现代新型煤制油化工技术知识
- 格式:doc
- 大小:198.50 KB
- 文档页数:7
煤制油技术总结煤制油技术总结篇2煤制油技术是指利用煤炭为原料,通过化学反应产生油类产品的技术。
煤制油技术的研究和应用始于20世纪70年代,目前已成为石油化工的重要补充。
以下是煤制油技术的关键技术和应用领域:1.煤气化技术:煤气化技术是煤制油过程中的关键技术之一。
该技术利用气化剂将煤炭转化为气体燃料,然后通过一氧化碳和氢气的化学反应生成油类产品。
目前常用的煤气化技术包括固定床煤气化、流化床煤气化、气流床煤气化等。
2.油品加工技术:油品加工技术是将煤制油过程中产生的油类产品进行精炼和加工,生产出高品质的燃料油和润滑油等产品。
该技术包括蒸馏、裂化、重整、加氢处理等。
3.催化剂技术:催化剂技术是煤制油过程中不可或缺的一部分。
催化剂可以加速化学反应,提高反应效率。
煤制油过程中使用的催化剂包括酸性催化剂、碱性催化剂和金属催化剂等。
4.控制系统技术:控制系统技术是煤制油过程中的重要组成部分。
该技术包括自动控制系统、传感器技术、数据采集和分析系统等。
这些技术可以保证生产过程的稳定性和安全性。
5.环保技术:环保技术是煤制油过程中的重要问题之一。
该技术包括废水处理、废气处理、废渣处理等。
煤制油企业需要采取有效的环保措施,确保生产过程对环境的影响最小化。
煤制油技术的应用领域非常广泛,包括石油化工、能源、航空航天、交通运输、军事等领域。
随着全球能源结构的转变和环境保护政策的加强,煤制油技术将面临着更多的机遇和挑战。
煤制油技术总结篇3煤制油技术是指利用煤炭生产出燃料油和化工原料的技术,是目前全球煤炭深加工的重要方向之一。
煤制油技术主要包括气化、催化裂化、蒸馏和分离等几个主要环节,以下是煤制油技术的详细总结。
1.气化气化是指将煤炭在高温下与水蒸气反应,生成一氧化碳、氢气、甲烷等可燃气体,同时还会产生二氧化碳、氮气等副产物。
气化技术是煤制油过程中重要的环节之一,它可以有效地将煤炭中的碳转化为可燃气体,从而提高了燃料油的产率。
煤制油2篇煤制油是一种将煤炭转化为液体燃料的技术。
它通过煤炭气化产生合成气,再通过合成气转化制造石油产品。
煤制油在能源转换和碳排放方面具有重要意义。
本文将从技术原理和环境影响两个方面介绍煤制油的相关内容。
第一篇:煤制油的技术原理煤制油技术采用了煤炭气化和合成气转化两个主要步骤。
煤炭气化是指将煤炭在高温和高压下与水汽、空气或氧气反应,生成一种称为合成气的混合气体。
合成气的主要成分是一氧化碳和氢气。
煤炭气化的主要反应方程式如下:C + H2O → CO + H2煤炭气化有两种主要方式:固定床和流化床。
固定床煤气化是将煤炭装入气化炉内,通过控制温度、压力和气体流动速度来实现反应。
在固定床气化过程中,煤炭与气化剂接触面积小,反应速度相对较慢,但其反应效率较高。
流化床煤气化是通过将煤炭在气化剂上流化,在高温下实现反应。
流化床气化过程中,煤炭与气化剂接触面积大,反应速度较快,但反应效果可能稍逊于固定床气化。
合成气转化是将合成气中的一氧化碳和氢气通过催化剂转化为有机化合物,进而生产石油产品,如汽油、柴油等。
合成气转化过程主要通过费托合成和魏格纳合成来实现。
费托合成是指利用费托催化剂将合成气中的一氧化碳和氢气催化转化为长链烃燃料的过程。
魏格纳合成是指利用魏格纳催化剂将合成气中的一氧化碳和氢气催化转化为短链烃燃料的过程。
煤制油技术虽然可以将煤炭转化为液体燃料,但其过程会产生大量的二氧化碳等温室气体。
尽管煤制油可以减少对传统石油的依赖,但其对环境的影响仍然不可忽视。
因此,在推广和应用煤制油技术时,要求对环境进行科学有效的管理和治理。
第二篇:煤制油的环境影响煤制油技术在能源转换领域具有重要意义,但其过程会产生大量的温室气体和排放物,对环境造成一定影响。
首先,煤制油过程中排放的主要污染物是二氧化碳(CO2)。
煤炭气化和合成气转化过程都会释放大量的二氧化碳。
