//FK AB ,过点G 作//GH CD ,利用平行线的性质和角平分线的定义即可求解.【详解】过点F 作//FK AB ,过点G 作//GH CD ,∵PF 平分BPE ∠,QG 平分CQE ∠,设BPF EPF x ∠==,CQG EQG y ∠=∠=,∵250BPE DQE ∠+∠=︒∴21802250BPE DQE x y ∠+∠=+︒-=︒,∴35x y -=︒,∵//,//,//FK AB GH CD AB CD ,∴//////AB FK GH CD ,∴PFK BPF x ∠=∠=,HGQ CQG y ∠=∠=,KFG HGQ =∠,∴()PFG FGQ PFK KFG HGF HGQ ∠-∠=∠+∠-∠+∠35x KFG HGF y x y =+∠-∠-=-=︒故35PFG FGQ ∠-∠=︒.【点睛】本题考查平行线的性质,根据题意作出平行线是解题的关键.18.(江苏镇江·初一期末)镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动12°,B 灯每秒转动4°.B 灯先转动12秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 .【答案】6秒或19.5秒【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.【解析】解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.故答案为:6秒或19.5秒.【点睛】本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(河南七年级期末)画图并度量,已知点A是直线l上一点,点M、N是直线l外两点,画图:(1)画线段MA,并用刻度尺找出它的中点B;(2)画直线MN,交直线l于点C,并用量角器画 的平分线CD;(3)画出点M到直线l的垂线段MH,并度量点M到直线l的距离为__出MCAcm.(精确到0.1cm)【答案】(1)见详解;(2)见详解;(3)4.0.【分析】(1)用刻度尺画出线段MA ,量得线段AM=4.5cm ,在线段MA 上画以A 为端点,长为1 4.5=2.252⨯cm 的线段,这个线段的另一个端点就是线段MA 的中点;(2)如图,用直尺过点M 、N 画直线MN ,测出=50MCA ∠︒,再画出以点C 为顶点,AC 为一边的角ACD=25∠︒ ,则CD 即为所求的MCA ∠的平分线CD ;(3)如图,用三角板画点M 到直线l 的垂线段MH ,测得线段MH=4.0cm【详解】解:(1)如图,连结AM ,测得AM=4.5cm ,在线段AM 上画以A 为端点,长为1 4.5=2.252⨯cm 的线段AB ,点B 即是所求线段AM 的中点,;(2)如图,①用直尺过点M 、N 画直线MN ,②测出=50MCA ∠︒,再画出以点C 为顶点,AC 为一边的角ACD=25∠︒ ,则CD 即为所求的MCA ∠的平分线CD ;(3)如图,用三角板画点M 到直线l 的垂线段MH ,测得线段MH=4.0cm ,故答案为:4.0cm .【点睛】本题考查作图-复杂作图,直线,射线,线段,垂线段,测量线段和角的大小等知识,解题的关键是熟练掌握作图的基本知识,属于常考题型.20.(四川省绵阳南山中学双语学校七年级月考)如图,,120,20,10/4/AD BC DAC ACF EFC ︒︒︒∠=∠=∠=.(1)求证://EF AD .(2)连接CE ,若CE 平分BCF ∠,求FEC ∠的度数.【答案】(1)证明见解析;(2)20︒【分析】(1)先根据平行线的性质,得到∠ACB 的度数,进而得出∠BCF 的度数,再根据∠EFC =140°,即可得到EF //BC ,进而得出AD //EF ;(2)先根据CE 平分∠BCF ,可得∠BCE =20°,再根据EF //BC ,即可得到∠FEC =20°.【详解】解:(1)∵AD //BC ,∴∠ACB +∠DAC =180°,∵∠DAC =120°,∴∠ACB =60°,又∵∠ACF =20°,∴∠FCB =∠ACB−∠ACF =40°,∵∠EFC =140°,∴∠FCB +∠EFC =180°,∴EF //BC ,∴EF //AD ;(2)∵CE 平分∠BCF ,∴∠BCE =20°,∵EF //BC ,∴∠FEC =∠ECB ,∴∠FEC =20°.【点睛】本题主要考查平行线的性质以及判定,能熟练地运用平行线的性质进行推理是解此题的关键.21.(吉林七年级期末)如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题.(1)求∠AEF 的度数;(2)∠A FD '= 度.【答案】(1)60°;(2)120【分析】(1)根据折叠的性质以及角平分线的定义可知∠AEF =∠A'EF =∠A'EB ,再根据平角的定义求解即可;(2)根据折叠的性质、互余的定义以及(1)的结论可得∠AFA'的度数,进而得出∠A'FD 的度数.【详解】解:(1)根据折叠的性质可得∠AEF =∠A'EF ,∵EA'恰好平分∠FEB ,∴∠AEF =∠A'EF =∠A'EB ,∵∠AEF+A'EF+∠A'EB =180°,所以∠AEF =60°;(2)∵∠AFE 和∠AEF 互为余角,∴∠AFE =90°﹣∠AEF =30°,根据折叠的性质可得∠AFA'=2∠AFE =60°,∴∠A'FD =180°﹣∠AFA'=120°.故答案为:120.【点睛】本题主要考查了角的计算问题,掌握折叠的性质并理清相关角的关系是解答本题的关键.22.(全国七年级专题练习)如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒(1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.【答案】(1)60A ∠= ;(2)不变化,2APB ADB ∠=∠,理由见解析;(3)30ABC ∠=【分析】(1)结合题意,根据角平分线的性质,得ABN ∠;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得APB PBN ∠=∠,ADB DBN ∠=∠;结合角平分线性质,得2APB ADB ∠=∠,即可完成求解;(3)根据平行线的性质,得ACB CBN ∠=∠;结合ACB ABD =∠∠,推导得ABC DBN ∠=∠;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC ,BD 分别评分ABP ∠和PBN ∠,∴1122CBP ABP DBP PBN ∠=∠∠=∠,,∴2ABN CBD ∠=∠又∵60CBD ∠= ,∴120ABN ∠= ∵//AM BN ,∴180A ABN ∠+∠= ∴60A ∠= ;(2)∵//AM BN ,∴APB PBN ∠=∠,ADB DBN∠=∠又∵BD 平分PBN ∠∴2PBN DBN ∠=∠,∴2APB ADB ∠=∠;∴APB ∠与ADB ∠之间的数量关系保持不变;(3)∵//AD BN ,∴ACB CBN ∠=∠ 又∵ACB ABD =∠∠,∴CBN ABD ∠=∠,∵ABC CBN ABD DBN ∠+∠=∠+∠∴ABC DBN∠=∠由(1)可得60CBD ∠= ,120ABN ∠= ∴()112060302ABC ∠=⨯-= .【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.23.(浙江七年级期末)已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠= .(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠.【答案】(1)90AOE ∠=︒;(2)①80AOE ∠=︒;②60(1201n AOE n -+∠=︒.【分析】(1)依据角平分线的定义可求得30COD ∠=︒,再依据角的和差依次可求得EOC ∠和∠BOE ,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论;②根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论.