植物乙烯受体及转基因育种研究进展
- 格式:pdf
- 大小:335.79 KB
- 文档页数:7
植物科学学报 2024,42(2):242~253Plant Science Journal DOI:10.11913/PSJ. 2095-0837. 23186张云罗,吴迎梅,刘义飞,胡志刚,苟君波. 药用植物遗传转化和基因编辑技术研究进展[J]. 植物科学学报,2024,42(2):242−253Zhang YL,Wu YM,Liu YF,Hu ZG,Gou JB. Recent progress in medicinal plant transformation and genome editing[J]. Plant Science Journal,2024,42(2):242−253药用植物遗传转化和基因编辑技术研究进展张云罗1 #,吴迎梅1, 2 #,刘义飞1,胡志刚1 *,苟君波1, 3 *(1. 湖北中医药大学药学院,湖北省中药资源与中药化学重点实验室,湖北省时珍实验室,武汉 430065; 2. 云南师范大学生命科学学院,马铃薯科学研究院,云南省马铃薯生物学重点实验室,昆明 650500; 3. 湖北江夏实验室,武汉 430200)摘 要:植物遗传转化和基因编辑技术是后基因组时代研究基因功能的重要手段。
植物遗传转化从最初依赖组织培养的方式发展到了不依赖组织培养的直接转化方式;基因编辑技术从需要剪切特定基因片段再修复的第1阶段编辑技术,发展到了无需剪切即可在特定部位精确替换碱基或精确插入、删除片段以及大片段的第3阶段编辑技术,两种技术不断取得突破,推动着植物生物技术的飞速发展。
本文综述了植物遗传转化方法与基因编辑技术的最新研究进展,以及它们在药用植物中的应用,并对药用植物遗传转化新方法和基因编辑技术的建立进行了展望,旨在为药用植物的基因功能和分子育种研究提供技术支撑。
关键词:药用植物;遗传转化;基因编辑中图分类号:Q943.2 文献标识码:A 文章编号:2095-0837(2024)02-0242-12Recent progress in medicinal plant transformation and genome editing Zhang Yunluo1 #,Wu Yingmei1, 2 #,Liu Yifei1 ,Hu Zhigang1 *,Gou Junbo1, 3 *(1. Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; 2. School of Life Science, AGISCAAS-YNNU Joint Academy of Potato Sciences,Yunnan Normal University, Y unnan Key Laboratory of Potato Biology, Kunming 650500, China;3. Hubei Jiangxia Laboratory, Wuhan 430200, China)Abstract:In the post-genomic era, both plant genetic transformation and genome editing have emerged as critical tools for gene function research. Plant genetic transformation has evolved from methods requiring tis-sue culture to new approaches that bypass tissue culture entirely. Furthermore, gene editing technology has advanced from initial techniques of targeted gene segment modification and repair to more sophisticated strategies, such as precise nucleotide substitution and targeted insertion, deletion, and segment editing at specific sites without the need for cutting. Recent advancements in both plant genetic transformation and genome editing have significantly accelerated the field of plant biotechnology. In the present paper, we review recent progress on plant genetic transformation and genome editing technologies, as well as their applica-tions in medicinal plants, providing insights into gene function analysis and molecular breeding strategies for medicinal plants.Key words:Medicinal plants;Genetic transformation;Gene editing收稿日期:2023-06-26,接受日期:2023-08-16。
植物生物技术与种植技术的研究进展植物生物技术和种植技术是农业产业链中的两个重要部分。
通过植物生物技术,可以提高作物的产量、抗病性和耐逆性等;而种植技术则可以优化作物生长环境,提高其生长效率和品质,并减少对环境的污染。
近年来,植物生物技术和种植技术的研究取得了令人瞩目的进展,本文将对其中的一些重要进展进行介绍。
一、植物生物技术的研究进展(一)转基因植物转基因植物是通过人工干预植物的基因组来改变其形态、结构和功能的一种方法。
目前,转基因技术已经广泛应用于农作物的育种中,如水稻、小麦、玉米等。
通过转基因技术,可以将与作物有关的一些有益基因从其它物种转移到目标物种,提高作物的产量、品质、抗病性和耐逆性等。
此外,转基因技术还可以用于利用植物合成物质的能力生产药物和材料。
(二)基因组学基因组学是对植物基因组进行高通量测序和分析的学科。
通过基因组学技术,可以深入研究植物基因的结构、功能和调控机制,揭示植物生物学的本质和规律。
此外,基因组学还可以为植物育种和品种改良提供重要信息和技术支持。
(三)CRISPR-Cas9技术CRISPR-Cas9技术是一种利用细胞内天然防御系统实现基因组编辑的技术。
目前,CRISPR-Cas9技术已经广泛应用于植物基因组编辑中,如水稻、小麦、玉米等。
通过CRISPR-Cas9技术,可以快速准确地对植物基因组进行编辑,达到精准育种的目的。
二、种植技术的研究进展(一)智能种植技术智能种植技术是一种利用计算机科学、信息技术和传感器技术等手段改进种植管理的技术。
通过智能种植技术,可以实现植物生长环境的实时监测和调节,提高种植效率和品质。
目前,智能种植技术已经广泛应用于大棚种植、水稻种植和果蔬种植等领域。
(二)精准灌溉技术精准灌溉技术是一种基于作物水分需求的种植管理技术。
通过精准灌溉技术,可以实现对不同作物的水分需求进行区分和管理,达到节水、提高产量的目的。
目前,精准灌溉技术已经广泛应用于农田种植、果蔬种植和草坪管理等领域。
吉林农业科学 2001,26(5):26-30 Journal of Jilin Agricultural Sciences 文章编号:1003-8701(2001)05-0026-05转基因植物的研究与应用程焉平(四平师范学院生物系,吉林四平136000)摘 要:介绍了转基因植物的主要研究方法及其在各个领域中的应用现状,并对其今后的应用前景加以展望。
关键词:转基因技术;转基因植物;遗传转化;生物安全中图分类号:Q94312文献标识码:A自1983年第一株转基因植物问世以来,转基因植物的研究和应用在世界各国蓬勃开展。
所谓转基因植物就是植物细胞或组织经遗传转化后,进行组织培养长出愈伤组织,再经诱导所分化出来的完整植株。
转基因可以使优良的生物基因在不同种生物之间进行交流,从而弥补单一生物种类中的遗传资源不足,丰富种质库。
转基因植物的研究在目前的生物技术领域中最为活跃,具有十分广泛的应用前景。
