微生物湿法冶金
- 格式:ppt
- 大小:17.69 MB
- 文档页数:56
生物湿法冶金的应用与发展生物湿法冶金是一种利用微生物来提取和分离金属的方法,广泛应用于矿石的提取和回收过程。
该方法具有环保、高效、低能耗等优点,并且可以处理低品位矿石、废弃物和有毒废料等资源,对于实现绿色矿业和循环经济具有重要意义。
本文将介绍生物湿法冶金的应用和发展。
生物湿法冶金的应用范围广泛,可用于提取多种金属,如铜、铁、锌、镍、钴等。
其中最为常见的应用是铜的提取。
在传统的湿法冶金中,铜的提取一般需要高温高压的氧化熔炼过程,而生物湿法冶金可以在相对低温条件下进行,并且不需要添加氧化剂,大大降低了能耗和环境污染。
通过将含铜矿石浸出液与适宜的微生物接触,微生物可以利用其新陈代谢过程中产生的酸性代谢产物(例如硫酸)将金属离子从矿石中提取出来。
此外,还可以利用微生物的还原代谢能力将金属离子还原为金属,从而实现金属的回收和再利用。
除了铜的提取,生物湿法冶金还可以用于提取其他金属,如锌、铁等。
锌的提取一般通过酸性的浸出液进行,微生物可以利用其代谢过程中产生的氧化剂将锌离子从矿石中提取出来。
铁的提取一般通过还原过程进行,可以利用适宜的微生物将铁离子还原为金属铁,并进行回收和再利用。
生物湿法冶金的发展主要包括以下几个方面。
首先,研究和应用新的生物湿法冶金菌株。
目前已经筛选出了一些具有较高金属提取能力的微生物,例如耐酸硫酸矿细菌、耐酸提铜细菌等,但仍然需要对菌株进行优化和改造,以提高其生物湿法冶金性能。
其次,研究和改进金属提取过程。
通过改善溶液的pH值、温度、氧化还原电位等条件,可以提高金属的提取率和选择性。
此外,还可以探索新的金属提取机制,利用微生物的代谢过程来实现更高效的金属提取。
最后,研究和开发新的生物湿法冶金工艺。
生物湿法冶金是一个复杂的过程,需要考虑微生物的适应性、生长条件、代谢产物等因素,因此需要综合考虑各种因素,优化工艺流程,并开发出适用于不同矿石和工艺条件的生物湿法冶金工艺。
总之,生物湿法冶金作为一种环保高效的金属提取方法,具有广阔的应用前景和发展潜力。
微生物冶金工艺及发展(童威祖)(1009030216)摘要论述了微生物浸出的原理,介绍了用于冶金工业的微生物及用于工业上的生物冶金方法:堆浸法、槽浸法及就地浸出法,并讲述了国外浸出铜、金、铀、锰四种金属采用微生物浸出工艺的生产情况。
提出了目前微生物冶金发展中存在的问题及今后微生物冶金发展的方向。
关键词微生物冶金浸出引言目前,世界矿产资源日渐贫杂,资源、能源、环境问题越发引起人们重视, 我国矿产资源国家战略地位与日俱增。
随着矿物贫杂化和严重能源危机及环境污染的加剧,传统的冶金技术面临巨大挑战,寻求更为高效、低能、清洁的绿色资源利用途径成为研究焦点。
根据美国国家研究委员会( NRC) 2001年的研究报告,在未来20a ,美国矿业最重要的革新将是采用湿法冶金工艺取代有色行业传统的熔炼工艺[ 1]。
1 微生物湿法冶金概述微生物湿法冶金技术是一门新兴的矿物加工技术,它包括微生物浸出技术和微生物浮选技术。
微生物浸出技术始于20世纪50年代,并已在铜、铀贫矿的堆浸及含砷难处理金矿的预处理方面实现了工业化生产应用;微生物浮选技术在20世纪80年代出现,目前尚在实验室研究阶段。
由于微生物湿法冶金具有环境危害小和资源利用率高的优点, 在资源环境问题日益受重视的今天倍受关注,在矿物加工领域展示了广阔的应用前景[ 2]。
微生物浸矿是指用微生物生长代谢产生的酸性水溶液,将有价金属元素(如铜、铀)等从其矿石中溶解出来,加以回收利用的方法。
这些金属矿物一般指低品位矿、复杂矿物、尾矿石等用传统方法难以利用的矿物,是生物、冶金、化学、矿物等多学科交叉技术。
微生物浸出工艺一般采用堆浸, 在细菌存在的情况下,如硫化矿物被氧化并释放出金属离子,浸出液回收有价金属,残余液添加试剂再返回堆中复浸。
通常残余液中都含有硫酸及Fe3+/Fe2+离子, 这些对矿物金属的浸出是十分有益的。