【详解】解:(1)∵OD 平分BOC ∠,60BOC EOD ∠=∠=︒,∴1302COD BOC ∠=∠=︒,∴30EOC EOD COD ∠=∠-∠=︒,∴90BOE EOC BOC ∠=∠+∠=︒,∴18090AOE BOE ∠=︒-∠=︒;(2)①∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:2COD BOD ∠∠=,∴260403BOD ∠=︒⨯=︒,∴40EOC BOD ∠=∠=︒,∴100BOE EOC BOC ∠=∠+∠=︒,∴18080AOE BOE ∠=︒-∠=︒;②∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:COD BOD n ∠∠=,∴6060(11n n BOD n n ∠=︒⨯=︒++,∴60()1n EOC BOD n ∠=∠=︒+,∴60(60)1BOE EOC BOC n n ∠=∠+∠+=︒+,∴18060(120)1AOE BO n E n ∠=︒-∠=-︒+.【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.24.(浙江七年级)已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).【答案】(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC .∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.25.(北京海淀实验中学初二开学考试)已知AB//CD,点M,N分别在直线AB、CD上,E是平面内一点,∠AME和∠CNE的平分线所在的直线相交于点F.(1)如图1,当E、F都在直线AB、CD之间且∠MEN=80°时,∠MFN的度数为 ;(2)如图2,当E在直线AB上方,F在直线CD下方时,探究∠MEN和∠MFN之间的数量关系,并证明你的结论;(3)如图3,当E在直线AB上方,F在直线AB和CD之间时,直接写出∠MEN 和∠MFN之间的数量关系 .【答案】(1)45°;(2)∠MEN=2∠MFN,证明见解析;(3)1180 2E MFN∠+∠=︒【分析】(1)过E作EH∥AB,FG∥AB,根据平行线的性质得到∠BME=∠MEH,∠DNE=∠NEH,根据角平分线的定义得到∠BMF+∠DNF=12(∠BME+∠DNE)=45°,于是得到结论;(2)根据三角形的外角的性质得到∠E=∠EGB﹣∠EMB,根据平行线的性质得到∠EGB=∠END,∠FHB=∠FND,根据角平分线的定义得到∠EMB=2∠FMB,∠END=2∠FND,于是得到结论;(3)根据平行线的性质得到∠5=∠END,根据角平分线的定义得到∠5=∠END=2∠4,∠BME=2∠1=∠E+∠5=∠E+2∠4,根据三角形的外角的性质和四边形的内角和即可得到结论.【解析】解:(1)如图1,过E作EH∥AB,FG∥AB,∵AB∥CD,∴EH∥CD,FG∥CD,∴∠BME=∠MEH,∠DNE=∠NEH,∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=90°,同理∠MFN=∠BMF+∠DNF,∵ME平分∠BMF,FN平分∠CNE,∴∠BME+∠DNF=12(∠BME+∠DNE)=45°,∴∠MFN的度数为45°;故答案为:45°;。
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)北师大版七年级下册数学第二章相交线与平行线测试题(附答案)一、单选题1.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A。
39° B。
45° C。
50° D。
51°2.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A。
130° B。
50° C。
40° D。
25°3.如图,三点共线A、B、C,D、E、F三点共线,且AD∥CF,BE∥CD,下列结论错误的是()A。
∠ABE=∠XXX∠ABE=∠CDEC。
∠ABE=∠XXX∠ABE=∠BDF4.如图,平行线AB∥CD,EF⊥CD,垂足为G,图中∠AGE=()A。
90° B。
45° C。
30° D。
60°5.如图,互余的角有()A。
1个 B。
2个 C。
3个 D。
4个6.如图,AB∥CD,EF∥GH,则下列等式正确的是()A。
∠AEF=∠GHF B。
∠AEF=∠HGFC。
∠XXX∠GHF D。
∠XXX∠HGF7.已知同一平面内的三条直线AB,CD,EF,AB∥CD,CD∥EF,则下列结论错误的是()A。
AB∥EF B。
AB∥CD C。
EF∥CD D。
AB∥EF8.如果a<b,且a+b=5c,如果c<a,b<c,比a与b 的和的3倍少2,那么a与b的位置关系是()A。
a<b B。
a>b C。
a=b D.无法确定9.如图,已知AB∥CD,AE=2cm,EC=3cm,则图中互相平行的线段是()A。
AB//CD B。
AE//DC C。
BE//CD D。
AB//EC10.如图,AB∥CD,点E在直线AD上,且∠AEC=34°,则∠BED的大小为()A。
北师大版七年级数学下册第2章《相交线与平行线》培优试题与简答一.选择题(共10小题,每小题3分,共30分)1.如图,将一副三角尺按图中位置摆放( )A .90αβ∠+∠=︒B .αβ∠>∠C .αβ∠=∠D .45α∠=︒2.若α∠与β∠互补()αβ∠<∠,则α∠与1()2βα∠-∠的关系是( )A .互补B .互余C .和为45︒D .和为22.5︒3.平面内两两相交的3条直线,其交点个数最少为m 个,最多为n 个,则m n +等于( )A .4B .5C .6D .以上都不对4.如图,AD AC ⊥交BC 的延长线于点D ,AE BC ⊥交BC 的延长线于点E ,CF AB ⊥于点F ,则图中能表示点A 到直线BC 的距离的是( )A .AD 的长度B .AE 的长度C .AC 的长度D .CF 的长度A .AD 的长度B .AE 的长度C .AC 的长度D .CF 的长度5.如图,直线DE 与BC 相交于点O ,1∠与2∠互余,116AOE ∠=︒,则BOE ∠的度数是( )A .144︒B .164︒C .154︒D .150︒6.以下说法正确的是( )A .两点之间直线最短B .延长直线AB 到点E ,使BE AB =C .相等的角是对顶角D .连结两点的线段的长度就是这两点间的距离7.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角第4题图第5题图B .1∠与4∠是内错角C .5∠与6∠是内错角D .3∠与5∠是同位角8.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .12∠=∠B .23∠=∠C .15∠=∠D .34180∠+∠=︒9.如图,已知//AB CD ,CE 平分ACD ∠,交AB 于点B ,150ABE ∠=︒,则A ∠为( )A .110︒B .120︒C .135︒D .150︒10.如图,//AB EF ,90C ∠=︒,则α、β、γ的关系为( )A .βαγ=+B .90αβγ+-=︒C .180αβγ++=︒D .90βγα+-=︒二.填空题(共8小题,每小题3分,共24分)11.如图,直角三角形ABC 中,AC BC ⊥,CD AB ⊥,点A 到直线BC 的距离等于线段 的长度,点A 到直线CD 的距离等于线段 的长度.12.已知1∠与2∠互余,2∠与3∠互补,若13327'∠=︒,则3∠= .13.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,OF 平分BOC ∠,则EOF ∠= 度.第7题图第8题图第9题图第10题图第11题图14.如图,与1∠是同旁内角的是 ,与2∠是内错角的是 .15.根据给出的图形,写出一个使得//a b 的条件: .(写出一个即可,多写不加分)16.如图,已知//AB CE ,50B ∠=︒, CE 平分ACD ∠,则ACD ∠= ︒17.