1 植物转基因技术111 土壤农杆菌介导转化技术革兰氏阴性菌根瘤农杆菌(Agrobcterium tumer f aciens)是一种植物病原菌,通常只能感染双子叶植物的受伤部位。
农杆菌携带一种称为T i的质粒(tum or-inducing plasmid),该质粒含有一段NDA,称T-DNA(trans fer-DNA),它能转移并整合到植物组织中,并导致冠瘿瘤(crown2 gall)的形成。
不含有T i质粒的土壤农杆菌不能诱导冠瘿瘤产生。
利用T i质粒对植物进行遗传转化的最基本方法是将目的DNA片段插入T-DNA区,然后通过土壤农杆菌和T i质粒将其送入受体植物并整合到植物细胞的基因组内,使之得到遗传转化。
土壤农杆菌介导的基因转移是目前最常用的获得转基因植物的方法。
由于近几年来在载体系统和转化方法上的不断完善,土壤农杆菌介导的基因转移不仅局限于其天然寄主双子叶植物范围内,在转化水稻、玉米和小麦等单子叶植物上也取得了重大的突破。
植物分子生物学和基因工程的研究进展随着科学技术的不断进步,植物分子生物学和基因工程的研究逐渐走向深入,为解决各种现实问题、改善人类生活做出了巨大的贡献。
一、植物分子生物学的发展植物分子生物学是研究植物的基因、DNA、RNA、蛋白质及其相互作用等分子水平的学科。
对于人类来说,在人类农业中发挥着不可或缺的作用,它可以帮助我们更好地改善农业生产、保护环境,提高食品质量。
1. 转基因技术的广泛应用转基因技术,也称遗传工程技术,是通过对植物DNA的操作使其产生一些特殊的性状,实现对植物生长过程的控制和改变。
转基因技术已经被广泛应用于植物栽培中,例如通过调整作物免疫系统提高作物抗病能力,提高粮食产量和食品品质。
另外,还能通过改变植物细胞壁的结构,提高其对重金属和化学污染的抵抗力,使不适宜栽培的荒芜土地变成可耕作土地。
2. 分子标记技术的应用分子标记技术是指通过分别在基因上添加特定的标记,利用分子生物学方法研究基因分布和发育等相关问题。
随着施肥技术和农艺水平的提高,现代农业对于植物吸收和利用养分的高效率越来越高,而分子标记技术为实现这一目标提供了可能。
二、基因工程的发展基因工程是指通过改变或替换植物基因,使其具有改变植物性状的能力。
基因工程目前在医学、农业领域得到了广泛的应用,尤其是在育种和疾病治疗方面有着重要的意义。
1. 基因剪切技术的突破基因剪切技术是指通过人工干预植物中RNA的剪接,改变mRNA的结构、组成和功能,从而诱导植物产生特殊的基因表达状态。
这种技术通常用于通过改变性状来增加植物抗性、增强植物光合作用、提高产量等目的。
2. 代谢工程技术的革新代谢工程技术是指通过基因表达在植物中产生新的代谢途径,从而获得新的代谢产物。
代谢工程技术的革新能够帮助我们生产更多、更高质量的产品,如高紫根素、萜类化合物等。
总之,植物分子生物学和基因工程的研究是一个充满活力、充满生机的领域,它所取得的进展,不仅能够改善人类生活,也能对抗各种环境污染和疾病造成的威胁。
植物遗传转化研究进展重庆师范大学生命科学学院生物科学(师范)专业2009级指导教师摘要:植物遗传转化是一项农业生物技术,它通过某种途径或技术将外源基因导入受体细胞的全基因组中,并使之在受体细胞中得以充分表达。
目前一些重要农作物转基因品种已经或即将投入到实际应用,随着研究的不断深入,本文对植物遗传转化的技术作出了新的展望。
关键词:植物遗传转化;植物遗传转化方法;应用;进展Abstract:Plant genetic transformation is a kind of agricultural biotechnology.It delivers to the whole-genome of receptor cells through a certain approach or technique to make the exogenous genes fully expressed in receptor cells. At present, genetically modified varieties of some important crops have been or are about to put into the practical use. with the deepening of the research,this paper makes a new outlook of the plant genetic transformation technology.Key words: Plant genetic transformation; the approaches of plant genetic transformation; application; progress植物遗传转化是指以植物的器官、组织、细胞或原生质体作为受体,通过某种技术或途径转入外源基因,获得使外源基因稳定表达的可育植株。
2024年普通高中学业水平选择性考试广东卷生物试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
1.“碳汇渔业”,又称“不投饵渔业”,是指充分发挥生物碳汇功能,通过收获水产品直接或间接减少CO2的渔业生产活动,是我国实现“双碳”目标、践行“大食物观”的举措之一。
下列生产活动属于“碳汇渔业”的是( )A.开发海洋牧场,发展深海渔业B.建设大坝鱼道,保障鱼类洄游C.控制无序捕捞,实施长江禁渔D.增加饵料投放,提高渔业产量2.2019年,我国科考队在太平洋马里亚纳海沟采集到一种蓝细菌,其细胞内存在由两层膜组成的片层结构,此结构可进行光合作用与呼吸作用。
在该结构中,下列物质存在的可能性最小的是( )A.ATPB.NADP+C.NADHD.DNA3.银杏是我国特有的珍稀植物,其叶片变黄后极具观赏价值。
某同学用纸层析法探究银杏绿叶和黄叶的色素差别,下列实验操作正确的是( )A.选择新鲜程度不同的叶片混合研磨B.研磨时用水补充损失的提取液C.将两组滤纸条置于同一烧杯中层析D.用过的层析液直接倒入下水道4.关于技术进步与科学发现之间的促进关系,下列叙述正确的是( )A.电子显微镜的发明促进细胞学说的提出B.差速离心法的应用促进对细胞器的认识C.光合作用的解析促进花期控制技术的成熟D. RNA聚合酶的发现促进PCR技术的发明5.研究发现,敲除某种兼性厌氧酵母(WT)sqr基因后获得的突变株△sqr中,线粒体出现碎片化现象,且数量减少。
下列分析错误的是( )A.碎片化的线粒体无法正常进行有氧呼吸B.线粒体数量减少使△sqr的有氧呼吸减弱C.有氧条件下,WT 比△sqr的生长速度快D.无氧条件下,WT 比△sqr产生更多的ATP6.研究发现,耐力运动训练能促进老年小鼠大脑海马区神经发生,改善记忆功能。
转基因技术的研究进展及未来发展趋势转基因技术是一种将外源基因嵌入到生物体中,从而增强或改变其特定功能的方法。
自从转基因技术问世以来,它牵动着人们的心弦,引发了惊人的争议。
一方面,多数科学家和生产商认为,转基因农作物可以提高作物耐病能力和适应性,增加生产量,从而解决全球粮食短缺和营养不良;另一方面,对生态环境、动植物的影响还有潜在的人类健康风险问题等因素却成为了反对转基因技术的主要表述。
本文将对转基因技术的研究进展及其未来发展趋势进行探讨。
1. 转基因农作物的研究进展2006年,中国通过了第一个转基因大豆的商业化申请,标志着中国转基因技术商业化进程正式启动。
中国的转基因作物种类正在迅速扩展,种类已经包括棉花、玉米、水稻等多个品种。
近年来,转基因技术的可持续发展趋势日益明显,逐渐形成了高效、安全的基因工程技术路线。
2. 转基因技术的未来发展趋势科学家们正在不断探索基因组编辑技术,不仅可以准确地修改、删除和插入基因,还可以在不改变DNA序列的一些细微变化中精细调节基因表达,同时也可以增强技术的可重复性和效果。
例如,具有“修剪”功能的CRISPR-Cas系统,不仅用于研究和基因治疗,同时也代表了农业文明中的一个巨大的机遇。
预计,未来基因编辑技术将成为改良传统作物的一种新手段,增加农产品的产量和质量,同时减少生产过程中的环境污染。
在转基因技术应用上,肯定还有更多的变化和挑战。
未来,人们需要进一步优化转基因作物品种的设计,以下导表达的肖像表达改进的抗逆性。
相信在人类长期坚持开放创新的方式下,拥有高效、精准和安全的基因工程技术是有可能的。
