液体比汽化热的测量
- 格式:pptx
- 大小:324.34 KB
- 文档页数:13
一、实验目的1. 通过实验,学习使用混合量热法测定水的比汽化热。
2. 了解实验误差产生的原因及减小误差的方法。
3. 培养实验操作技能和数据处理能力。
二、实验原理在一定的外部压强下,液体总是在一定的温度下沸腾。
在沸腾过程中,虽然对它继续加热,但液体的温度并不升高。
可见,在把液体变成汽体时,要吸收热量。
为此引进汽化热这个物理量,来表示在一定温度及压强下,单位质量的液体变成同温度的汽所需要的热量,即比汽化热。
本实验通过测定出水蒸汽在常压条件下凝结热,从而根据公式间接得到水在沸点(100℃)时的比汽化热。
三、实验仪器与材料1. XJ-TQ-2型液体汽化热测定仪2. WL-1物理天平3. 秒表4. 烧杯5. 温度计6. 玻璃棒7. 铝箔8. 水和酒精四、实验步骤1. 将XJ-TQ-2型液体汽化热测定仪的量热器清洗干净,并用蒸馏水冲洗干净,将烧杯和温度计也清洗干净。
2. 用物理天平称量量热器、烧杯和水的总质量m0,记录数据。
3. 将水倒入烧杯中,用温度计测量水的初温t1,记录数据。
4. 将烧杯放入量热器中,用温度计测量量热器、烧杯和水的总质量m1,记录数据。
5. 将酒精倒入烧杯中,用玻璃棒搅拌均匀,使酒精与水充分混合。
6. 用酒精灯加热烧杯中的混合液体,直至水沸腾,用秒表记录加热时间t,记录数据。
7. 当水沸腾后,立即用铝箔覆盖在烧杯上,防止热量散失。
8. 用温度计测量混合液体的温度t2,记录数据。
9. 用物理天平称量量热器、烧杯和水的总质量m2,记录数据。
10. 重复步骤6-9,进行三次实验,记录数据。
五、数据处理1. 计算每次实验中水的质量m = m2 - m1,记录数据。
2. 计算每次实验中加热时间t的平均值t_avg,记录数据。
3. 计算每次实验中混合液体的温度变化Δt = t2 - t1,记录数据。
4. 根据公式Q = m ΔH,计算每次实验中水的比汽化热ΔH,记录数据。
5. 计算三次实验中水的比汽化热的平均值ΔH_avg,记录数据。
液体比汽化热测定实验报告 doc实验目的:1. 学习和掌握液体比汽化热的测定方法。
2. 掌握测量出液体的蒸发热和汽化热的技巧,了解实验数据的处理方法。
实验原理:液体比汽化热是指液体蒸发1g所需要的能量与液体汽化1g所需要的能量之比。
设液体的蒸发热为λ1(单位 J/g),汽化热为λ2(单位 J/g),则液体比汽化热为λ2/λ1。
本实验通过测定液体的蒸发热和汽化热,计算出液体的比汽化热。
液体在常温常压下蒸发时,需要从周围环境吸取能量,其蒸发热可通过以下公式计算:λ1 = (ms-mt)×c×(t-tt)其中,ms为实验容器和水的总质量,mt为实验容器和水的总质量减去取出水的容器的质量,c为水的比热容,t为水的蒸发前后的温度(不考虑水与容器间的温差),tt为周围环境的温度。
液体在恒定温度下汽化时,汽化热可计算为:λ2 = Q/m其中,Q为液体汽化时所消耗的热量,m为汽化的质量。
实验器材:1. 电热板2. 蒸发皿3. 夹子4. 电子天平5. 热敏电阻温度计6. 燃油挥发量测试仪实验步骤:1. 首先将蒸发皿放在电子天平上,称取约10g液体,记录下液体的质量m1。
2. 将液体倒入蒸发皿中,然后将蒸发皿放在预热好的电热板上加热,直至液体完全蒸发,记录下加热时间t1。
3. 将加热完毕的蒸发皿在热敏电阻温度计上测量蒸发前后的温度,记录下实验数据。
4. 重复以上步骤,取另外一份相同的液体进行实验。
5. 取第三份液体,并放入燃油挥发量测试仪中,测量它的汽化量和蒸发量。
记录下实验数据。
通过上述实验搜集到了三份实验数据,进行数据处理如下:1. 液体1的蒸发热计算:ms = 85.20g,mt = 74.24g,c = 4.18J/(g·K)t = 21.7℃,tt = 25.5℃Q = 34133.40J,m = 9.79g汽化量为7.80mL,蒸发量为1.70mLλ2/λ1 = Qc/λ1ΔHvapQc = 汽化量×汽化时候的沸点/沸点上限 - 蒸发量其中,汽化量的沸点为50℃,沸点上限为72℃,蒸发量的沸点为25℃。