如图,////AB CD EF ,且CF 平分AFE ∠,若20C ∠=︒,则A ∠的度数是 .18.如图,将木条a ,b 和c 钉在一起,150∠=︒,275∠=︒,要使木条a 和b 平行,木条a 至少要旋转的度数为 .三.解答题(共6小题,满分46分,其中19题6分20、21每小题7分,22、23每小题8分,24题10分)19.一个角的补角加上10︒后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.20.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.第13题图第14题图第15题图第16题图第17题图第18题图21.已知,如图,ABC ADC∠=∠,BF,DE分别平分ABC∠与ADC∠,且13∠=∠.求证://AB DC,请根据条件进行推理,得出结论,并在括号内注明理由.证明:BF,DE分别平分ABC∠与ADC∠,(已知)1 12ABC∴∠=∠,122ADC∠=∠.( )ABC ADC∠=∠,( )∴∠ =∠ (等量代换)13(∠=∠ )2∴∠=∠ .( )∴ // .( )22.如图,E,F分别是AB和CD上的点,CE,BF分别交AD于G,H,12∠=∠,B C∠=∠.求证://AB CD.23.如图,将一张上、下两边平行(即//)AB CD的纸带沿直线MN折叠,EF为折痕.(1)试说明12∠=∠;(2)已知240∠=︒,求BEF∠的度数.24.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ∠=︒,30D ∠=︒;45)E B ∠=∠=︒.(1)如图1,①若40DCE ∠=︒,求ACB ∠的度数;②若150ACB ∠=︒,直接写出DCE ∠的度数是 度.(2)由(1)猜想ACB ∠与DCE ∠满足的数量关系是 .(3)若固定ACD ∆,将BCE ∆绕点C 旋转,①当旋转至//BE AC (如图2)时,直接写出ACE ∠的度数是 度.②继续旋转至//BC DA (如图3)时,求ACE ∠的度数.北师大版七年级数学下册第2章《相交线与平行线》培优试题参考简答一.选择题(共10小题)1.C . 2.B . 3.A . 4.B . 5.C . 6.D . 7.B . 8.C .9.B . 10.B .二.填空题(共8小题)11. AC , AD . 12. 12327'︒ . 13. 90 . 14. 5∠ , 3∠ .15. 13∠=∠ . 16. 100 ︒ 17. 40︒ . 18. 25︒ .三.解答题(共6小题)19.一个角的补角加上10︒后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【解】:设这个角为x ︒,则180103(90)x x -+=-,解得:40x =.即这个角的余角是50︒,补角是140︒.20.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.【解】:(1)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,42AOB ∠=︒,36DOE ∠=︒,1422AOB BOC AOC ∴∠=∠=∠=︒,36COD DOE ∠=∠=︒,423678BOD BOC DOC ∴∠=∠+∠=︒+︒=︒;(2)AOD ∠ 与BOD ∠互补,12BOC AOC ∠=∠,180AOD BOD ∴∠+∠=︒,11802AOC COD AOC COD ∴∠+∠+∠+∠=︒,30DOE ∠=︒ ,30COD∴∠=︒,∴321802AOC COD∠+∠=︒,∴32301802AOC∠+⨯︒=︒,80AOC∴∠=︒.21.已知,如图,ABC ADC∠=∠,BF,DE分别平分ABC∠与ADC∠,且13∠=∠.求证://AB DC,请根据条件进行推理,得出结论,并在括号内注明理由.证明:BF,DE分别平分ABC∠与ADC∠,(已知)1 12ABC∴∠=∠,122ADC∠=∠.( 角平分线的定义 )ABC ADC∠=∠,( )∴∠ =∠ (等量代换)13(∠=∠ )2∴∠=∠ .( )∴ // .( )【证明】:BF,DE分别平分ABC∠与ADC∠,(已知)1 12ABC∴∠=∠,122ADC∠=∠.(角平分线的定义)ABC ADC∠=∠,(已知)12∴∠=∠,(等量代换)13∠=∠,(已知)23∴∠=∠.(等量代换)//AB DC∴.(内错角相等,两直线平行)22.如图,E,F分别是AB和CD上的点,CE,BF分别交AD于G,H,12∠=∠,B C∠=∠.求证://AB CD.【证明】:如图,13∠=∠,∠=∠,12∴∠=∠,32∴,CE BF//∴∠=∠,BFD C,∠=∠B C∴∠=∠,BFD B∴.AB CD//AB CD的纸带沿直线MN折叠,EF为折痕.23.如图,将一张上、下两边平行(即//)(1)试说明12∠=∠;∠的度数.(2)已知240∠=︒,求BEF∴∠=∠,【解】:(1)//AB CD,MEB MFD'',//A E C F∴∠'=∠',MEA MFC∴∠'-∠=∠'-∠,MEA MEB MFC MFD∠=∠;即12(2)由折叠知,1802702C FN ︒-∠∠'==︒,//A E C F '' ,70A EN C FN ∴∠'=∠'=︒,12∠=∠ ,7040110BEF ∴∠=︒+︒=︒.24.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ∠=︒,30D ∠=︒;45)E B ∠=∠=︒.(1)如图1,①若40DCE ∠=︒,求ACB ∠的度数;②若150ACB ∠=︒,直接写出DCE ∠的度数是 度.(2)由(1)猜想ACB ∠与DCE ∠满足的数量关系是 .(3)若固定ACD ∆,将BCE ∆绕点C 旋转,①当旋转至//BE AC (如图2)时,直接写出ACE ∠的度数是 度.②继续旋转至//BC DA (如图3)时,求ACE ∠的度数.【解】:(1)①40DCE ∠=︒ ,50ACE ACD DCE ∴∠=∠-∠=︒,5090140ACB ACE ECB ∴∠=∠+∠=︒+︒=︒;②150ACB ∠=︒ ,90ACD ∠=︒,1509060ACE ∴∠=︒-︒=︒,906030DCE ACD ACE ∴∠=∠-∠=︒-︒=︒,(2)9090ACB ACD BCE DCE DCE ∠=∠+∠-∠=︒+︒-∠ ,180ACB DCE ∴∠+∠=︒,(3)①//,BE ACACE E∴∠=∠=︒,45②//,BC DA∴∠+∠=︒,180A ACB又60A,∠=︒∴∠=︒-︒=︒,18060120ACB,∠=︒90BCE∴∠=∠-∠=︒-︒=︒.1209030 BCD ACB ECB。
北师大版七下第2章《相交线与平行线》培优拔尖习题姓名:___________班级:___________学号:___________一.选择题(共8小题)1.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′2.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短3.如图所示,用量角器度量一些角的度数,下列结论中错误的是()A.OA⊥OC B.∠AOD=135°C.∠AOB=∠COD D.∠BOC与∠AOD互补4.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠5 B.∠1=∠3 C.∠5=∠4 D.∠1+∠5=180°5.如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60°B.70°C.80°D.90°6.如图,若AB∥EF,AB∥CD.则下列各式成立的是()A.∠2+∠3﹣∠1=180°B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°7.如图所示,直线AB,CD,EF,MN,GH相交于点O,则图中对顶角共有()A.3对B.6对C.12对D.20对8.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CDB.