3. 转基因技术的未来应用前景在转基因技术的未来应用前景上,我们认为转基因肉类是一种非常值得探索的产品——尤其是用于参数环境下的生产。
从持续性视角来看,肉类产业已经成为全球的主要经济命脉。
然而传统的养殖方法却面临了许多挑战,如临床病毒传染,(改进中的不善利用资源)。
纵观全球各地的转基因动物实验,许多科学家都表示,转基因养殖动物要么增加抵抗病毒的能力,要么提高粮食利用率,要么提高农产品的质量,甚至还可以在避免生荷尔蒙、激素和抗生素的使用,并减少有害物质对环境的污染。
园 艺 学 报 2001,28(2):128~132Acta Horticulturae Sinica乙烯受体基因LeETR1在番茄突变体Epi及其野生型中的表达郑铁松1 应铁进1* 何国庆1 曹家树2(1浙江大学食品科学与营养系,杭州310029; 2浙江大学园艺系,杭州310029)摘 要:采用核酸酶保护分析(RPA)方法对番茄乙烯过表达单基因突变体Epi和野生型VFN8中LeETR1mRNA的表达特征进行了研究。
结果表明,在正常番茄中LeE TR1mRNA不受内源乙烯含量的影响,呈组成性表达。
LeE TR1mRNA在Epi部分组织中的表达强度发生了改变,并与Epi的形态特征变化相吻合,提示LeE TR1在叶片的形态建成、果实成熟和顶钩发育中可能起着重要的作用。
关键词:番茄;乙烯受体;LeETR1;核酸酶保护分析;基因中图分类号:S641.2;Q786 文献标识码:A 文章编号:0513 353X(2001)02 0128 05乙烯是调控植物生长发育、成熟衰老的重要激素,从种子萌发、叶片衰老、根茎伸长到果实成熟与软化等无不为乙烯所调节。
随着植物体内乙烯生物合成途径的阐明和分子生物学的深入研究,通过分子生物学途径调控植物内源乙烯的合成已取得了显著的成绩。
但相比而言,乙烯受体系统的研究则刚刚起步。
在拟南芥乙烯受体基因研究的基础上,最近在番茄上也分别克隆到了与拟南芥乙烯受体基因E TRI、ERS和ETR2同源的LeETR1、LeE TR2、NR、LeE TR4和LeERT5等5个乙烯受体基因 1~4。
但目前尚不了解这些基因在整个乙烯受体系统中的确切功能,因而难以实现乙烯受体基因调控的实际应用。
Epinastic(Epi)是美国加州大学的Bradford于1984年在番茄品种VFN8群体中发现的一个乙烯过表达的单基因突变体,Epi的表现型与其野生型亲本有着极大的差异 5。
我们拟通过研究Epi及其野生型中LeETR1基因的表达特性,对该基因在番茄乙烯受体系统中的功能进行初步探索。
植物生理学研究进展植物生理学是研究植物生长、发育、代谢及对环境适应的学科。
随着科技的不断发展,植物生理学的研究也在不断深入和扩展。
本文将从不同角度来介绍植物生理学研究的进展。
一、植物分子生物学的研究进展植物分子生物学是研究植物分子水平上的基本生理过程以及植物分子基因工程技术的学科。
随着分子生物学技术的发展,植物分子生物学的研究进展得到了极大的提升。
1.1 基因表达调控研究基因的表达是生物体内的各种生理过程的关键。
针对植物基因的表达调控,研究人员通过对转录因子、乙烯合成、激素信号等方面的研究,建立了与植物分子生物学密切相关的研究领域。
1.2 分子标记技术的应用分子标记技术是将遗传变异溯源到DNA分子水平的一种技术。
分子标记技术的应用为植物分类学、生物多样性及经济作物高产、高品质等研究领域提供了更加灵敏、准确的工具。
1.3 基因工程技术及其应用基因工程是植物分子生物学的一个典型应用领域。
基因工程技术能够通过改变植物基因的序列和表达,并实现相关的生理特性的改变。
基因工程技术在植物抗逆性、耐盐性、抗寒性、产量等方面得到广泛应用。
二、植物生长调节的研究进展植物生长调节是研究影响植物生长发育和形态变化的内源和外源因素及其相互作用的学科。
植物生长调节研究领域中以激素与灯光关系、光感应及调节、营养物质、生物体梯度等为主要研究方向。
2.1 激素与灯光关系的研究激素与灯光关系的研究是植物生长调节研究的重要领域。
激素与光信号是植物生长发育过程中最为重要的内源性调节因素。
激素和光合过程之间的相互作用和调节机制的研究为植物分子生物学的发展提供了更深入的理解。
2.2 光感应及其调节的研究光合固碳是植物维持生命活动的重要代谢过程,而光感应和调节是植物在光环境中进行光合作用的重要调节方式。
随着对于植物光感应及其调节机制的研究,为植物科学家深入了解植物在环境中适应性进化的发展提供了更系统、更全面的体系。
2.3 生物梯度的研究生物梯度研究是研究细胞内物质输运、信息传递和调节的一个重要领域。
转基因植物研究新进展以转基因植物研究、开发和应用为标志的新农业技术革命正轰轰烈烈地在全球展开。
转基因大豆、玉米、棉花和油菜已进入大规模商业化应用阶段。
1999年,这四种转基因作物的面积分别为2160万、1110万、370万、340万hm2。
以转基因,性状而言,面积最大的是抗除草剂转基因作物,其次是抗虫转基因作物。
到目前为止,抗虫、抗除草剂等转基因作物的主要受益者是种植者。
但越来越多的事例证明,转基因植物也可用于生产有益于人们身体健康的食品、药品和有益于环境保护的化工原料及产品。
1.转基因水稻玉米等C4植物的光合作用效率较水稻、小麦等C3植物的高。
磷酸烯醇丙酮酸羧化酶(PEPC)在其中起了很大的作用。
C4植物光合系统的浓缩CO2,增加局部CO2浓度的机制,使其即使在低CO2浓度时也能使光合作用几近饱和,从而大大提高其光合作用效率。
因此,如何将C4植物的这一机制转移到水稻等C3植物上一直是植物生物学家的研究问题之一,但实践证明,常规杂交育种手段很难如愿以偿。
最近,Ku等(1999)利用农杆菌介导法,将完整的玉米PEPC基因导入到了C3植物水稻的基因组中。
分析结果表明,多数转基因水稻植株均高水平地表达玉米的PEPC基因,一些转基因植株叶片中的PEPC酶蛋白含量占叶片总可溶性蛋白的12%以上,其活性甚至比玉米本身的还高2-3倍。
Northern和Southern分析结果表明,PEPC基因在转基因水稻植株中不存在基因沉默现象。
这为利用基因工程技术快速改良水稻等C3作物的光合作用效率,提高粮食作物产量开辟了新路子。
目前,转基因植物研究多针对单基因控制性状,但众所周知,植物的多数性状,尤其是农作物的产量、品质性状,受多基因控制。
要改良这些数量性状,仅靠改变其中的某个或少数基因是很难奏效的,而必须同时对控制性状的多个编码基因,甚至调控基因进行遗传转化,并使它们在转基因植株及其后代中稳定地表达和遗传才能达到预期的目的。
中国科学: 生命科学2013年 第43卷 第10期: 854 ~ 863 SCIENTIA SINICA Vitae 引用格式: 李文阳, 马梦迪, 郭红卫. 植物激素乙烯作用机制的最新进展. 中国科学: 生命科学, 2013, 43: 854–863Li W Y, Ma M D, Guo H W. Advances in the action of plant hormone ethylene. SCIENTIA SINICA Vitae, 2013, 43: 854–863, doi: 10.1360/052013-284《中国科学》杂志社SCIENCE CHINA PRESS评 述 中国知名大学及研究院所专栏 北京大学专辑植物激素乙烯作用机制的最新进展李文阳†, 马梦迪†, 郭红卫*北京大学生命科学学院, 蛋白质与植物基因研究国家重点实验室, 北京 100871 † 同等贡献* 联系人, E-mail: hongweig@收稿日期: 2013-09-03; 接受日期: 2013-09-18国家自然科学基金(批准号: 91017010)和转基因生物新品种培育科技重大专项(批准号: 2010ZX08010-002)资助项目 doi: 10.1360/052013-284摘要 气体植物激素乙烯在植物生长发育及应对胁迫的防御反应中起重要调控作用. 通过20多年的研究, 利用模式植物拟南芥, 勾画出一条自内质网膜受体至细胞核内转录因子的线性乙烯信号转导通路. 本文概述了研究乙烯信号转导的方法及乙烯信号转导的基本过程; 阐述了最新发现的乙烯信号从内质网膜传递到细胞核的分子机制, 即原本定位于内质网膜上的EIN2蛋白其C 端被剪切之后进入细胞核, 然后通过抑制EBF1/2而稳定转录因子EIN3/EIL1; 根据最近多个小组报道EIN3/EIL1直接调控除乙烯响应基因之外的其他生物学过程相关基 因, 提出了EIN3/EIL1可以作为网络节点整合多条信号通路的新观点; 通过分析不同信号通路调控EIN3/EIL1的方式, 发现不仅EIN3/EIL1的蛋白稳定性受到调控, 而且其转录活性还受到诸如JAZ, DELLA 等转录调节因子的调控. 