微生物浸矿的优点表现在: 低能耗、低药剂消耗量, 低劳动力需求, 低成本; 反应温和,工艺流程短,设备简单,易于建筑,流动资金占有量小; 资源利用广,能使更多不同种类极低品位矿物得到有效利用; 无废气, 一定程度上可认为无废物、废水排放,环境友好,增加生产安全性; 简化了整个工艺过程。
湿法冶金新工艺新技术及设备选型应用手册一、湿法冶金简介湿法冶金是一种从含金属的废水、废渣或土壤中回收有价金属的重要方法。
它通过化学或电化学过程,将金属从复杂的多金属氧化物或硫化物中提取出来,并转化为可溶性的离子形态,然后从溶液中提取出来。
湿法冶金广泛应用于工业生产中,尤其在环保和资源回收方面具有重要意义。
二、新工艺新技术1. 微生物浸出技术:利用某些特殊类型的微生物,能够将固体矿石中的金属离子转化为可溶性离子,提高金属提取效率。
2.化学沉淀法:通过添加沉淀剂,将金属离子转化为氢氧化物、碳酸盐或其他类型的沉淀,从溶液中分离并回收金属。
3. 膜分离技术:利用半透膜将溶液中的金属离子与杂质、有机物等分离,具有高效、选择性高的优点。
4. 电化学处理法:通过电解作用,将金属离子从溶液中提取出来,适用于处理高浓度金属离子废水。
三、设备选型应用1. 搅拌器:用于液体混合、搅拌,促进化学反应的进行。
2. 浸出罐:用于微生物浸出、化学沉淀等工艺过程的浸出作业。
3.沉淀池:用于金属离子的沉淀过程,回收金属。
4. 膜分离设备:用于处理含金属离子废水,回收金属。
5. 电镀槽:用于电化学处理法,将金属从溶液中提取出来。
四、总结湿法冶金新工艺新技术及设备选型应用日益多样化,包括微生物浸出、化学沉淀、膜分离和电化学处理等新工艺,以及相应的设备如搅拌器、浸出罐、沉淀池和电镀槽等。
这些新工艺和设备的选择和应用,将有助于提高金属回收效率,降低环境污染,实现资源的可持续利用。
以上内容仅供参考,具体选择和应用还需要根据实际情况进行考虑。
生物湿法冶金的研究2 •定义生物湿法冶金(也称硫化矿生物冶金),是一门硫化矿生物提取冶金的工业应用,主要用于处理传统技术难处理的低品位复杂矿、废弃矿石、尾矿等。
2.浸出基本原理硫化矿的生物浸出是水溶液中多相体系的一个复杂过程,包含化学氧化、生物氧化和电化学氧化反应。
一般认为,在生物浸出过程中,微生物的作用表现在三方而。
2.1直接作用直接作用是指细菌与硫化矿物直接接触氧化,加速固体矿物被氧化成可溶性盐的反应过程,如许多金属硫化矿物在浸矿微生物的直接氧化作用下会发生浸出反应。
直接作用发生第一步:细菌吸附。
在K.A.Natara janetai的研究中显示,细菌吸附量的增加可以促进铁的溶解。
M.I.Sampson等人用氧化亚铁硫杆菌、中等嗜高温菌一嗜高温氧化硫化物硫杆研究了不同培养条件下对不同矿物的吸附作用,结果表明,中等嗜高温菌种有更大的吸附程度,这一结果与矿物被细菌浸出的结果一致。
KAThirde等人的研究表明黄铜矿浸出率强烈依赖于溶液中的氧化还原电位(En), 这种参数比细菌数量或活性更有影响,当分别加入亚铁或高铁时,前者浸出速度快 2.7倍,而后者却抑制了细菌浸出,因此细菌促进电化学氧化作用,仅当电化学条件有利时才发生。
2.2间接作用间接作用是指利用硫化矿物中释放出来的亚铁和硫元素间接浸出硫矿化物。
桩木圭子等人用氧化亚铁硫杆菌浸出黄铁矿,分析了浸出溶液和黄铁矿表面,并通过测定溶液中氧化还原电位(En)的变化—作为细菌氧化活性的一种度量,认为黄铁矿的细菌浸出主要按照间接机理。
利用氧化亚铁微螺菌研究它对黄铁矿的氧化浸出动力学,表明它是通过间接作用氧化黄铁矿。
同时发现氧化亚铁硫杆菌优先利用高铁氧化硫化锌产生的是元素硫,而不是亚铁,高铁的再生被抑制,因此确定了硫化锌的细菌氧化机理是间接作用。
2.3复合作用研究认为,黄铁矿细菌氧化同时有直接作用和间接作用,而黄铜矿是以直接作用进行的,黄铁矿的存在对黄铜矿的氧化有抑制作用,用此解释两种矿石的浸出差异。