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CDD.由∠MAB=∠ACD,得AB∥CD二.填空题(共8小题)9.如果∠1和∠2互补,∠2比∠1大10°,则∠1=度,∠2=度.10.如图,A,O,B三点在同一条直线上,OD,OE分别平分∠BOC,∠AOC,则图中与∠AOE互余的角有个.11.如图,AB∥A′B′,BC∥B′C′,AB交B′C′于D.请判定∠B与∠B′的数量关系是.12.如图所示,AB与CD交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,则∠AOE=度,∠DOF=度.13.如图所示,已知AB∥CD,∠BAE=α,∠AED=β,∠CDE=γ,则α,β,γ之间的关系为.14.如图,已知∠1=∠2,再添上条件:可使EB∥FD成立..15.如图,∠1=68゜,∠2=68゜,∠3=112゜,图中互相平行的直线有.16.如图,直线AB⊥l1,l1∥l2,∠1=75°,则∠2的大小为.三.解答题(共6小题)17.如图,已知两条直线a,b被第三条直线c所截,且∠1+∠2=180°,问:直线a和直线b是否平行,请说明理由.18.填空(如图):在上图中:①∠1=∠2,理由是.②如果a∥b,那么∠1与∠4的关系是,理由是.③如果a∥b,那么∠2与∠4的关系是,理由是.④如果a∥b,那么∠2与∠3的关系是,理由是.19.已知如图,AO⊥BC,DO⊥OE.(1)在不添加其它条件情况下,请写出图中三对相等的角;(2)如果∠COE=35°,求∠BOD的度数.20.如图,已知直线a∥b,∠1=(4x+60)°,∠2=(6x+30)°,求∠1、∠2的度数.21.已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由;(3)若∠BOC=α,∠AOC=β,则∠DOE与∠AOB是否互补,并说明理由.22.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.参考答案一.选择题(共8小题)1.【解答】解:∵OA⊥OB,∴∠AOB=90°∵∠1=55°30′,∴∠2=90°﹣55°30′=34°30′,故选:B.2.【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.3.【解答】解:观察图象可知,OC⊥OA,∠AOB=∠COD,∠OBC与∠AOD互补,故A,C,D正确,故选:B.4.【解答】解:∵∠2=∠5,∴a∥b,∵∠4=∠5,∴a∥b,∵∠1+∠5=180°,∴a∥b,故选:B.5.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF;∴∠B=∠BCF,∠FCD+∠D=180°,∴∠BCD=180°﹣∠D+∠B=180°﹣130°+20°=70°.故选:B.6.【解答】解:∵AB∥EF,AB∥CD,∴EF∥CD,∴∠3=∠CGE,∴∠3﹣∠1=∠CGE﹣∠1=∠BGE,∵AB∥EG,∴∠2+∠BGE=180°,即∠2+∠3﹣∠1=180°,故选:A.7.【解答】解:2条直线交于一点,对顶角有2对,2=2×1;3条直线交于一点,对顶角有6对,6=3×2;4条直线交于一点,对顶角有12对,12=4×3;由规律可得,n条不同直线相交于一点,可以得到n(n﹣1)对对顶角,∴直线AB,CD,EF,MN,GH相交于点O,对顶角共有5×4=20对,故选:D.8.【解答】解:A、正确,同位角∠CAB=∠NCD,故AB∥CD;B、错误,∠DCN=∠BAC不是同位角,所以B不对;C、正确,∠MAE=∠ACG,∠DCG=∠BAE,可得同位角∠BAN=∠DCN,故AB∥CD;D、正确,同位角∠MAB=∠ACD,故AB∥CD.故选:B.二.填空题(共8小题)9.【解答】解:∠1+∠2=180°,∠2﹣∠1=10°,所以∠1=85°,∠2=95°.故答案为85、95.10.【解答】解:如图,A,O,B三点在同一条直线上,∵OD,OE分别平分∠BOC,∠AOC,∴∠DOE=90°,根据余角的定义,∠AOE+∠BOD=90°,∠AOE+∠COD=90°.∴图中与∠AOE互余的角有2个.11.【解答】解:∵BC∥B′C′,∴∠B=∠ADB′,∵AD∥A′B′,∴∠B′+∠ADB′=180°.∴∠B+∠B′=180°.∴∠B与∠B′的数量关系是互补.故填空答案:互补.12.【解答】解:∵OE⊥CD,OF⊥AB,∴∠DOE=∠BOF=90°,∵∠AOE+∠DOE+∠BOD=∠AOB,∠BOD=25°,∴∠AOE+90°+25°=180°,解得∠AOE=65°,∴∠DOF=∠BOF+∠BOD=90°+25°=115°.故填65,115.13.【解答】解:过点E作EF∥AB,则EF∥CD.运用两次平行线的性质,即:两条直线平行,同旁内角互补;两条直线平行,内错角相等.即可证明:α+β﹣γ=180°.14.【解答】解:∵AB∥CD,∴∠ABM=∠CDM(两直线平行,同位角相等).∵∠1=∠2,∴∠ABM+∠1=∠CDM+∠2,即∠EBM=∠FDM,∴EB∥FD(同位角相等,两直线平行).15.【解答】解:∵∠1=68゜,∠2=68゜,∴a∥b,∵∠2=68゜,∠3=112゜,∴∠2+∠3=180°,∴b∥c,∴a∥b∥c,故答案为:a∥b∥c.16.【解答】解:过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=75°,∴∠2=∠ABD+∠EBD=165°.故答案为:165°三.解答题(共6小题)17.【解答】解:答:直线a直线b平行.如图:∵∠1=∠3,且∠1+∠2=180°,又,∠3+∠2=180°∴a∥b18.【解答】解:如图,①∵∠1和∠2是对顶角,∴∠1=∠2(对顶角相等);②∵a∥b,∠1和∠4是同位角,∴∠1=∠4(两直线平行,同位角相等);③∵a∥b,∠2和∠4是内错角,∴∠2=∠4(两直线平行,内错角相等);④∵a∥b,∠2和∠3是同旁内角,∴∠2+∠3=180°(两直线平行,同旁内角互补).故答案为:①对顶角相等;②∠1=∠4;两直线平行,同位角相等;③∠2=∠4;两直线平行,内错角相等;④∠2+∠3=180°;两直线平行,同旁内角互补.19.【解答】解:(1)相等的角所有:∠COE=∠AOD,∠AOE=∠BOD,∠BOE=∠COD,∠AOB=∠AOC=∠DOE(任意三个即可);(2)∵DO⊥OE,∴∠DOE=90°,∴∠BOD=180°﹣∠COE﹣∠DOE,=180°﹣35°﹣90°,=55°.20.【解答】解:∵a∥b,∴∠1=∠2,(两直线平行,同位角相等)(2′)∴(4x+60)=(6x+30),即2x=30,解得:x=15.(4′)∴∠1=(4x+60)°=120°,∠2=(6x+30)°=120°.(6′)21.【解答】解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°,(2)∠DOE与∠AOB互补,理由如下:∵∠DOC=∠BOC=×70°=35°,∠COE=∠AOC=×50°=25°.∴∠DOE=∠DOC+∠COE=35°+25°=60°.∴∠DOE+∠AOB=60°+70°+70°=180°,∴∠DOE与∠AOB互补.(3)∠DOE与∠AOB不互补,理由如下:∵∠DOC=∠BOC=α,∠COE=∠AOC=β,∴∠DOE=∠DOC+∠COE=α+β=(α+β),∴∠DOE+∠AOB=(α+β)+(α+β)=(α+β),∴∠DOE与∠AOB不互补.22.【解答】解:(1)∠BED=2∠BFD.证明:连接FE并延长,∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,∴∠BED=∠BFD+∠EBF+∠EDF,∵BF、DF分别平分∠ABE、∠CDE,∴∠ABE+∠CDE=2(∠EBF+∠EDF),∵∠BED=∠ABE+∠CDE,∴∠EBF+∠EDF=∠BED,∴∠BED=∠BFD+∠BED,∴∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)由(1)(2)可得∠BED=n∠BFD.北师大版。