本文展望了未来乙烯信号转导通路的研究方向与研究热点.关键词 植物激素 乙烯 信号转导 EIN2EIN3/EIL1 EBF1/2乙烯是最早被确立为植物激素的植物生长调节物质之一[1,2]. 1901年, 俄罗斯植物生理学家Neljubov D K 就发现照明气中的乙烯会引起黑暗中生长的豌豆幼苗产生特殊的生长变化. 1934年, 英国人Gane R 发现植物自身就能产生乙烯, 因此人们认定乙烯是植物生长发育的内源调节物质. 1965年, 乙烯首次被称作植物激素, 此后随着研究的深入乙烯作为植物激素的地位逐渐为人们所确立.随着研究的不断深入, 人们发现乙烯对植物生长、发育的很多过程都有影响. 从植物自身发育的角度看, 乙烯在从种子萌发到叶片扩展、根毛伸长、侧根生长、开花、果实成熟以及叶片脱落、衰老等很多阶段都起着极其重要的作用. 从植物与外界环境之间关系的角度看, 乙烯主要是在植物抵抗生物与非生物胁迫等方面发挥作用. 植物与动物的区别之一就是植物是固着生长、不可移动. 通过自身合成包括乙烯在内的各种激素, 植物可以通过利用激素信号通路灵活地调控基因表达以协调内在生长、发育过程与外界环境刺激之间的关系, 达到存活、生长、发育、繁衍后代的目的. 可见, 对于植物激素乙烯信号通路的研究具有重要的理论价值与实践意义.1 乙烯信号通路概述人们常使用“三重反应”(triple response)作为判断乙烯反应强弱程度的形态学标准, 该现象最初被中国科学: 生命科学 2013年 第43卷 第10期855Neljubov 描述为: 外源乙烯引起黑暗中生长的黄化苗出现明显的形态学变化, 包括根和下胚轴伸长受抑制、下胚轴横向生长加粗、顶端子叶弯曲生长加 剧[3,4](图1A).突变体筛选是研究信号转导最常用、最有力的手段. 目前, 对乙烯信号转导通路的相关研究大多是利用模式植物拟南芥(Arabidopsis thaliana )进行的. 最初的乙烯突变体筛选都是依据拟南芥黄化苗“三重反应”这一形态学标准, 一方面挑选那些在有外源乙烯施加的情况下, 与野生型相比“三重反应”减弱甚至消失, 表现出部分甚至完全乙烯不敏感的突变体(图1B), 如etr1(ethylene resistant 1), etr2, ein2(ethylene insensitive 2), ein3, ein4, ein5, ein6, hls1(hookless 1), eir1(ethylene insensitive root 1); 另一方面挑选那些在没有外源乙烯施加的情况下组成型出现“三重反应”的突变体, 如乙烯过量生成突变体eto1(ethylene over- exproduction 1), eto2, eto3以及乙烯信号组成型活化突变体ctr1(constitutive triple response 1)(图1C); 还筛选到对外源乙烯及其合成前体ACC(1-aminocy- clopropane-1-carboxylic acid)表现出超敏感突变体, 如eer1(enhanced ethylene response 1), ebf1(EIN3- Binding F-Box 1)和ebf2. 此外, 还有使用乙烯拮抗剂筛选对拮抗剂有反应的突变体ran (response to antag - onist )[3,4,6~9].经过上述分离、鉴定突变体之后, 通过图位克隆获得相关基因, 之后通过遗传上位性分析发现, ETR1, ETR2和EIN4以及它们的同源基因ERS1(ethylene response sensor 1), ERS2作用于CTR1基因的上游, EIN2, EIN5, EIN6, EIN3和ERF1(ethylene response factor 1)作用于CTR1的下游, 而EIN3作用于EIN2下游[10]. 因此, 得出拟南芥中乙烯信号转导通路的线性模型. 在一价铜离子(Cu +)的作用下乙烯分子与定位在内质网膜上的乙烯受体(ETR1, ERS1, ETR2, ERS2和EIN4)结合, 导致受体-CTR1复合体失活. 失活后的受体-CTR1复合体不再磷酸化下游信号组分EIN2, 此时EIN2因不被降解而激活. 然后, EIN2蛋白羧基端(EIN2 CEND)被切割而游离并进入细胞核[11], EIN2 CEND 可能通过抑制EBF1/2蛋白介导的核心转录因子EIN3/EIL1的泛素化降解过程而促进EIN3/ EIL1在细胞核内积累[12~14], 接着EIN3/EIL1在转录水平激活ERF1等下游靶基因表达, 同时ERF1等作为转录因子还会激活更下游的靶基因表达, 于是大量的下游乙烯响应基因在转录水平被激活, 并由此而产生乙烯反应[10](图2). 需要指出的是, EIN3/ EIL1的靶基因包括EBF1/2, 也就是说EIN3/EIL1在转录水平上激活EBF1/2表达, 那么这样就形成了一个EIN3/EIL1与EBF1/2之间的负反馈调控环路[12]. 此外, 5′→3′外切核酸酶EIN5会在mRNA 水平抑制EBF1/2的表达, 从而稳定EIN3/EIL1蛋白水平[10].图1 “三重反应”与突变体筛选A: 生长在MS 培养基(Murashige and Skoog medium)上的野生型拟南芥Col-0在空气和含10 μL/L 乙烯的空气中避光生长3天的黄化苗所具有的表型; B: 存在外源乙烯(浓度5 μL/L)时避光生长3天的拟南芥黄化苗的表型, 其中最高的且完全没有“三重反应”的是乙烯不敏感突变体etr1-1[3]; C: 空气中生长的拟南芥黄化苗, 中间最矮且具有“三重反应”的突变体为ctr1-1[5]李文阳等: 植物激素乙烯作用机制的最新进展856图2 乙烯信号转导通路线性模型示意图没有外源乙烯时, 定位于内质网膜的受体处于有活性状态, ETR1-CTR1复合体抑制同样定位于内质网膜的EIN2的活性, 此时EIN2蛋白的Ser 645, Ser 924处于磷酸化状态(蓝色实心圆形)并被ETP1/2介导的泛素/26S 蛋白酶体途径所降解; 而当有大量外源乙烯存在时, 乙烯与受体结合后导致EIN2不再被CTR1磷酸化, 此时有活性的EIN2蛋白的C 端被剪切(红色“剪刀”)并从细胞质进入细胞核, 进而引发乙烯反应[15~17]. P: 示磷酸化; U: 示泛素化; 尖头直线表示正向调节, 平头直线表示负向调节; 直线的方向表示遗传上下游关系; 虚线表示生化功能机制未知2 乙烯受体乙烯信号转导途径是从乙烯分子与其受体相互识别、结合、作用起始的. 经研究, 拟南芥乙烯受体家族有5个成员, 包括ETR1, ETR2, ERS1, ERS2和EIN4[3,7,18~22]. 单个受体的功能缺失突变体均没有乙烯相关表型, 后来获得了三重突变体etr1 etr2 ein4, 该三重突变体表现组成型的乙烯反应, 这使得人们认识到乙烯受体负调控乙烯反应且存在功能冗余, 可见受体是在没有乙烯或乙烯浓度较低时具有活性, 与乙烯结合后其活性丧失[7,20]. 从蛋白序列特点来看, 乙烯受体家族类似于在细菌和真菌中发现的双元组分信号系统(two-com- ponent system). 分析表明, 乙烯受体包括3个结构域: 乙烯结合结构域、组氨酸激酶结构域和反应调控结构域. 生化实验表明, ETR1蛋白以同源二聚体的形式存在, 其N 端疏水性区域结合乙烯, 且需要一价铜离子作辅因子, 负责转运铜离子并维持其浓度梯度的蛋白是一个具有P-type ATPase 活性的蛋白—RAN1(response to antagonist 1)[23~25]. 此外, 还有一类在进化上非常保守的膜结合蛋白RTE1(reversionto- ethylene sensitivity 1), 其转录活性受乙烯调控, 通过与乙烯受体相互作用而调控乙烯反应[26]. 根据序列相似性可将乙烯受体分成两类. 第一类(ETR1和ERS1)在其氨基端有3个疏水的跨膜结构域, 羧基端有一个非常保守的组氨酸激酶结构域; 第二类(ETR2, ERS2和EIN4)在氨基端有4个疏水的跨膜结构域, 它们的组氨酸激酶结构域保守性不强, 缺中国科学: 生命科学 2013年 第43卷 第10期857乏一个或多个激酶活性必需的保守氨基酸. 