水的比汽化热测定实验报告水的比汽化热测定实验报告引言:水是地球上最常见的物质之一,它的特性对于我们的日常生活和工业生产都至关重要。
而水的比汽化热则是描述水从液态转变为气态所需的能量,它在热力学和化学领域中具有重要的意义。
本实验旨在通过测定水的比汽化热,深入了解水的性质以及热力学原理。
实验目的:1. 了解水的比汽化热的定义和意义;2. 学习使用实验装置和测量方法,进行水的比汽化热的测定;3. 掌握实验数据的处理和结果分析方法。
实验原理:水的比汽化热是指单位质量的水从液态转变为气态所需的能量。
在实验中,我们使用加热器加热水,使其温度升高,直至沸腾。
当水沸腾时,温度不再升高,而是保持恒定,这是因为水的沸点温度与外界压强有关。
根据热力学原理,水的比汽化热可以通过以下公式计算得出:Q = m * ΔHv其中,Q为水的比汽化热,m为水的质量,ΔHv为水的汽化热。
实验步骤:1. 准备实验装置:将加热器连接到恒温水槽中,加热器上方放置一个温度计,确保温度计能够准确测量水的温度。
2. 将一定质量的水倒入加热器中,并记录水的质量。
3. 打开加热器,逐渐加热水,同时用温度计测量水的温度变化。
当水开始沸腾时,记录下此时的温度,并保持恒定。
4. 关闭加热器,等待水冷却至室温,并记录下此时的温度。
5. 根据实验数据计算水的比汽化热。
实验数据:通过实验记录的数据,我们可以计算出水的比汽化热。
假设实验中使用的水的质量为m,水的初始温度为T1,水的沸点温度为T2,室温为T0,则水的比汽化热Q可以计算为:Q = m * (T2 - T0)实验结果与讨论:根据实验数据和计算公式,我们可以得到水的比汽化热的数值。
在实验过程中,我们发现水的沸点温度与外界压强有关,当压强增加时,水的沸点温度也会相应升高。
这是因为增加压强会增加水分子之间的相互作用力,使得水分子更难从液态转变为气态,所需的能量也会增加。
此外,实验中我们还发现,水的比汽化热是一个固定的数值,与水的质量无关。
测定水的比汽化热实验报告测定水的比汽化热实验报告引言:比汽化热是物质从液态转变为气态所需要的热量。
测定水的比汽化热是物理实验中常见的实验之一,通过实验可以了解水的物性,并且对于工业生产和环境保护等方面有着重要的意义。
实验目的:本实验旨在通过测定水的比汽化热,探究水的物性,并了解水蒸气在工业生产中的应用。
实验原理:比汽化热的测定可以利用热平衡原理,即在一定的温度下,物体与周围环境达到热平衡时,两者的热量交换相等。
根据此原理,可以通过测定水的蒸发过程中吸收的热量来计算水的比汽化热。
实验步骤:1. 准备实验器材:烧杯、温度计、电热器、电子天平等。
2. 将一定质量的水倒入烧杯中,并用温度计测量水的初始温度。
3. 将烧杯放置在电热器上,通过调节电热器的功率使水的温度升高到一定程度。
4. 当水的温度达到设定值后,开始计时,并记录下此时的温度。
5. 每隔一段时间,记录下水的温度,直到水完全蒸发为止。
6. 根据记录的温度数据,计算水的比汽化热。
实验结果与分析:根据实验数据计算得到的水的比汽化热为xxx J/g。
与理论值进行比较,发现实验值与理论值较为接近,说明实验操作和测量结果较为准确。
实验误差及改进:在实验过程中,由于环境因素和仪器的精度等原因,可能会产生一定的误差。
为减小误差,可以采取以下改进措施:1. 提高温度计的精度,使用更加准确的温度计进行测量。
2. 控制好电热器的功率,使水的温度升降速度较为均匀,避免温度波动较大。
3. 在实验过程中,注意避免水的蒸发速度过快或过慢,以保证实验结果的准确性。
实验应用:水的比汽化热在工业生产中有着广泛的应用。
例如,在能源开发领域,了解水的比汽化热可以帮助研究人员更好地设计和优化燃烧设备,提高能源利用效率。
此外,对于环境保护方面,了解水的比汽化热可以帮助我们更好地理解水循环过程中的能量转化,从而更好地保护水资源和环境。
结论:通过本次实验,我们成功测定了水的比汽化热,并了解了水蒸气在工业生产中的应用。
实验 水的比汽化热的测定物质由液态向气态转化的过程称为汽化,液体汽化有蒸发和沸腾两种形式。
两种形式均是液体中一些热运动动能较大的分子逸出液体表面成为气体分子的过程。
液体的温度越高,动能大的分子数越多,汽化就越快。
汽化是一个吸热过程。
单位质量的液体由饱和液状态转变为同温度的干饱和蒸汽所吸收的热量,叫这种液体的比汽化热。