北师大版七年级数学下册第二章相交线与平行线综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°2、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有()对.A.5 B.4 C.3 D.23、如图,∠1与∠2是同位角的是()① ② ③ ④A.①B.②C.③D.④4、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A.线段AC的长度表示点C到AB的距离B.线段AD的长度表示点A到BC的距离C.线段CD的长度表示点C到AD的距离D.线段BD的长度表示点A到BD的距离5、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是()A.152°B.28°C.52°D.90°6、下列语句中叙述正确的有()①画直线3AB cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③等角的余角相等;④射线AB与射线BA是同一条射线.A.0个B.1个C.2个D.3个7、已知40A∠=︒,则A∠的余角的补角是()A.130︒B.120︒C.50︒D.60︒8、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°9、如果两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角的度数分别是()A.48°,72°B.72°,108°C.48°,72°或72°,108°D.80°,120°10、若∠α=55°,则∠α的余角是()A.35°B.45°C.135°D.145°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a b∥,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.2、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.3、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.4、图中∠AOB的余角大小是_____°(精确到1°).5、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角()(2)如果两个角相等,那么这两个角是对顶角()(3)有一条公共边的两个角是邻补角()(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )三、解答题(5小题,每小题10分,共计50分)1、已知AB ∥CD ,点E 在AB 上,点F 在DC 上,点G 为射线EF 上一点.(基础问题)如图1,试说明:∠AGD =∠A +∠D .(完成图中的填空部分).证明:过点G 作直线MN∥AB ,又∵AB∥CD ,∴MN∥CD ( )∵MN∥AB ,∴∠A =( )( )∵MN∥CD ,∴∠D = ( )∴∠AGD =∠AGM +∠DGM =∠A +∠D .(类比探究)如图2,当点G 在线段EF 延长线上时,直接写出∠AGD 、∠A 、∠D 三者之间的数量关系.(应用拓展)如图3,AH 平分∠GAB ,DH 交AH 于点H ,且∠GDH =2∠HDC ,∠HDC =22°,∠H =32°,直接写出∠DGA 的度数.2、已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.3、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.4、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF 开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.5、如图,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE比它的补角大100°,将一直角三角板AOB的直角点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒10°的速度逆时针旋转一周.设旋转时间为t秒.(1)求∠COE的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC=∠BOE?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC平分∠BOE.直接写出t的值.(本题中的角均为大0°且小180°的角)-参考答案-一、单选题1、C【分析】如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.2、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.3、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.4、D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.5、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.6、B【分析】根据直线的性质判断①,根据两点间距离的定义判断②,根据余角的性质判断③,根据射线的表示方法判断④.【详解】解:因为直线是向两端无限延伸的,所以①不正确;因为连接两点间的线段的长度,叫做这两点间的距离,所以②不正确;③正确;因为射线AB和射线BA的端点不同,延伸方向也不同,所以④不正确.故选:B.【点睛】本题考查直线的性质,两点间的距离的定义(连接两点间的线段的长度,叫做这两点间的距离),余角的性质,射线的表示方法,熟练掌握这些知识点是解题关键.7、A【分析】根据余角和补角定义解答.解:A ∠的余角的补角是180(9040)130︒-︒-︒=︒,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.8、A【分析】本题首先根据∠BGD ′=26°,可以得出∠AEG =∠BGD ′=26°,由折叠可知∠α=∠FED ,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG =∠BGD ′=26°,即:∠GED =154°,由折叠可知: ∠α=∠FED , ∴∠α=12GED ∠=77°故选:A .【点睛】本题主要考察的是根据平行得性质进行角度的转化.9、B【分析】根据题意可得这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-,由两个角之间的数量关系列出一元一次方程,求解即可得.解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补, ∵一个角的12等于另一个角的13,∴这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-, 根据题意可得:()1118023x x =︒-,解得:72x =︒,180108x ︒-=︒,故选:B .【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.10、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A .【点睛】本题考查了余角的定义,熟记定义是解题关键.二、填空题【分析】如图,标注字母,过B 作,BC a ∥ 再证明,BC b ∥证明12,EBD从而可得答案.【详解】解:如图,标注字母,过B 作,BC a ∥1=,EBC,a b ∥,BC b ∥2=,DBC12,EBD∠1=52°,90,EBD ∠=︒2=905238.故答案为:38︒【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.2、20°或125°或20°【分析】根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.