微生物湿法冶金医学知识xx年xx月xx日•微生物湿法冶金概述•微生物湿法冶金基础知识•微生物湿法冶金在医学领域的应用•微生物湿法冶金医学知识研究进展目•微生物湿法冶金医学知识的实践意义•微生物湿法冶金医学知识的未来展望录01微生物湿法冶金概述微生物湿法冶金是指利用微生物及其代谢产物,通过化学反应或物理过程,从矿石或金属废料中提取或回收金属的方法。
微生物湿法冶金是一种绿色、环保、高效的金属提取方法,具有选择性高、对环境影响小、反应条件温和等优点。
微生物湿法冶金定义微生物湿法冶金的研究始于20世纪50年代,随着生物技术的不断发展,该领域的研究和应用也在不断拓展和深化。
微生物湿法冶金技术已经在全球范围内得到广泛应用,特别是在一些环保要求高、资源紧缺的国家和地区,该技术更受到重视和推广。
微生物湿法冶金在医学领域具有广泛的应用前景,包括治疗肿瘤、骨质疏松、骨折等骨骼疾病等。
在医学研究中,微生物湿法冶金技术还可以用于制备生物材料、药物载体等,为医学治疗和预防提供了新的途径和方法。
02微生物湿法冶金基础知识微生物种类细菌、放线菌、霉菌、酵母菌等。
微生物特性适应性强,繁殖速度快,对环境敏感。
微生物种类与特性原理概述利用微生物的氧化还原反应,将金属离子从溶液中提取出来。
微生物作用微生物在冶金过程中起催化剂的作用,促进金属离子的氧化还原反应。
微生物湿法冶金原理将矿石进行破碎、磨碎和选矿等预处理。
微生物湿法冶金工艺流程采矿与选矿将微生物与矿石混合,通过微生物的氧化还原反应将金属离子提取到溶液中。
浸出从浸出液中提取金属,并进行纯化处理,得到高纯度的金属产品。
提取与纯化高效节能微生物湿法冶金技术具有较高的能源利用效率和资源回收率。
环境友好微生物湿法冶金技术对环境影响小,可实现冶金过程的无废化。
广泛应用微生物湿法冶金技术在多个领域得到广泛应用,如医学、环保、材料等领域。
微生物湿法冶金技术优势03微生物湿法冶金在医学领域的应用微生物发酵利用微生物发酵技术制备药物,例如抗生素、氨基酸等。
微生物冶金微生物冶金学院:生命科学学院班级:10生工三班学号:1009030320 姓名:邓坤摘要:微生物湿法冶金技术是一门新兴的矿物加工技术,它包括微生物浸出技术和微生物浮选技术。
微生物浸出技术始于20世纪50年代,并已在铜、铀贫矿的堆浸及含砷难处理金矿的预处理方面实现了工业化生产应用;微生物浮选技术在20世纪80年代出现,目前尚在实验室研究阶段。
由于微生物湿法冶金具有环境危害小和资源利用率高的优点,在资源环境问题日益受重视的今天倍受关注,在矿物加工领域展示了广阔的应用前景。
关键词:微生物、湿法冶金正文:一、微生物湿法冶金概述微生物浸矿是指用微生物生长代谢产生的酸性水溶液,将有价金属元素(如铜、铀)等从其矿石中溶解出来,加以回收利用的方法。
这些金属矿物一般指低品位矿、复杂矿物、尾矿石等用传统方法难以利用的矿物,是生物、冶金、化学、矿物等多学科交叉技术。
二、微生物冶金的研究现状2.1微生物浸取铜硫化矿迄今应用最成功的是铜硫化矿的微生物浸取,世界上第一座铜的生物堆浸工厂于20世纪60年代初期在美国的Kennecott铜业公司建成投产。
到20世纪80年代的20多年中,生物氧化一直处于对微生物本身的特性、氧化作用机理、对不同矿物的适应性、对环境生态的影响等方面的研究。
20世纪 80年代以后 ,随着对生物氧化过程研究的不断进步、矿物资源品位的逐渐下降、金属材料生产成本的日益提高及人们对生存环境的重视 ,生物氧化提取金属工艺的优点显现出来。
采用生物氧化提取技术可以经济地从低品位铜矿石或废石中回收用其他方法不能回收的铜资源 ,整个铜材的生产过程中既不产生尾矿,也不产生气体,不污染环境,因而使得铜的生物氧化浸出厂迅速发展。
20世纪80年代以来,世界上共有14座铜的生物氧化提取厂投入生产。
其中最典型的是智利的Quebrada Blanca矿的生物浸出厂,该厂于1996年建成投产,矿石处理能力17300t/d,年产75000t铜 ,是目前世界上较大的铜生物氧化生产厂之一 ,而且是4400m海拔高度上的成功生产 ,改变了认为高海拔、低温和低氧分压下,不能进行细菌浸出的看法。