在第一类受体的功能缺失突变体, 即ers1 etr1双突变体中过表达任何一个第二类受体都不能恢复其表型; 而在第二类受体的功能缺失突变体etr2 ein4 ers2三重突变体中过量表达第一类受体也不能完全恢复第二类受体缺失的表型, 说明两个类型的受体之间功能部分互补且分别具有特定的功能. 另外, ERT1, ETR2和EIN4蛋白均在羧基端有一个接受器结构域, 而ERS1和ERS2蛋白则缺乏接受器. 信号接受器缺失会增加乙烯敏感性, 而替换信号接受器的磷酸化位点会延迟受乙烯抑制效应的恢复, 说明信号接受器可以在某种程度上限定、修饰乙烯信号的强弱[18,27].乙烯受体定位于内质网膜, 与CTR1协同负调控乙烯反应[28]. 认为在没有乙烯存在时受体具有组氨酸激酶活性, 能激活CTR1, 进而抑制了下游组分的活性, 抑制了乙烯反应[29].3 负调控组分CTR1遗传分析发现, ctr1 etr1双重突变体仍表现为ctr1突变体的组成型乙烯反应, 表明CTR1位于受体ETR1下游. CTR1因与受体ETR1等相互作用而定位于内质网[28]. 利用免疫共沉淀(co-immunoprecipita- tion, Co-IP)分析在体内与CTR1结合的蛋白发现, 可以从内质网组分中纯化得到ETR1蛋白. 与此相一致, 直接从受体双重突变体或者受体三重突变体的内质网组分中检测CTR1, 发现此时内质网组分中的CTR1蛋白减少, 表明CTR1蛋白能与ETR1和ERS1蛋白的胞质部分相互作用[28].CTR1基因编码一个具有821个氨基酸的蛋白, 其C 端含有一个与Raf 家族丝氨酸/苏氨酸激酶结构域类似的结构域. 体外磷酸化实验表明, CTR1具有丝/苏蛋白激酶活性, 活性特征类似于Raf-1, 缺失CTR1 N 端并没有提高激酶活性, 表明在体外其N 端并不具备自主抑制激酶活性的功能. 激酶活性丧失的ctr1突变体具有组成型的乙烯反应表型, 表明激酶活性为CTR1功能所必需[30].由于功能缺失突变体ctr1具有组成型的“三重反应”, 说明CTR1是乙烯信号转导通路中的负调控组分[31]. 当乙烯不存在时, 受体活化处于有功能的状态, 可以与CTR1结合, CTR1通过某种方式(N 端丝/苏蛋白激酶活性)抑制了下游的乙烯反应; 当乙烯存在时受体失活, 不能与CTR1结合, CTR1不再具有抑制下游组分的功能, 表现为乙烯反应.4 正调控组分EIN2遗传上位分析表明, EIN2位于CTR1的下游. EIN2的功能缺失突变导致拟南芥完全乙烯不敏感, 这是到目前为止人们发现的唯一的单基因缺失突变导致完全乙烯不敏感的突变体, 说明EIN2是乙烯信号转导途径中的关键组分, 也说明EIN2是正调控组分[32].拟南芥中的EIN2于1999年被克隆, 其编码一个共有1294个氨基酸的跨膜蛋白. EIN2蛋白N 端(1~461 aa)含有12个跨膜结构域, 与阳离子转运蛋白Nramp 相似度为21%. Nramp 家族蛋白普遍存在于从细菌到人类的所有生物中, 其功能为转运二价阳离子, 不过目前尚未发现有力证据证明EIN2具有转运金属离子的能力. Alonso 等人[32]对所鉴定到的25个EIN2等位突变体的突变位点进行分析, 发现只要其C 端1134位以后的氨基酸发生突变就会导致乙烯不敏感的表型, 说明1134位以后的C 端功能非常重要. EIN2 蛋白C 端(462~1294 aa)为亲水区, 含有一个coiled-coil 结构域, 通常该结构域介导蛋白与蛋白之间的相互作用. 在EIN2缺失突变体ein2-5中过量表达EIN2的C 端(EIN2 CEND), 转基因植株表现出组成型乙烯反应, 且转基因植株中的乙烯反应基因表达不受外源乙烯的影响. 不过, 暗生长的黄化苗却没有“三重反应”, 而当过量表达EIN2蛋白N 端也并未发现转基因植株具有组成型乙烯反应或对乙烯表现出超敏感, 猜测EIN2的整个N 端作为一个跨膜结构接受上游的信号, 而C 端负责将上游信号向下传递.有人利用烟草叶片瞬时表达系统, 观察荧光蛋白标记的EIN2发现其定位于内质网膜[33]. 利用荧光共振能量转移技术(fluorescence resonance energy transfer, FRET)发现, EIN2的C 端与5个乙烯受体均存在相互作用[33,34].那么定位于内质网膜上的EIN2又是如何将乙烯信号向下传递至细胞核内的呢? 最近有研究报道了关于EIN2蛋白C 端如何激活乙烯信号转导的机制. 没有乙烯时, EIN2的两个位点Ser 645和Ser 924被CTR1磷酸化, 然后EIN2被泛素-蛋白酶体途径降解, 导致细胞内EIN2蛋白水平较低, 此时EIN3/EIL1被李文阳等: 植物激素乙烯作用机制的最新进展858EBF1/2介导的蛋白酶体途径降解, 下游乙烯响应基因不表达, 植物不产生乙烯反应; 而当乙烯存在时, 其与受体ETR1结合导致ETR1-CTR1复合体失活, 此时EIN2不再被CTR1磷酸化, 同时其C 端被蛋白酶以某种方式剪切下来, 然后C 端进入细胞核, EIN2的C 端能够解除EBF1/2对EIN3/EIL1的抑制, 使得EIN3/EIL1大量积累并激活下游基因表达, 产生乙烯反应[11,15~17].由上面分析不难看出, 在没有乙烯时, 乙烯信号通路的上游组分(包括受体、负调控组分CTR1和正调控组分EIN2)均定位在ER 膜上, 这是非常有趣的现象, 可能有利于植物响应乙烯分子并快速激活下游乙烯反应. 从蛋白与蛋白相互作用的层面看, 受体负责识别EIN2蛋白, CTR1作为蛋白激酶负责磷酸化底物EIN2蛋白, 则受体-CTR1复合体共同调控EIN2可能是一种精细而准确的调控方式.虽然EIN2蛋白的C 端可以进入细胞核并激活乙烯反应, 但是在ein2-5突变体中过量表达EIN2的C 端却并未导致暗生长的黄化苗产生“三重反应”. 分析乙烯处理时EIN2蛋白C 端的亚细胞定位变化, 发现其在细胞质内会有点状聚集, 暗示EIN2的C 端在细胞质中可能具有重要的功能, 这或许是其介导上游乙烯信号向下传递的另一种方式[15~17]. 通过转基因过表达的C 端与因乙烯激活EIN2而剪切下来的C 端在蛋白修饰上可能有所不同, 所以功能不完全相同. 过表达的EIN2 C 端可能只是替代了剪切下来的C 端的一部分功能, 所以转基因过表达的C 端只能引起部分的乙烯反应.此外, Qiao 等人[35]利用酵母双杂交技术, 大规模筛选与EIN2相互作用的蛋白发现了负责EIN2降解的F-box 蛋白: ETP1(EIN2 targeting protein 1)和ETP2. 生化实验表明, 在细胞内乙烯水平较低时, ETP1/2通过26S 蛋白酶体途径降解EIN2, 导致EIN2蛋白含量较低. 当外源施加乙烯时, ETP1/2的蛋白水平下降, EIN2蛋白因不再被降解而逐渐积累, 并激活乙烯信号. 遗传及生化分析发现, 与拟南芥野生型Col-0相比, etr1-1突变体内EIN2蛋白水平较低, ctr1-1突变体内EIN2蛋白水平较高, ein3 eil1突变体内蛋白水平不变, 表明乙烯对ETP1/2的蛋白水平及EIN2蛋白水平的影响不依赖于EIN3/EIL1, 而是依赖于上游组分ETR1和CTR1. 说明乙烯通过抑制蛋白降解过程而激活EIN2, 并引起乙烯反应.5 核心转录调控因子EIN3/EIL1乙烯信号转导的下游事件是在细胞核内发生的基因转录调控, 由植物所特有的核蛋白EIN3/EIL1所介导[36]. 在ein2功能缺失突变体中过量表达EIN3导致植物组成型乙烯应答, 表明EIN3在乙烯信号途径中处于EIN2的下游. ein3功能缺失突变体表现乙烯部分不敏感, 说明EIN3是一个乙烯反应的正调节因子[36].EIN3属于EIL 转录因子家族, 拟南芥中有5个EIN3类似蛋白EILs(EIN3-like proteins), 分别为EIL1, EIL2, EIL3, EIL4和EIL5, 其中EIL1与EIN3的相似度最高. 过量表达EIN3或EIL1的植株表现出组成型乙烯反应. 功能缺失突变EIN3或EIL1, 表现出部分的乙烯不敏感, 表明EIN3家族成员之间存在功能冗余. 双突变体ein3 eil1表现出完全的乙烯不敏感, 说明EIL 转录因子家族5个成员中的EIN3/EIL1在乙烯信号通路中功能最重要[36].EIN3编码一个由628个氨基酸组成的转录因子. 生化实验及结构生物学的证据表明, EIN3/EIL1可以划分为3个基本的结构域: DNA 结合结构域(80~359 aa)、二聚体化结构域(113~257 aa)和C 端. 