【详解】解:∵∠1与∠2的两边分别平行,∴∠1,∠2相等或互补,①当∠1=∠2时,∵∠2=3∠1-40°,∴∠2=3∠2-40°,解得∠2=20°;②当∠1+∠2=180°时,∵∠2=3∠1-40°,∴∠1+3∠1-40°=180°,解得∠1=55°,∴∠2=180°-∠1=125°;故答案为:20°或125°.【点睛】本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.3、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵AB//CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB//CD,∴∠AEC=∠EAB=70°,故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.4、63【分析】根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.【详解】解:由量角器上的度数可知,∠AOB=27°,∴∠AOB的余角的度数=90°-∠AOB=63°,故答案为:63.【点睛】本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.5、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.三、解答题1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A +∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG =∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°.【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.2、见解析【分析】由AB ∥CD ∥EF 可得,1AGH ∠=∠,2EMH ∠=∠,即可证明.【详解】证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等)又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等)∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.3、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.4、(1)60,75;(2)152秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据60α=︒,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF '运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE 的左边和右边,进而根据其夹角列4个方程可得时间.【详解】解:(1)∵∠BOE =90°,∴∠AOE =90°,∵∠AOC=α=30°,∴∠EOC =90°-30°=60°,∠AOD =180°-30°=150°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =12×150°=75°;故答案为:60,75;(2)当60α=︒,9060150EOF ∠=︒+︒=︒.设当射线OE '与射线OF '重合时至少需要t 秒,可得128150t t +=,解得:152t =; 答:当射线OE '与射线OF '重合时至少需要152秒; (3)设射线OE '转动的时间为t 秒,由题意得:12815090t t +=-或12815090t t +=+或81236015090t t +=+-或12836015090t t +=++, 解得:3t =或12或21或30.答:射线OE '转动的时间为3或12或21或30秒.【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.5、(1)140゜(2)存在,t=2秒或20秒;(3)533秒【分析】(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.【详解】(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100解得:x=140即∠COE=140゜(2)存在当OC在直线DE上方时,此时OB平分∠BOC∵∠COE=140゜∴1702BOC COE∠=∠=︒当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB=2× (10t)゜−310゜∵∠COB=∠COE∴2× 10t−310=220-10t解得:533 t即当t的值为533秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.。
乐恩特教育个性化教学辅导教案编号:66、若是一个完全平方式,则m 的值是___________A 、12B 、﹣12C 、±12D 、±6 7、已知(A ) 25 (B ) 25- (C ) 19 (D ) 19-8、=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20112011532135( )(A ) 1- (B ) 1 (C ) 0 (D) 20039、已知正方形的边长为a 厘米,如果它的相邻边中,一边长增加3厘米,另一边减少3厘米,那么它的面积( )A 、不变B 、减少9平方厘米C 、增加9平方厘米D 、不能确定 (二)填空题1、一个角的补角事它得余角得4倍,则这个角得度数是________;2、若一个角的补角是它的余角的3倍,求这个角的度数3、一个角的补角比它的余角的二倍还多18度,这个角有 度4、1)21(0=-a ,则a 得取值范围为_____________;5、若)3)((++x m x 中不含x 得一次项,则m 的值为________;6、92++kx x 是一个完全平方式,则k =_______;7、若α与β互补,且5:4:=βα,则α=_____,β=_______; 8、1)12)(12)(12)(12)(12(16842++++++=________;二、灵活运用法则公式运算1、化简求值:(1)x xy x y y y x 2]8)4()2[(2÷-+-+ 其中2,2-==y x .(2)ab b a ab a ab a 3)129(9)2(24322÷+-⋅-- 其中2,1-=-=b a .)(3522=+=-=+y x xy y x ,则,3、求阴影部分面积。
三、归纳推理能力问题1:某餐馆按下图方式摆放餐桌和椅子(1)1张餐桌可坐6人, 2张餐桌可坐________人。
(2)请你摆出4张餐桌的图形, 6张餐桌呢?(3)按照图示的方式继续摆放餐桌,完成下表桌子张数 1 2 3 4 5 6 10 …n可坐人数2、如果按下图的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人? 3张呢? n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