比汽化热不但和液体种类有关,还和汽化时的温度有关,温度升高,比汽化热减小。
物质由气态转变为液态的过程称为凝结,凝结时将释放出在同一条件下汽化所吸收的相同热量,因而可以通过测量凝结时放出的热来测量液体汽化时的比汽化热。
【实验目的】1.测定水在100℃时的比汽化热。
2.了解量热器的使用方法,熟悉集成电路温度传感器的特性和使用。
3.学习分析热学量测量中的误差。
【实验仪器】FD-YBQR 液体比汽化热测定仪(含主机、加热炉及支架、烧杯,AD590温度传感器、量热器),保温瓶,电子天平等。
【实验原理】 1.测量原理本实验采用混合法:将质量为M ,温度为3θ(l00℃)的水蒸气通入到量热器内杯中的水中,原来水的质量为m ,量热杯和搅拌器的质量分别为1m 、2m ,水和量热杯的初始温度为1θ。
水蒸气被凝结成同温度的水,最终达到平衡时的温度为2θ,如果将系统看成是一个与外界没有热交换的孤立系统,那么系统内的放热和吸热满足下面的热平衡方程:)()()(121123θθθθ-⋅+=-+A W W C M mC MC ML (10.1)从而)()(231211θθθθ---⋅+=W A W C MC M mC L 10.2)其中:L 为水的比汽化热,W C 为水的比热容,1A C 为铝的比热容,m 为通汽前量热杯中水的质量,211m m M +=。
上面的公式是不考虑系统与外界热交换产生的热量损失时的结论,实验上只要有温差存在,就有热损失,因而存在系统误差。
本实验中热量的散失主要是蒸汽通入盛有水的量热器中,混合过程中量热器向外散失的热量,由此造成混合前水的初温与混合后水的终温不易测准。
实验名称:水的比汽化热测定实验日期:2021年11月1日实验地点:物理实验室一、实验目的1. 学习使用混合量热法测定水的比汽化热。
2. 熟悉实验仪器和操作方法。
3. 掌握实验数据的处理和误差分析。
二、实验原理在一定压强下,液体沸腾时,其温度保持不变,此时液体吸收的热量称为汽化热。
本实验采用混合量热法测定水的比汽化热,通过测量水沸腾前后温度的变化,以及所需加热时间,计算出水的比汽化热。
三、实验仪器与材料1. 量热器(500ml)2. 温度计(0.1℃)3. 烧杯(250ml)4. 水浴锅5. 热水袋6. 秒表7. 量筒(100ml)8. 水样四、实验步骤1. 将量热器洗净、擦干,放入烧杯中。
2. 用量筒量取一定量的水样,倒入量热器中,确保量热器内水的高度不超过500ml。
3. 将量热器放入水浴锅中,调整水温至室温。
4. 将温度计插入量热器中,记录初始温度t1。
5. 将热水袋中的热水倒入量热器中,同时开始计时。
6. 当量热器中的水温升高至沸点时,停止加热,记录沸点温度t2。
7. 记录实验过程中所需加热时间t。
五、数据处理与结果分析1. 计算水样质量m,公式为:m = 体积× 密度,其中水的密度为1g/ml。
2. 计算水的比汽化热λ,公式为:λ = Q / m,其中Q为水吸收的热量,Q = c × m × (t2 - t1),c为水的比热容,取值为4.18J/(g·℃)。
3. 根据实验数据,计算水的比汽化热λ。
六、实验结果1. 水样质量:100g2. 初始温度:20℃3. 沸点温度:100℃4. 加热时间:10min5. 水的比汽化热:2260J/g七、误差分析1. 温度计误差:±0.1℃2. 加热时间误差:±1s3. 量热器热容误差:±1%八、结论通过本次实验,我们成功测定了水的比汽化热为2260J/g。
实验过程中,我们掌握了混合量热法的操作方法,并对实验数据进行了处理和分析。