其中, DNA 结合结构域识别并结合EBS(EIN3-binding site: 5′- ATGTA-3′); C 端负责蛋白-蛋白相互作用, 比如, 与EBF1/2互作; 另外, 来自番茄(Lycopersicon escul - entum )的研究表明, 区段92~95 aa 负责磷酸化且对二聚体化亦有影响[36~39].凝胶阻滞实验(electrophoretic mobility shift assay, EMSA)表明, EIN3/EIL1/EIL2是以同源二聚体形式与ERF1(ethylene response factor 1)基因的启动子结合, 激活该基因的转录, 称此过程为初级乙烯应答反应. EDF1/2/3/4(ethylene response DNA binding factor 1/2/3/4)也是EIN3的靶基因, 代表乙烯反应的一个分支. ERF1和EDF1/2/3/4又可分别与许多乙烯和病原诱导基因启动子的GCC-box 结合, 进而调控次级乙烯反应基因的表达[37,40].目前为止, 人们发现大部分乙烯相关的生物学过程都是通过核心转录因子EIN3/EIL1调控下游靶基因实现的. EIN3/EIL1可以激活很多靶基因, 涉及到诸如乙烯反应[10]、光形态建成[41~43]、根的发育[44]、生长素的合成与运输[45]、细胞分裂素反应[46]、水杨中国科学: 生命科学 2013年 第43卷 第10期859酸的合成[47]、冷刺激[46]、盐胁迫[48]、病原微生物胁 迫[47,49]、铁元素代谢[50]等生物学过程. 可见, EIN3/ EIL1不仅仅激活乙烯反应响应基因表达, 还参与到其他生物学过程, 这些现象表明转录因子EIN3/EIL1是植物体内整个转录调控网络中一个非常重要的节点, 其具有整合信号、调控基因表达网络的作用.6 乙烯通过抑制EBF1/2而稳定EIN3/EIL1从上面的叙述可见, EIN3/EIL1作为转录因子可以激活很多基因的表达, 具有非常重要的作用. 那么上游乙烯信号是如何调控EIN3/EIL1的? EIN3/EIL1在转录水平上不受乙烯调控, 属于转录后调控基 因[36]. 当没有乙烯时, EIN3与EIL1迅速地被2个F-box 蛋白EBF1(EIN3-binding F-box protein)和EBF2介导的26S 泛素/蛋白酶体途径降解; 而乙烯存在时, EIN3蛋白与EIL1蛋白稳定性增加并不断积累. EBF1和EBF2中的任一个缺失突变都可以导致EIN3蛋白与EIL1蛋白水平增加, 增强乙烯反应. 功能不完全缺失的ebf1 ebf2双突变体显示组成型的乙烯反应, 功能完全缺失的ebf1 ebf2双突变体致死. 而过量表达EBF1或EBF2均表现出乙烯不敏感的表型[12,13]. 说明EBF1和EBF2促进EIN3/EIL1蛋白降解而乙烯诱导EIN3/EIL1蛋白积累.An 等人[14]研究发现, ein3 ebf1 ebf2三重突变体中虽然EIL1蛋白大量积累, 且该突变体具有组成型乙烯反应的表型, 但其并不能响应外源乙烯; 生化实验表明, 乙烯可以促进EBF1/2蛋白的降解, 且此过程依赖于EIN2, 说明上游乙烯信号是通过抑制EBF1/2蛋白的积累而稳定EIN3/EIL1, 使其蛋白因不被降解而大量积累, 最终激活下游乙烯响应基因表达[10,14,51]. 虽然如此, EIN2如何解除EBF1/2对EIN3/EIL1的抑制的具体生化过程仍然需要进一步 研究.另一方面, 乙烯可以明显诱导EBF2的转录, 而对于EBF1的转录激活比较弱[12,13,52,53]. ein3突变体中EBF1和EBF2转录水平均明显下降, 而EIN3过表达的植株中EBF1和EBF2转录水平却明显上调, 说明EBF1和EBF2的表达均受EIN3的调控. EMSA 实验表明, EIN3可以结合到EBF2启动子区的5′-TACAT-3′序列上, 直接激活其转录. 可见, EIN3/ EIL1与EBF1/2之间的直接相互调控, 形成了一个负反馈回路[12,13,52,53].由于EBF1/2的蛋白水平直接决定了EIN3/EIL1的蛋白水平, 所以对EBF1/2的调控会影响EIN3/ EIL1的蛋白水平. 一个重要的发现是5′→3′外切核酸酶EIN5(ethylene-insensitive 5)可以调控乙烯信号转导通路. 遗传分析表明, EIN5位于EBF1和EBF2的上游, Tiling array 与Northern 分析均表明, 在ein5突变体中EBF1和EBF2的mRNA 水平明显上调; 生化分析表明, 乙烯诱导的EIN3蛋白积累需要EIN5, 可见EIN5是通过促进EBF1/2 mRNA 的降解而降低细胞内EBF1和EBF2的蛋白水平, 导致EIN3蛋白积累, 进而调控乙烯反应[54,55].7 JAZ, DELLA 等抑制子调控EIN3/EIL1的转录活性转录因子EIN3/EIL1除了蛋白水平受调控外, 其转录活性也受到调控. 近期有报道发现, EIN3/EIL1与植物激素茉莉酸信号通路中重要的转录抑制子JAZ(jasmonatezim-domain)蛋白直接结合, 而且EIN3/ EIL1与其靶基因ERF1启动子区DNA 的结合能力被JAZ 蛋白抑制. 研究还发现, JAZ1/3/9与组蛋白去乙酰去酶6(histone deacetylase 6, HDA6)之间存在直接的蛋白-蛋白相互作用. 更进一步, EIN3/EIL1与HDA6之间也存在直接蛋白相互作用, 并且茉莉酸处理后可以抑制这种相互作用[44]. 由此推测, 转录抑制子JAZ 招募组蛋白去乙酰化酶HDA6与EIN3/EIL1发生相互作用, 抑制EIN3/EIL1的DNA 结合活性并影响EIN3/EIL1靶基因启动子区DNA 组蛋白的乙酰化状态, 进而调控EIN3/EIL1下游靶基因的表达(图3). 此外, 有报道EIN3/EIL1的DNA 结合结构域可以被赤霉素信号通路中的关键抑制子DELLA 蛋白所识别结合(图3), 且EIN3/EIL1对其靶基因HLS1的转录激活调控受到DELLA 蛋白的抑制[56]. 由上述现象 可见, EIN3/EIL1作为转录因子其转录活性受到严格调控.8 展望虽然气体激素乙烯结构非常简单, 但其对植物发育以及适应性反应起着非常重要的作用. 最初, 人李文阳等: 植物激素乙烯作用机制的最新进展860图3 EIN3/EIL1作为网络节点整合不同信号通路EIN3/EIL1不仅可以调控EBF1/2, ERF1等乙烯响应基因的表达[10],还可以调控光形态建成[41~43]、根的发育[44]、生长素的合成与运输[45]、细胞分裂素信号反应[46]、水杨酸的合成[47]、冷刺激[46]、盐胁迫[48]、病原微生物胁迫[47,49]、铁元素代谢[50]等生物学过程相关基因的表达; 乙烯信号[12,13]、葡萄糖信号[57]、光信号[43]、生长素信号[45]等通路可以影响EIN3/EIL1的蛋白稳定性; 茉莉酸信号通路的转录抑制子JAZ [44]、赤霉素信号通路的转录抑制子DELLA [56]等可以调控EIN3/EIL1与DNA 的结合能力, 即转录活性. 粉红色椭圆形代表EIN3/EIL1蛋白, 且以二聚体形式结合在靶基因的启动子区; 红色实线代表DNA; 绿色实体圆表示组蛋白; Ac 代表组蛋白乙酰化; P 表示磷酸化; 尖头直线表示正向调节, 平头直线表示负向调节, 虚线表示生化功能机制未知们研究乙烯信号通路主要采用正向遗传学的手段, 通过突变体筛选而分离、鉴定信号通路中的各个组分. 近年来, 生化机制方面的成果大大地丰富和扩展了人们对乙烯信号转导通路的认识. 目前, 关于EIN2的具体生化功能是乙烯信号转导研究领域内备受关注的焦点. 下一步, EIN2 CEND 剪切的生化机制, 以及EIN2 CEND 如何解除EBF1/2对EIN3/EIL1的抑制的具体生化过程等问题将会成为研究热点.在最初的线性信号转导模型中, 认为EIN3/EIL1主要在乙烯反应中行使调控功能. 近年来, 随着越来越多的EIN3/EIL1下游靶基因被发现, 人们逐渐认识到EIN3/EIL1还可以调控其他信号通路. 同时, EIN3/EIL1蛋白稳定性会受到诸如EBF1/2介导的乙烯信号通路[12,13]、生长素[45]、葡萄糖[57]、冷刺激[46]、光信号[43]等通路的影响. 此外, 许多转录调节因子如DELLA [56]和JAZ [44]可以抑制EIN3/EIL1的转录活性. 