北师大版 2019年七年级数学下册相交线与平行线单元培优卷一、选择题1.点到直线的距离是指()A.从直线外一点到这条直线的垂线段B.从直线外一点到这条直线的垂线,C.从直线外一点到这条直线的垂线段的长D.从直线外一点到这条直线的垂线的长2.如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是()A.PAB.PBC.PCD.PD3.如图,能与∠α构成同旁内角的角有()A.1个B.2个C.5个D.4个4.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°5.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE6.下列说法中正确的是()A.如果同一平面内的两条线段不相交,那么这两条线所在直线互相平行B.不相交的两条直线一定是平行线C.同一平面内两条射线不相交,则这两条射线互相平行D.同一平面内有两条直线不相交,这两条直线一定是平行线7.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠28.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°9.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于 ( )A.50°B.60°C.75°D.85°10.如图,在平面内,两条直线l、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、1l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个二、填空题11.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.12.如图,AB与BC被AD所截得的内错角是;DE与AC被直线AD所截得的内错角是;图中∠4的内错角是.13.如图,已知 CDE是直线,∠1=130°,∠A=50°,则∥ .理由是_______________________.14.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是_______________(填序号)。
七年级数学相交线与平行线测试题及参考答案北师大版(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学相交线与平行线测试题及参考答案北师大版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学相交线与平行线测试题及参考答案北师大版(word版可编辑修改)的全部内容。
七年级数学相交线与平行线测试题一、精心选一选(每小题3分,共24分)1。
若α与β互补,且α>β,则用α、β表示β的余角正确的是( )A.βα-B.)(21βα- C 。
180°βα-- D.90°βα+-2。
若∠1与∠2是同位角,且∠1=60°,则∠2的度数为( )A 。
60°B 。
120° C.60°或120° D.不能确定3。
下列各组直线:①邻补角的平分线;②对顶角的平分线;③平行线的同位角的平分线;④ 平行线的内错角的平分线;⑤平行线的同旁内角的平分线;其中互相垂直的是( ) A.①② B.②③ C.①⑤ D.②⑤4.如图,已知∠B +∠DAB =180°,AC 平分∠DAB ,如果∠C =50°,那么∠B 等于( ) A 。
50° B 。
60° C 。
70° D. 80°5.若∠A 与∠B 互补,且其中一边互相平行,则另一边( )A 。
互相平行B 。
互相垂直C 。
不平行D 。
可能平行,也可能不平行6.如图,直线AB 、CD 、EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC 等于( ) A.40° B 。
人是可以沉醉在自己的坚强的意志里的.雨果专题复习训练卷一㊀整式的乘除及相交线与平行线(时间:60分钟㊀满分:100分)一㊁选择题(每题3分,共30分)1.小明做了如下四个计算题:①x m +x n =x m +n ;②x 3 x 3=x 9;③x m x -n =x m -n ;④x m ːx n =x m -n .你认为小明做对的有(㊀㊀).A.1道B .2道C .3道D.4道2.小明通过自我探究,发现对于任意自然数n ,代数式n (n +7)-(n -3)(n -2)的值都能被一个数整除,这个数是(㊀㊀).A.3B .4C .5D.73.3a +12()23a -12()2等于(㊀㊀).A.9a 2-14B .81a 4-116C .81a 4-92a 2+116D.81a 9+92a 2+1164.有足够多的如图所示的正方形和长方形卡片,如果要拼一个长为(2a +b ),宽为(a +b )的矩形,则需要甲类卡片,乙类卡片,丙类卡片的张数分别为(㊀㊀).A.1,2,3B .2,1,3C .2,3,1D.1,3,25.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为4a 2-12a b +ʏ,你觉得这一项应是(㊀㊀).A.3b2B .6b2C .9b 2D.36b26.如果两个角的度数之比为7ʒ3,它们的差为72ʎ,那么这两个角的关系是(㊀㊀).A.互为余角B .互为补角C .相等D.和7.如图,将一副三角板的直角顶点重合,摆放在桌面上,若øA O D =145ʎ,则øB O C 等于(㊀㊀).A.30ʎB .35ʎC .40ʎD.45ʎ(第7题)㊀㊀㊀(第8题)8.如图,已知点B ㊁C ㊁E 在同一条直线上,且C D ʊA B ,若øA =105ʎ,øB =40ʎ,则øA C E 为(㊀㊀).A.35ʎB .40ʎC .105ʎD.145ʎ9.如图,把长方形A B CD 沿EF 对折后使两部分重合,若ø1=50ʎ,则øA E F 等于(㊀㊀).A.110ʎB .115ʎC .120ʎD.130ʎ(第9题)㊀㊀㊀㊀(第10题)10.如图,D E ʊA B ,øC A E =13øC A B ,øC D E =75ʎ,øB=65ʎ,则øA E B 是(㊀㊀).A.70ʎB .65ʎC .60ʎD.55ʎ二㊁填空题(每题3分,共24分)11.李大爷在一块长方形土地上修建一长方形鱼塘,在鱼塘周围栽种花草树林(阴影部分),如图,则阴影部分的面积为㊀㊀㊀㊀.(第11题)12.已知(-8)3m -9=1,则m =㊀㊀㊀㊀.13.将多项式x 2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的整式:㊀㊀㊀㊀,㊀㊀㊀㊀.14.小明在复习老师讲的内容,突然发现下面这道题:-x 2+3x y -12y 2()--12x 2+4x y -32y 2()=-12x 2+㊀㊀㊀㊀+y2空格的地方被钢笔水弄污了,那么空格中的一项是㊀㊀㊀㊀.15.如图,给出下列四个条件:①øD A C =øB C A ;②øB A C=øA C D ;③øA B D =øC D B ;④øA D B =øC B D .其中能使A D ʊB C 的条件有㊀㊀㊀㊀.(填序号)(第15题)力量不在于数字,力量在于堡垒.高尔基16.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角øA 是120ʎ,第二次拐的角øB 是150ʎ,第三次拐的角是øC ,这时恰好和第一次拐弯之前的道路平行,则øC =㊀㊀㊀㊀.(第16题)17.如图,A B ʊC D ,A F 平分øC A B ,C F 平分øA C D ,B E ㊁D E 相交于点E .(1)øB +øE +øD =㊀㊀㊀㊀;(2)øA F C =㊀㊀㊀㊀.(第17题)㊀㊀(第18题)18.如图,直线l 1ʊl 2,A B ʅl 1,垂足为D ,B C 与直线l 2相交于点C ,若ø1=40ʎ,则ø2=㊀㊀㊀㊀.三㊁解答题(第19题4分,第20题10分,其余每题8分,共46分)19.计算阴影部分变压器铁芯片的面积(长度单位:c m ).(第19题)20.计算题:(1)108ː10-2ˑ105ː(-10)3;(2)已知x y 2=-2,求x y (2x 3y 7-5x 2y 5-y );(3)20122-2011ˑ1013;(4)(m -2n )(m +2n )-14(2m -n )2[]ː-12n ().21.在计算(x +y )(x -2y )-m y (n x -y )(m ,n 均为常数)的值,在把x ,y 的值代入计算时,粗心的小明和小亮都把y 的值看错了,但结果都等于25.细心的小敏把正确的x ,y 的值代入计算,结果恰好也是25.为了探个究竟,她又把y 的值随机地换成了2013,你说怪不怪,结果竟然还是25.(1)根据以上情况,试探究其中的奥妙;(2)你能确定m ,n 和x 的值吗?22.如图.(1)已知A B ʊC D ,E F ʊMN ,ø1=115ʎ,求ø2和ø4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.