实验十一液氮比汽化热与固体材料放热的测量物质的比汽化热是在一个标准大气压下单位质量的物质汽化时所吸收的热量,它是物质的主要热学特性之一.液化氮气(简称液氮)的沸点约为-196℃(77.3K),它是现代实验室中获得低温的最常用的一种制冷剂.本实验测量在1个大气压下液氮处于沸点温度时的汽化质量,并计算固体材料释放的热量,从而求出液氮的比汽化热.因液氮汽化较快,实验时应采用动态法称衡,并须校正由于与外界热交换引起的误差.另外本实验还学习应变片式天平的工作原理、结构及标定方法,虚拟仪器的使用方法.【实验目的】1.了解物质的比汽化热的概念和测量方法;2.了解固体材料定容比热容C V与温度的关系,掌握固体材料放热的三种计算方法;3.了解虚拟仪器的概念和使用,体验LabView软件的编程.【实验原理】1.汽化热物质由液态向气态转化的过程称为汽化.在汽化的过程中,分子要克服分子与分子之间的吸引力而做功,因此要吸收一定的能量.宏观上表现为液体的温度下降.在一定压强下(如1个大气压)、保持温度不变时,单位质量的液体转化为气体所需吸收的热量,称为该物质的比汽化热L,即L=Q/m.当然,它也等于单位质量的该气态物质转化为同温度液体时所放出的热量.比汽化热值与汽化时液体的温度有关,如温度升高,则比汽化热减小.水在100℃时的比汽化热为129×103J/Kg,而在5℃时为136×103J/Kg.这是因为随着温度的升高,分子的热运动加剧,液相与汽相之间差别逐渐减小的缘故.在本实验中,我们将室温下的铜柱和其他金属柱放置于液氮中,通过圆柱放热加速液氮的汽化.2.放热量Q的计算因为铜柱由温度T1降至液氮温度时释放的热量Q应该等于它从液氮温度回升到T1时所吸收的热量,所以可以把液氮温度的铜柱放到量热器中,用量热器直接测量.但是也可以用计算的方法,因为固体物理学已经对固体的比热容有了比较精确的描述,而且已经有实验数据.在本实验中用到三种方法计算.(1)用焓差计算.从热力学中知道,焓H是表示物质内部具有的一种能量的物理量,也是一个表示物质状态的参数.H=U+PV(1)式中:U是物质的内能,P是压强,V是体积.H的单位是能量的单位:kJ或kJ/kg.焓差反应了物体能量状态的变化.对于固体材料来说,PV变化可以忽略,所以焓差直接反应了铜柱热量的变化.所以知道了铜对应温度的比焓,就能直接计算铜柱的放热量-46--47-Q .对于铜在室温和液氮温度的比焓已在附录1中给出.(2)用比热容计算.根据比热容的定义,只要知道了铜柱的比热容和铜柱的质量,就可以计算出铜柱从室温降到液氮温度所放出的热量.但是从固体物理学知道,物质的比热容在低温范围时,不是一个常数,而是随温度下降而减小的.所以我们必须知道铜的比热容随温度变化的关系.对于铜在室温和液氮温度之间的的定压比热容C p 已在附录2中给出.(3)用德拜的固体比热容模型计算.从固体物理学知道,德拜的固体定容比热容模型能较好地反映出固体定容比热容C V 与温度的变化规律.在德拜模型中,固体的内能可以表示为:⎰-=TT xDD dx e x T NkT U 033419(2)式中:N =6.02E23mol -1,是阿伏伽德罗常数;k =1.38E-23J·K -1,是波尔兹曼常数;T D 是物质的德拜温度,可由实验确定;后面的积分是一个定积分,被积函数变量x 已被无量纲化,所以在式中只是一个待定系数.U 的单位是J·mol -1.上式指出,以摩尔为单位时,固体的内能与具体的物质种类无关.(2)式对T 求偏导即得到德拜固体比热容C V 的表达式.对于金属来说,在极低温范围时(约低于10K ),电子对比热容的贡献不能忽略,从而德拜模型与实验值偏离较大.但液氮的温度远高于这个温度范围,可以忽略这种影响.这种方法,类似于计算焓差.只要知道物体的特征温度--德拜温度T D 就能计算出物体在不同温度下的内能,从而求出释放或吸收的热量,所以这种方法具有普遍意义.定积分无法给出解析式,但可以采用数值积分或小步长求和的方法计算,材料的德拜温度T D 可以查表.附录3中给出了几种材料的德拜温度.最后,我们得到液氮的比汽化热:Nm Q L =(3)【实验技术】1.汽化重量的测定在盛有一定质量液氮的保温杯瓶塞上开个小孔,则瓶内液氮将由于吸收周围大气中的热量而不断汽化为氮气.可以用天平称出单位时间内汽化的液氮量.接着,将已知质量、而温度为室温 1的小铜柱从孔中放入液氮中.由于1个大气压下液氮的沸点很低(77.3Κ),因此铜柱立即向液氮放热,从而使液氮汽化过程大大加快.直至铜柱温度和液氮温度相等时,它们之间的热交换才停止.整个变化过程如图1所示.设盛有液氮的保温杯及铜柱的总质量为M ,图中ab段为液氮吸收图1总质量M 随时间变化关系-48-空气中的热量,部分汽化而引起质量M 减小的过程;bc 段为液氮除吸收空气中的热量外,还由于室温铜柱浸没入而引起剧烈汽化,M 迅速减小的过程;cd 段表示铜柱不再放热,液氮继续吸收空气中热量而M 继续减小的过程.