以上内容说明, EIN3/EIL1具有整合、调节多层次复杂信号网络的功能. 越来越多的证据表明, EIN3/ EIL1作为整个信号网络中一个重要的节点, 整合并调控信号通路之间的相互作用. 因此, 从信号网络节点的角度出发, 对EIN3/EIL1介导不同信号通路之间的“对话”(cross-talk)、影响植物生长发育以及应答环境刺激等的精细调控过程的研究将会是另一个热点.参考文献1 Kepinski S, Leyser O. SCF-mediated proteolysis and negative regulation in ethylene signaling. Cell, 2003, 115: 647–6482 Burg S P. Ethylene in plant growth. Proc Natl Acad Sci USA, 1973, 70: 591–5973 Bleecker A B, Estelle M A, Somerville C, et al. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana .Science, 1988, 241: 1086–10894 Ecker J R. The ethylene signal transduction pathway in plants. Science, 1995, 268: 667–6755 Kieber J J, Rothenberg M, Roman G, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis , encodes amember of the raf family of protein kinases. Cell, 1993, 72: 427–4416 Guzmán P, Ecker J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 1990, 2: 513–5237 Hua J, Meyerowitz E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana . Cell, 1998, 94:261–2718 Bleecker A B, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol, 2000, 16: 1–189 Alonso J M, Stepanova A N, Solano R, et al. Five components of the ethylene-response pathway identified in a screen for weakethylene-insensitive mutants in Arabidopsis . Proc Natl Acad Sci USA, 2003, 100: 2992–299710 Zhao Q, Guo H W. Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant, 2011, 4: 626–634 11 Ji Y, Guo H. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant, 2013, 6: 11–14 12 Guo H, Ecker J R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor.Cell, 2003, 115: 667–67713 Potuschak T, Lechner E, Parmentier Y, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F-box。
植物转基因技术及其应用摘要:综合介绍了植物转基因的主要技术与其在各个领域的主要应用;对转基因植物的安全性进行了一些讨论,并对植物转基因技术的发展前景进行了展望。
自1983 年第一株转基因植物问世以来,转基因植物的研究和应用在世界各国蓬勃开展。
所谓转基因植物就是植物细胞或组织经遗传转化后,进行组织培养长出愈伤组织,再经诱导所分化出来的完整植株。
转基因可以使优良的生物基因在不同种生物之间进行交流, 从而弥补单一生物种类中的遗传资源不足,丰富种质库。
转基因植物的研究在目前的生物技术领域中最为活跃,具有十分广泛的应用前景。
1. 植物转基因技术1.1 土壤农杆菌介导转化技术革兰氏阴性菌根瘤农杆菌是一种植物病原菌,通常只能感染双子叶植物的受伤部位。
农杆菌携带一种称为Ti 的质粒,该质粒含有一段NDA ,称T-DNA(transfer-DNA) ,它能转移并整合到植物组织中,并导致冠瘿瘤的形成。
不含有Ti 质粒的土壤农杆菌不能诱导冠瘿瘤产生。
利用Ti 质粒对植物进行遗传转化的最基本方法是将目的DNA 片段插入T-DNA 区,然后通过土壤农杆菌和Ti 质粒将其送入受体植物并整合到植物细胞的基因组内,使之得到遗传转化。
2 土壤农杆菌介导的基因转移是目前最常用的获得转基因植物的方法。
由于近几年来在载体系统和转化方法上的不断完善,土壤农杆菌介导的基因转移不仅局限于其天然寄主双子叶植物范围内,在转化水稻、玉米和小麦等单子叶植物上也取得了重大的突破。
例如,Ishida 等1996 年在玉米上获得了 5 %~30 %的转化率,Hiei 等1994年在水稻上获得了29 % 的转化率。
就目前的情况看,土壤农杆菌介导的基因转化关键在于找到合适的组织培养和再生技术。
1.2基因枪技术由于土壤农杆菌转化技术在单子叶植物上的局限性,目前,多数研究者倾向于使用基因枪技术对单子叶植物进行转化。
基因枪技术1987 年由Sanford 等人发明,是目前最有前途的植物DNA 转移系统之一。
特约评述INVITEDREVIEW
植物乙烯受体及转基因育种研究进展韩继成河北省农林科学院昌黎果树研究所,昌黎,066600
通讯作者,hanjicheng@sina1com
摘要在对模式植物拟南芥的遗传学和分子生物学的深入研究中,获得了乙烯应答过程中大量的突变体,
分离了编码乙烯受体的基因,其编码产物的结构和功能也已得到鉴定,一些乙烯受体基因已用于转基因植物的研究。本文对近几年已确认的乙烯受体基因突变体,对乙烯受体基因的遗传途径、表达模式及其编码产物的结构、功能及其相互关系做了综述。探讨了利用乙烯受体基因进行转基因植物研究的可行性。
关键词乙烯受体,结构与功能,信号转导,转基因
ResearchProgressonPlantEthyleneReceptoranditsTransgeneHanJichengChangliInstituteofPomology,HebeiAcademyofAgricultureandForest,Changli,066600Correspondingauthor,hanjicheng@sina1com
ABSTRACTAlargenumberofmutantsforresponsingtoethylenehavebeenacquired,severalgenesencodingtheethy2lenereceptorhavebeenisolatedandtheirstructureandfunctionwerealsoidentified,afewethylenereceptorgeneshavebeenintroducedintoplantsaswell,whicharebenefitedfromthedeepresearchesingeneticsandmolecularbiologyonthemodelplant,Arabidopsisthaliana.Inthispapertheauthorsummarizedthetypesoftheethyleneresponsemutants,thegeneticsandexpressionmodeofethylenereceptorgenes,thestructureandfunctionaswellastheirinteractionofproductsencodedbyethylenereceptorgenes,andalsodiscussedthefeasi2bilityoftransgenicplantresearchusingethylenereceptor.