生物湿法冶金的研究生物湿法冶金是一种利用生物体或生物代谢产物提取金属或制备金属材料的方法。
相比传统的湿法冶金方法,生物湿法冶金具有环境友好、能耗低、不产生有害废物等优点。
因此,在近几十年来,生物湿法冶金引起了广泛的研究兴趣。
本文将介绍生物湿法冶金的原理、应用及研究进展。
生物湿法冶金原理主要包括生物浸出、生物氧化和生物沉淀三个主要过程。
生物浸出是利用微生物将金属中的价态转变为可溶解的形式,进而使金属从矿石中溶解出来。
生物氧化是指利用微生物通过氧化作用将溶解出的金属离子转变为金属离子-硫化物或金属离子-氢化物等易于沉淀或提取的形式。
而生物沉淀则是指微生物通过还原作用将金属离子转变为金属沉淀的过程。
目前,生物湿法冶金已经在许多领域得到了广泛的应用。
其中,最为典型的应用就是黄金提取。
生物湿法冶金可以通过生物浸出将黄金从矿石中提取出来,从而取代传统的氰化法。
生物湿法冶金还常用于铜、镍、锌等金属的提取,可以在低浓度的矿石中高效地提取这些金属。
此外,生物湿法冶金还可以用于废水处理、重金属回收等领域。
在生物湿法冶金的研究中,酸性硫氧化菌和古菌是最为常见的微生物。
酸性硫氧化菌可以在低PH和高温的条件下生存,能够将金属离子氧化成溶解态,进而实现金属的提取。
古菌则可以在高温和高盐度的条件下生存,被广泛应用于黄金提取等领域。
此外,研究人员还通过工程优化微生物、添加表面活性剂等方法来提高生物湿法冶金的效率。
例如,将不同种类的微生物组合起来,利用它们共同完成生物浸出、生物氧化和生物沉淀的过程。
同时,添加表面活性剂可以增加金属离子的溶解度,从而提高生物湿法冶金的效率。
总之,生物湿法冶金作为一种环境友好且高效的金属提取方法,已经在黄金提取、废水处理等领域取得了显著的进展。
随着对微生物的深入研究和生物技术的进步,相信生物湿法冶金将在未来得到更广泛的应用。
一微生物冶金的定义和分类⏹微生物冶金是指以细菌为主体的微生物技术应用于矿产资源的提取冶金,在相关微生物存在时,由于微生物的催化氧化作用,将矿物中有价金属以离子形式溶解到浸出液中加以回收,或将矿物中有害元素溶解并除去的方法。
⏹微生物冶金包括生物浸出、生物吸附、生物选矿和富集、废弃物生物重整等4个方面。
应用于微生物冶金的微生物包括细菌、真菌、藻类和霉菌等。
细菌是其中研究最深入、应用最广泛的一类微生物。
二生物分类2. 五界说2.1. 原核生物界(Procaryotae )2.1.1原核生物具有以下的特点(一):①核质与细胞质之间无核膜因而无成形的细胞核;②遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA)③以简单二分裂方式繁殖,无有丝分裂或减数分裂;④没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为(见细菌接合);⑤没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象;⑥鞭毛并非由微管构成,更无¡°9+2¡±的结构,仅由几条螺旋或平行的蛋白质丝构成;2.1.1原核生物具有以下的特点(二):⑦细胞质内仅有核糖体而没有线粒体、高尔基器、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器;⑧细胞内的单位膜系统除蓝细菌另有类囊体外一般都由细胞膜内褶而成,其中有氧化磷酸化的电子传递链(蓝细菌在类囊体内进行光合作用,其他光合细菌在细胞膜内褶的膜系统上进行光合作用;化能营养细菌则在细胞膜系统上进行能量代谢);⑨在蛋白质合成过程中起重要作用的核糖体散在于细胞质内,核糖体的沉降系数为70S;⑩大部分原核生物有成分和结构独特的细胞壁等等。
总之原核生物的细胞结构要比真核生物的细胞结构简单得多2.2. 原生生物界(Protista)是单细胞生物,它们的细胞内具有细胞核和有膜的细胞器。