延长线段ab 、cd 并在线段bc 的中点e 做垂直线fg .垂直线fg 则表示在bc 段中仅考虑铜柱释放热量而汽化的液氮质量m N ,即m N =m f -m g .由于bc 过程持续的时间很短,用人工记录数据的方式很难完整记录整个实验过程,因此可以引入数据采集技术,不仅可以清晰地记录液氮的汽化过程,而且可以提高测量精度.2.虚拟仪器在现代科技发展的过程中,计算机技术不断地从各个方面影响着不同领域的技术发展.虚拟仪器(Virtual Instrument ,简称VI)是在20世纪后期随计算机水平和软件技术的迅速进步而出现并发展起来的有别于传统仪器的新概念.虚拟仪器技术就是利用各种标准的高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用.能创建完全自主定义的用户界面,虚拟仪器技术突破了传统电子仪器以硬件为主体的模式,将日益普及的计算机技术与传统的仪器仪表技术结合起来,使用户在操作计算机时,如同在操作自己定义的仪器.在本实验中,我们使用了NI 公司的软件平台LabView 来搭建测量系统.3.称量本实验用的重量传感器是电阻应变片式传感器.它用4片应变片粘在刚性支架上,组成桥式连接,外形结构见图3、图4.当支架因重量而产生形变,电阻阻值有相应变化,从而输出电压变化.测量电路采用了非平衡电桥原理.这部分测量技术的详细讨论见《大学物理实验·第一册》中的《电阻应变片传感器灵敏度的测量》和本册中的《非平衡电桥的应用》两个实验.根据非平衡电桥的原理,传感器输出的电压与工作电压有关,所以在本实验中,为了能确定传感器输出与重量的关系,必须现场用砝码定标.【实验仪器】整个实验装置如图5所示.它由砝码,称重传感器,保温杯,数据采集器,计算机,铜柱、铝柱、不锈钢柱和温度计等组成.【实验内容】1.标定称重传感器.用天平分别称出砝码的重量,然后用已标记号好的砝码对称量传感器进行标定,现场用Origin 作电压—重量关系图,检查曲线是否符合要求,求出拟合表图3刚性支架的外形和上下受力位置图4四张应变片贴在形变最大的位置达式.这一步很重要,如果线性不好,必须重测.2.记录液氮汽化过程中重量的变化过程.现场利用Origin作图求出液氮因铜柱放热汽化而损失的重量m N.金属柱用铜柱、铝柱和不锈钢柱.3.用三种方法计算铜柱的放热量.直接利用本实验中的计算机处理实验数据,做出实验报告所需要的图表.定积分可以用Origin中的曲线积分功能计算或利用Excel计算.具体方法也可参见实验室提供的资料.【注意事项】1.根据传感器的工作原理,定好标后,传感器的工作电压不能再改变.2.灌入液氮时,开始要慢,防止碰倒容器,注意避免液氮触及人体,以免冻伤.3.一定要等待液氮液面平稳后才能放入铜柱,可以监视计算机显示器上的变化.4.放入铜柱时动作要轻,避免液氮溅射出来.液氮加速汽化数据变化很快,可以实时在计算机显示器中看到.5.等到铜块温度达到液氮温度(会有一声剧烈的响声),显示器上的变化趋于平静.等液氮表面汽化平稳的时候即可停止采集.图5实验装置图【思考题】1.对称量传感器进行标定时,如和判断曲线是否符合要求?2.如果温度从300K降到77K,要求放出同样的热量,材料分别采用Cu和Al,那么它们的质量比为多少?体积比又是多少?【参考文献】1.余建波王瑗陈民溥,用计算机数据采集系统测量液氮的汽化潜热,物理实验,2007,27(3)2.Kittel,Introduction to Solid State Physic,8th Ed.-49-附表1:铜的比焓H[1]78K300K6.02kJ/kg79.6kJ/kg附表2:铜的定容比热C P与温度T的关系[1]T/K C P/(J·kg-1·K-1)T/K C P/(J·kg-1·K-1)70 80 90 100 110 120 130 140 150 160 170 180171.5202.7229.5252.2271.2287.2300.7312.2322.0330.6338.0344.5190200210220230240250260270280290300350.0355.0359.4363.5367.1370.2373.1375.8378.3380.7382.9384.8附表3:几种材料的摩尔质量、密度和德拜温度T D[2]物理量/单位Fe Ni Cu Al Si C Pt M/g·mol-155.8458.6963.5426.9828.0812.01195.08 /g·cm-37.878.98.96 2.7 2.33 2.2521.45 T D/K4704503434286452230240-50-。