KEYWORDSEthylenereceptor,Structureandfunction,Signaltransduction,Transgenicplant乙烯是高等植物中生长和发育的内源调节剂及胁迫应答的信号分子,它在果实成熟、性别分化、不定根及胚根的分化与生长、豆科植物根瘤的形成、植株器官的衰老、脱落与死亡、植株诱导性系统抗性、胁迫应答等生长发育的基本过程中起重要作用。
分子植物育种,2004年,第2卷,第2期,第157—163页MolecularPlantBreeding,2004,Vol12,No12,157—163乙烯感知和信号转导的初始成分是乙烯受体,它能与乙烯结合,引起自身结构变化,启动或抑制相关基因的表达,是乙烯生物合成和信号转导途径中的一个关键信号因子,决定植物对乙烯的敏感能力,控制植物成熟和衰老的进程以及对环境刺激的应答。相对于人们对乙烯生物合成途径的了解而言,有关植物感知乙烯及其信号转导机制的知识了解甚少。显然深入了解乙烯感知和信号转导途径,对控制植物发育、调节切花和果实的采后寿命具有潜在的商业应用价值。近十年来,应用黄化苗三重反应(GuzmanandEcker,1990)在乙烯受体及其信号转导方面的研究已取得很大进展(Kieber,1997),通过诱变和遗传筛选已得到大量的乙烯应答突变体(Ecker,1995),并克隆了5个受体基因etr1(ethyleneresponse1)、etr2(ethyleneresponse2)、ein4(ethyleneinsensitive4)、ers1(ethyleneresponsesensor1)、ers2(ethy2leneresponsesensor2)。在西红柿(Lanahanetal1,1994;Wilkinsonetal1,1995)和大豆(Xieetal1,1996)等植物中也筛选到乙烯应答突变体。同时在包括西红柿和大豆在内的许多作物如水稻、玉米、矮牵牛、玫瑰、香石竹、西番莲、黄瓜、香瓜、芒果、苹果、梨等克隆了大量的乙烯受体基因。大量研究表明,乙烯受体基因是一个基因家族,弄清乙烯受体基因的保守性和多样性对深入利用乙烯受体基因调节植物生长发育进程、延缓植物衰老具有重要意义。1乙烯受体基因突变体通过化学药剂诱变,目前已从拟南芥得到了etr1、etr2、ein4、ers1(Bleeckeretal1,1988;Huaetal1,1995)和ers2(Huaetal1,1998)5个乙烯受体基因突变体和与乙烯信号转导及胁迫应答有关的另一突变体ein2(Alonsoetal1,1999),从西红柿中得到了neverripe突变体(Lanahanetal1,1994),在大豆中得到了etr1突变体。etr1是第一个在拟南芥中被鉴定的单基因遗传的显性突变体,该突变体对乙烯介导的其他反应也不敏感,如:种子萌发的启动、过氧化物酶活性的加强、离体叶片衰老的加速和乙烯生物合成的负反馈等,在etr1突变体中,由乙烯诱导的目标基因的转录也被阻止(Lawtonetal1,1995)。与etr1相似,其他4个乙烯受体基因突变体etr2、ein4、ers1和ers2也是乙烯应答不敏感突变体,它们的许多表现型与etr1突变体相似。其中,etr1、etr2、ein4突变体有显著的乙烯不敏感,推测在乙烯信号转导的早期就起作用(BleeckerandSchaller,
1996)。
ein2位点上的突变体引起对外源和内源乙烯的不敏感性。现有的ein2的25个等位基因突变体。除了ein2~9外,所有的等位基因突变体在形态、生理和分子水平上显示完全的乙烯不敏感性。ein2突变体也可在筛选抗生长素转运抑制剂、细胞分裂素和脱落酸拟南芥突变体的过程中获得。ein2是目前已知的唯一的该基因功能丧失导致完全的乙烯不敏感。
2乙烯受体基因及其编码产物的结构现有的关于乙烯受体基因及其编码的蛋白质的结构和功能,主要来自于拟南芥。基于序列相似性和整体基因结构,乙烯受体家族分为两个亚家族:即亚家族I和亚家族II。亚家族I包括etr1
和ers1,亚家族II包括etr2、ers2和ein4
(
Hall
etal1,2000)。同一亚家族内氨基酸序列有较高的
相似性,最高可达79%,不同亚家族间的相似性为57~65%。应用图位克隆方法,首先克隆了etr1基因(Changetal1,1993),应用etr1的cDNA为探针
进行低严格度杂交克隆了ers1(Huaetal1,
1995),应用化学诱变和遗传筛选克隆了etr2(Sakaietal1,1998),利用
etr2的cDNA
为探针克
隆了ers2和ein4(HuaandMeyerowitz,1998)。通过比较etr1基因组DNA与cDNA的序列,该基因含有六个内含子,其中一个位于5′非编码区的头部,编码区是一个编码738个氨基酸的单一开放阅读框,目前已发现4个等位基因突变体,每一个突变体都是单核苷酸替换而导致的错义突变,
所有4个突变体的突变位点均位于推定的蛋白质的氨基末端区。该基因编码的乙烯受体蛋白氨基末端与已知的任何蛋白质的氨基末端没有相似性,
但是羧基末端与细菌两组分信号转导系统的感觉器和应答调节器有很高的相似性,并包含有在细菌中保守的组氨酸蛋白激酶所特有的五个基序(H、N、G1、F和G2)(Gambleetal1,1998)。
在4个etr1类似基因中,ers1最接近于etr1。与etr1相似,ers1基因突变也导致乙烯不敏感(Huaetal1,1995),ers1有5个内含子,其编码
的蛋白质与ETR1有67%的相似性,氨基末端的
158
分子植物育种MolecularPlantBreeding相似性达到79%,羧基末端的相似性为58%。在其羧基末端也含有组氨酸蛋白激酶保守的五个基序,但是ERS1羧基末端比ETR1少125个氨基酸。通过在酵母中的异源表达,ERS1形成一个膜结合的、以二硫键形成的二聚体,具有乙烯结合位点。乙烯结合的竞争物1-methylcyclopropene(1-MCP)与ETR1和ERS1有相同的结合乙烯的能力,说明ETR1和ERS1有相似的乙烯亲和力(Halletal1,2000)。etr2在其编码区被一个短的内含子隔成2个外显子,而在其5′非编码区也有一个内含子。etr2编码的773个氨基酸的蛋白质,与ETR1和ERS1序列相似性最高,与ETR1有整体的序列相似性:包含一个氨基末端区、一个假定的组氨酸蛋白激酶区和一个接受区。而且ETR2有一个独特的结构:在其氨基末端伸展区有第4个疏水片段。ETR2与ETR1和ERS1有几乎一致的相似性(分别为65%和63%的相似性),氨基末端与ETR1和ERS1有71%的相似性,在推定的组氨酸蛋白激酶区与ETR1和ERS1的相似性较低,分别为58%和56%。不同于ETR1和ERS1,ETR2中的组氨酸蛋白激酶与细菌组氨酸蛋白激酶的5个保守的基序(H、N、G1、F和G2)稍有不同,ETR2在H基序,作为磷酸化位点的保守的组氨酸残基被谷氨酰胺残基所替代,并且在ETR2中没有发现G1和F基序。ein4包含一个内含子。其编码的蛋白质有766个氨基酸,分子量为86kd。与ETR2有53%的一致性及74%的相似性,与ETR1和ERS1分别有62%和60%的相似性。此外,通过单个区域的比较,EIN4与ETR2比ETR1和ERS1有更近的亲缘性。EIN4的N-末端(1-347位置)与ETR2有61%的一致性及78%的相似性。与ETR2相似,相对于ETR1和ERS1,在极端N-末端区,有额外的疏水骨架,EIN4蛋白质的中间区段(348~631位置)是一个假定的组氨酸蛋白激酶区,与细菌组氨酸蛋白激酶的保守序列相比,它比ETR1和ERS1更加分散。它与ETR2对应位置的序列有69%的相似性,而与ETR1和ERS1有53%的相似性。其磷酸化位点组氨酸残基(H-377)不在推定的位置,C-末端区域与ETR2的接受区有70%的序列相似性,与ETR1有66%的相似性。在细菌两组分调节器中保守的两个天门冬氨酸(D-648和D-694)及一个赖氨酸残基(K-746)存在于EIN4的相应位置。通过对来自于三个ein4突变体的ein4基因序列分析,发现一个错义突变体。ein4-1和ein4-