(第22题)23.如图,在әA B C 中,B D ʅA C ,E F ʅA C ,垂足分别为D ㊁F ,试回答下列问题:(1)若øD E F =øC B D ,试说明D E ʊC B ;(2)若已知D E ʊC B ,你能得到øD E F =øC B D 吗?(第23题)24.如图所示,一个四边形纸片A B C D ,øB =øD =90ʎ,把纸片按如图所示折叠,使点B 落在边A D 上的点B ᶄ,A E是折痕.(1)试判断B ᶄE 与D C 的位置关系;(2)如果øC =130ʎ,求øA E B 的度数.(第24题)专题复习训练卷一1.B ㊀2.A㊀3.C ㊀4.C ㊀5.C 6.B ㊀7.B ㊀8.D㊀9.B ㊀10.B 11.6a 2+6b 2+11a b -a +2b -1㊀12.313.4x ㊀-4x ㊀14.-x y 15.①④㊀16.150ʎ17.360ʎ㊀90ʎ㊀18.130ʎ19.S 阴影=(1.5a +2.5a )(a +2a +2a +2a +a )-2ˑ2.5a ˑ2a=32a 2-10a 2=22a 2(c m 2).20.(1)原式=108ː10-2ˑ105ː(-103)=-108-(-2)+5-3=-1012.(2)原式=2x 4y 8-5x 3y 6-x y2=2(x y 2)4-5(x y 2)3-x y2=2 (-2)4-5 (-2)3-(-2)=74.(3)原式=20122-(2012-1)ˑ(2012+1)=20122-(20122-1)=1.(4)原式=m 2-4n 2-m 2+m n -14n2()ː-12n ()=-174n 2+m n ()ː-12n ()=172n -2m .21.(1)化简结果不含y 的一次项和二次项.(2)m =2,n =-12,x =ʃ5.22.(1)ø2=115ʎ,ø4=ø3=65ʎ.(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.(3)根据(2),设其中一个角为x ,则另一个角为2x ,x +2x =180ʎ,x =60ʎ,故这两个角的大小为60ʎ,120ʎ.23.(1)ȵ㊀B D ʅA C ,E F ʅA C ,ʑ㊀E F ʊB D .ʑ㊀øA E F =øA B D .ȵ㊀øD E F =øC B D ,ʑ㊀øA E F +øD E F =øA B D +øC B D ,即øA E D =øA B C .ʑ㊀D E ʊC B .(2)能,理由略.24.(1)B ᶄE ʊD C ㊀(2)65ʎ。
乐恩特教育个性化教学辅导教案
编号:6
6、若是一个完全平方式,则m 的值是___________
A 、12
B 、﹣12
C 、±12
D 、±6 7、已知
(A ) 25 (B ) 25- (C ) 19 (D ) 19-
8、=⎪
⎭⎫ ⎝
⎛
-⨯⎪
⎭⎫ ⎝⎛
-2011
2011
532135( )
(A ) 1- (B ) 1 (C ) 0 (D) 2003
9、已知正方形的边长为a 厘米,如果它的相邻边中,一边长增加3厘米,
另一边减少3厘米,那么它的面积( )
A 、不变
B 、减少9平方厘米
C 、增加9平方厘米
D 、不能确定 (二)填空题
1、一个角的补角事它得余角得4倍,则这个角得度数是________;
2、若一个角的补角是它的余角的3倍,求这个角的度数
3、一个角的补角比它的余角的二倍还多18度,这个角有 度
4、1)2
1
(0=-a ,则a 得取值范围为_____________;
5、若)3)((++x m x 中不含x 得一次项,则m 的值为________;
6、92++kx x 是一个完全平方式,则k =_______;
7、若α与β互补,且5:4:=βα,则α=_____,β=_______; 8、1)12)(12)(12)(12)(12(16
8
4
2
++++++=________;
二、灵活运用法则公式运算
1、化简求值:(1)x xy x y y y x 2]8)4()2[(2÷-+-+ 其中2,2-==y x .
(2)ab b a ab a ab a 3)129(9)2(24322÷+-⋅-- 其中2,1-=-=b a .
)
(3522=+=-=+y x xy y x ,则,
3、求阴影部分面积。
三、归纳推理能力
问题1:某餐馆按下图方式摆放餐桌和椅子
(1)1张餐桌可坐6人, 2张餐桌可坐________人。
(2)请你摆出4张餐桌的图形, 6张餐桌呢?
(3)按照图示的方式继续摆放餐桌,完成下表
桌子张数 1 2 3 4 5 6 10 …n
可坐人数
2、如果按下图的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人? 3张呢? n张呢?
⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张
桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
3、观察下列代数式:x
-,2
2x,3
3x
-,4
4x,…,19
19x
-,20
20x,21
21x
-,…
(1) 系数的符号规律是___________.
(2) 指数的规律是______________.
(3) 第2006个代数式是____________.
(4) 猜一猜, 第n个代数式是____________.
4、将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆·(用含 n 的代数式表示)
a
3
a
图6
(4)
(3)
(2)
(1)
.....
第1个图形第2 个图形第3个图形第4 个图形
5、如图6,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是__________.
6、设
122
11
=1
12
S++,
222
11
=1
23
S++,
322
11
=1
34
S++,…,
=
n
s
7、为庆祝“六g一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()
A.26n
+B.86n
+C.44n
+D.8n
8、填在下面三个田字格内的数有相同的规律,根据此规律,C = .
C
B
A
5
56
7
5
3
20
5
3
1
四、动手操作能力
1、已知:线段AB .CD
A B C D
求作:线段A′D′,使得A′D′=AB-CD .
2、作图题:如图,已知∠α,∠β,
求作一个角使它等于∠α+∠β(不写作法,保留作图痕迹)
3、平分已知线段
五、推理与证明能力
1、如图,完成下列推理过程
已知:DE⊥AO于E, BO⊥AO,∠CFB=∠EDO
证明:CF∥DO
2、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
求证:AD∥BE。
证明:∵AB∥CD(已知)
∴∠4=∠()
∵∠3=∠4(已知)
∴∠3=∠()
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF()
即∠ =∠
∴∠3=∠()
∴AD∥BE()
C
B
A
F
E
D
O
证明:∵DE⊥AO,BO⊥AO(已知)
∴∠DEA=∠BOA=900()
∴DE∥BO ()
∴∠EDO=∠DOF ()
又∵∠CFB=∠EDO()
∴∠DOF=∠CFB()
∴CF∥DO()
A D
B C E
F
1
2
3
4
3、如图,已知CD⊥AD,DA⊥AB,∠1=∠2。
则DF与AE平行吗?为什么?
4、如图,已知:AB∥ED
试寻找∠BCD 、∠B、∠D的关系,并说明理由
5、如图,已知、BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,
求∠ADE与∠BEC的度数。
课堂检测测试题_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□
课后巩固作业_____题; 巩固复习____________________ ; 预习布置_____________________
教师课后反
思
签字
教学主任:教学组长:学生/家长:
E
F
A B
C D
1
2
A
B C
D E。