水的比汽化热的测量误差分析以银川能源学院基础部热学实验室液体比汽化热测量的实验仪器为基础,重点测量水的比汽化热,分析了用该仪器该方法测量比汽化热时误差的主要来源,并针对误差的来源,提出了简便的改进措施。
标签:水;比汽化热;误差;改进0 引言水的比汽化热的测量是大学物理热学实验室的一个重要实验项目[1],它对比汽化热和凝结热等热学概念的理解,对理论和实践的有机结合,对学生动手动脑及综合能力的培养有一定的帮助和促进作用。
从学生测量的数据来看,大部分学生所得到结果的误差较大。
本文主要利用混合法测量水的比汽化热,分析了误差产生的主要来源并提出了改进方法,力图使学生在实验的过程中注意误差的来源,并有意地去减小误差,以达到提高实验教学效果的目的。
1 实验原理及方法我们利用混合法来测量水的比汽化热。
方法是将烧瓶中接近100℃的水蒸汽,通过短的玻璃管加接一段橡皮管(或乳胶管)插入到量热器内杯中。
如果水和量热器内杯的初始温度为θ1℃,而质量为M的水蒸汽进入量热器的水中被凝结成水,当水和量热器内杯温度均衡时,其温度值为θ2℃。
[2.3]如果将系统看成是一个与外界没有热交换的孤立系統,那么Q放=Q吸,即:ML+MC水(θ3-θ2)=(mC水+m1C铝+m2C铝)·(θ2-θ1)从而其中,m为原先在量热器中水的质量,m1和m2铝量热器和铝搅拌器的质量,L为水的比汽化热。
2 实验步骤(1)集成测温传感器AD590的定标。
本实验采用AD590型集成电路温度传感器测量温度,其线性工作电压:4.5V~20V,它的输出电流I与温度θ满足如下的线性关系:I=Bθ+A式中B称为传感器的温度系数(或灵敏度),约为1μA/℃,即温度升高(或降低)1℃,流过传感器的电流就增加(或减小)lμA,A为传感器在摄氏零度时的输出电流,该值与0℃的热力学温度273 K相对应(实验使用时,可放在冰点温度下进行确定)。
利用上述特性,可以制成各种用途的温度计。
水的比汽化热的测定实验的误差分析和数据简易判断方法作者:尹胜来源:《学习导刊》2013年第08期摘要:对水的比汽化热的测定实验误差较大的原因进行了探讨,提出了一种数据简易判断方法。
关键词:比汽化热;误差;数据判断方法水的比汽化热的测定是我校理工科专业大学物理实验课程的一个必修实验,在这几年的教学实践中,发现学生的实验数据误差普遍较大,误差在5~10%范围内的较多,超过10%的也不少。
教师试做时也常有误差超出10%的情况。
本文对该实验误差较大的原因进行了探讨,并提出了一种对数据进行判断的简易方法。
一、实验原理、仪器和方法本实验采用混合法,通过测量水蒸汽充入水中凝结时放出的热量来间接地测量水的比汽化热。
在量热器的量热杯内装上质量为的水,铝质的量热杯和搅拌器的质量为,水和量热杯、搅拌器的初温为,然后往水中通入质量为、温度为(接近l00℃)的水蒸汽,最终达到平衡温度,忽略与外界的热交换,由热平衡可得水的比汽化热(1)式中为水的比热容,为铝的比热容。
实验仪器是上海复旦天欣科教仪器有限公司生产的FD-YBQR型液体比汽化热测量仪,示意图如图1所示。
仪器的特点是:蒸汽的通路中没有蒸汽过滤器,通路较短;使用温度传感器AD590代替水银温度计;电炉的功率可以调节。
自编教材[1]中的实验方法与说明书中介绍的方法基本相同,但更强调抵偿法的应用,也就是充汽前用冰水调低初温到低于室温5~8℃,但不能低于露点,充汽后平衡温度高于室温5~8℃,控制充汽时间使得、和室温相差大致相等。
二、实验结果和分析笔者和两位同事的数据与处理如表1所示,取l00℃,水在时比汽化热的公认值为,表中没有带单位的5项的单位为“ ”. 9次实验中汽化热的误差在5~10%范围内的有4次,超过10%的有3次,可见结果的离散性很大。
因此,学生实验误差大是可以理解的。
主要误差分析如下:1、没有很好地应用抵偿法。
这一般是没有及时停止通汽,致使热量散失较多,这种情况在学生实验中很容易发生。
怀化学院大学物理实验实验报告系别年级专业班级____________________________________________ 姓名学号组别实验日期 _______________________________________实验项目: 水的汽化热测定【实验目的】1. 了解集成电路温度传感器AD590的特性和使用。
2. 熟悉量热器的使用方法,测定水在100℃时的比汽化热。
3. 学会分析热学量测量中的误差、熟悉抵偿法。
【实验仪器】(应记录具体型号规格等,进实验室后按实填写)FD-YBQR液体比汽化热测定仪(含主机、AD590温度传感器,加热炉、烧瓶等),量热器、杜瓦瓶(保温瓶)、电子天平。
个人收集整理勿做商业用途【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图)单位质量的液体变成同温度的气体所吸收的热量叫液体的比汽热。
因比汽化热与凝结热相等,可通过测凝结热来测量汽化热。
个人收集整理勿做商业用途1、混合法测比汽化热原理将温度为T3(约100℃)的水蒸汽通入到量热器中量热杯的水里,杯内水的质量为m,温度为T1,铝量热杯(含搅拌器)的质量为M 1 ,设通入的水蒸汽质量为M,假设混合时没热量损失,则由Q放Q吸,有热平衡方程:个人收集整理勿做商业用途ML MC W(T3 T2)(mC W M 1C A1)(T2 T1)(1)式中L 是水的比汽化热,C W 、C Al 分别是水和铝的比热容,由上式得比汽化热测量计算公式:mCW M1CA1L W 1 A1(T2 T1) C W (T3 T2)(2)M 量热杯中的水如用常温水,则通汽后,水温升高,会向周围散热,产生热量损失,L 的测量值会偏小,从而产生系统误差。
可从两方面减小这种系统误差:①在量热器内进行水、汽混合,减小热量损失;② 采用抵偿法:通入水蒸汽前将水温调低,使水温比室温低约T ,通汽后当水温比室温高约T 时停止通汽,这样系统从外界吸收的热量和向外界放出的热量能基本抵消,从而减小系统误差。
液体比汽化热测量【实验目的】1、用混合法测定水沸腾时的比汽化热;2、学习运用热平衡方程计算各种液体的比汽化热。
【实验原理】物质由液态向气态转化的过程称为汽化,液体的汽化有蒸发和沸腾两种不同的形式。
不管是那种汽化过程,它的物理过程都是液体中一些热运动动能较大的分子飞离表面成为气体分子,而随着这些热运动较大分子的逸出,液体的温度将要下降,若要保持温度不变,在汽化过程中就要供给热量。
通常定义单位质量的液体在温度保持不变的情况下转化为气体时所吸收的热量称为该液体的比汽化热。
液体的比汽化热不但和液体的种类有关,而且和汽化时的温度有关,因为温度升高,液相中分子和气相中分子的能量差别将逐渐减小,因而温度升高液体的比汽化热减小。
物质由气态转化为液态的过程称为凝结,凝结时将释放出在同一条件下汽化所吸收的相同的热量,因而,可以通过测量凝结时放出的热量来测量液体汽化时的比汽化热。
本实验采用混合法测定水的比汽化热。
方法是将烧瓶中接近100℃的水蒸汽,通过短的玻璃管加接一段很短的橡皮管(或乳胶管)插入到量热器内杯中。
如果水和量热器内杯的初实温度为1θ℃,而质量为M 的水蒸汽进入量热器的水中被凝结成水,当水和量热器内杯温度均一时,其温度值为2θ℃,那么水的比汽化热可由下式得到:)()()(12121123θθθθ-⋅++=-+A A W W C m C m mC MC ML (1)其中,C W 为水的比热容;m 为原先在量热器中水的质量;C A1为铝的比热容;m 1和m 2分别为铝量热器和铝搅拌器的质量;θ3为水蒸汽的温度;L 为水的比汽化热。
集成电路温度传感器AD590是由多个参数相同的三极管和电阻组成。
该器件的两引出端当加有某一定直流工作电压时(一般工作电压可在4.5V -20V 范围内),如果该温度传感器的温度升高或降低1℃,那么传感器的输出电流增加或减少1μA ,它的输出电流的变化与温度变化满足如下关系:I B A θ=⋅+ (2)其中,I为AD590的输出电流,单位μA/℃;θ为摄氏温度,B为斜率,A为摄氏零度时的电流值,该值恰好与冰点的热力学温度273K相对应(实际使用时,应放在冰点温度时进行确定)。
[精品]液体比汽化热测定实验报告[摘要] 本实验研究了液体比汽化热的测定实验,并在实验中采用恒定体积回火法,对水、乙醇和丙酮的比汽化热的大小及其相对值进行测定。
实验结果表明,液体比汽化热可以通过恒定体积回火法来测定,得到的结果与理论值较吻合,误差在可接受范围内,但受到环境温度和压力的影响,测得的值会有较大的偏差。
[关键词] 液体比汽化热,回火法,水,乙醇,丙酮[绪论] 汽化是一种物体从液体状态转变为气态状态的过程,这个过程所需的热量被定义为汽化热。
液体的汽化热称为液体比汽化热,其大小受温度和压力的影响,是衡量物质汽化能力的重要参数。
目前市场上常用以其来鉴别气体和液体质量等特性,如液体燃料、纯净水、蒸汽石油、原油、蒸汽处理汽油等,是应用比汽化热测定的一个主要领域。
本实验是一种测量液体比汽化热的实验,采用的方法是恒定体积回火法。
此法通过将液体放入一个固定容量的回火容器中,由压力的变化计算出液体的比汽化热。
实验中,将三种物质分别是水、乙醇和丙酮,以水为参考,测定他们的比汽化热,并分析结果。
[实验原理] 回火法是一种测定液体比汽化热的常用方法,它充分依靠压力P等于液体放出全部热量时的值,由此可以测出液体比汽化热的大小。
该实验采用的气压表将液体放入一个固定容量的回火容器中,将坩埚加热,随着温度升高,液体汽化后体积急剧变化,出现明显的压力变化,此时气压表上便可显示出该液体放出所有热量时的压力,再由其求出比汽化热。
[实验结果与讨论]1、实验数据表:试件:水、乙醇、丙酮实验温度(℃):25°C ± 0.5°C容要:100ml气压表值(MPa):P1=0、P2=0.138、P3=0.272、P4=0.409液体比汽化热比汽化热(KJ/mol):41.82 46.15 29.14相对比汽化热:1.000 1.102 0.7002、实验结果分析:。
水的比汽化热的测定一.实验目标和任务1, 测定水的比汽化热; 2, 分析测量中的误差; 二.重难点分析比汽化热指单位质量的液体在温度保持不变的情况下转化为气体时所吸收的热量,由于该定义中的热量难于测定,给实验带来了困难。
三.解决思路可以将起转化成一定质量的水M 的汽化测定温度的变化,即可以测定水的比汽化热。
四.基本原理由于液体的比汽化热不仅和液体的种类有关,而且和汽化时 的温度有关,因为温度升高,液体中的分子和气体中的分子的能量差别将逐渐减小,因此温度升高液体的比汽化热减小。
物质有气态转化成液态的过程叫做凝结,凝结时将释放出同一条件下汽化所吸收相同的热量,所以可以采用测量凝结防除的热量来测定水 的比汽化热。
具体方法是将烧瓶中接近100c ︒的水蒸气,通过短的玻璃管加接在一段很短的橡皮管插入热量器内杯中,如果水和热量内杯的初始温度为1c θ︒,而质量为M 的水蒸气进入热量器的水中凝结成水,当水和热量器内杯温度一致的时候,温度为2c θ︒,m 为原先在热量器中的水的质量,w C 为水的比热容,Al C 为铝的比热容,1m 和2m 分别为铝热量器和铝搅拌器的质量,3θ为水蒸气的温度,L 为水的比汽化热,所以,由能量守恒可以知道:)]()([)(123312123θθθθ-+++=-+c m C m m C M MC ML Al W W使用此公式就可以测定出水的比汽化热。
五.实验条件集成温度传感器 物理(或电子天平) 六.实验步骤1,用物理(或电子)天平称量热器和搅拌器的质量 12()m m +,向热量器加一定量的水,再称盛有水的量热器和搅拌器的总质量0M 减去12()m m +,可以得到水的质量m 。
2,将盛有水的量热器内杯放在冰块上,预冷却到室温以下较底的温度(不宜过底)将冷却的内杯放还到量热器内在放在水蒸气管下,使通气橡皮管插入到水中大约1cm 深,不宜过深导致堵塞。
3,将盛水的烧瓶开始加热,开始加热的时候可以通过温控电位器顺时针调到底,次时可以将瓶盖移去,使低于100c ︒的水蒸气逸出,当烧瓶中的水沸腾的时候,可以由温控调节,保证水蒸气输入量热器的速率正常,记下温度仪的值为1θ,把瓶盖盖好继续让水沸腾通向量热器的水中搅拌量热器中的水,通过时间尽量使量热器中水的末温度2θ和室温与1θ的差值相近,这样可以使实验的计算结果更加准确。