二氧化碳是一种温室气体,对全球气候变化具有重要影响。
大量排放的二氧化碳会导致地球气温上升,气候异常,影响人类和生物的生存和发展。
煤制油煤化工知识现代新型煤制油化工技术是以煤炭为基本原料,经过气化、合成、液化、热解等煤炭利用的技术途径,生产洁净能源和大宗化工产品,如合成气、天然气、柴油、汽油、航空煤油、液化石油气、聚乙烯、聚丙烯、甲醇、二甲醚等。
改变传统的煤炭燃烧、电石、炼焦等以高污染、低效率为特点的传统利用方式。
1、煤炭液化技术之——煤炭直接液化(煤加氢液化, Direct Coal Liquefaction)煤直接液化,将煤在氢气和催化剂作用下通过液化生成粗油,再经加氢精制转变为汽油、柴油等石油燃料制品的过程,因液化过程主要采用加氢手段,故又称煤加氢液化法。
煤直接液化典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、催化剂制备、氢制取、加氢液化、固液分离、液体产品分馏和精制,液化大规模制备氢气通常采用煤气化或者天然气转化。
煤加氢液化的过程基本分为三大步骤。
(1)当温度升至300℃以上时,煤受热分解,即煤的大分子结构中较弱的桥键开始断裂,产生大量以结构单元为基体的自由基碎片,自由基的相对分子质量在数百范围;(2)在具有供氢能力的溶剂环境和较高氢气压力的条件下、自由基加氢得到稳定,成为沥青烯及液化油分子。
能与自由基结合的氢并非是分子氢(H2),而应是氢自由基,即氢原子,或者是活化氢分子,氢原子或活化氢分子的来源有:①煤分子中碳氢键断裂产生的氢自由基;②供氢溶剂碳氢键断裂产生的氢自由基;③氢气中的氢分子被催化剂活化;④化学反应放出的氢。
当外界提供的活性氢不足时,自由基碎片可发生缩聚反应和高温下的脱氢反应,最后生成固体半焦或焦炭;(3)沥青烯及液化油分子被继续加氢裂化生成更小的分子。
一般来讲,煤炭直接液化的用煤要求如下:(1)煤中的灰分要低,一般小于5%,因此原煤要进行洗选,生产出精煤进行液化;(2)煤的可磨性要好;(3)煤中的氢含量越高越好,氧的含量越低越好;(4)煤中的硫分和氮等杂原子含量越低越好,以降低油品加工提质的费用;煤直接液化技术早在19世纪即已开始研究。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载现代煤化工新技术介绍地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容一、煤制二甲醚(DME)1.1概况二甲醚是一种重要的绿色工业产品,主要用做清洁燃料、气雾剂、制冷剂、发泡剂、有机合成原料等。
与液化石油气相比生产成本低,有较大的差价,使得二甲醚替代液化石油气成为可能。
所以现在作为柴油掺烧剂和替代民用燃料液化石油气。
制取二甲醚的行业成为了新兴的“绿色化工”。
国内合成二甲醚的研究工作正在紧张进行中,目前已建成最大的二甲醚生产装置为年产几十万吨。
不少企业对“合成气”制二甲醚感兴趣,因此二甲醚被称为朝阳化工产品。
并且甲醇制二甲醚的知识产权是自主的。
二甲醚(DME)是一种比较惰性的非腐蚀性有机物,常温常压下二甲醚为无色易燃气体,空气中允许浓度为400*10-6。
对金属无腐蚀性,对人体不刺激皮肤,不致癌,对大气臭氧层无破坏作用,是一种有娘的绿色化工产品。
下表为二甲醚和液化石油气的性质比较从数据可看出,同等条件下,二甲醚存储运输较为安全。
虽然二甲醚热值低,但由于二甲醚本身含氧在燃烧过程中所需空气质量远低于液化石油气,从而使得二甲醚的预混热气值夏理论燃烧温度都高于液化石油气。
二甲醚具有较高的十六烷值,液化后可直接作为汽车燃料,其燃烧效果比甲醇燃料效果好。
由于二甲醚自身含氧,组分单一,碳链短,所以可实现无言高效燃烧,并可降低噪声。
易于压缩使用,还可作为精细化工产品。
在这些用途中,作为精细化工产品时,小规模生产(0.25~1.0万吨/年)就可满足需求,作为化工原料时生产规模应在2万吨/年以上,作为清洁燃料时的需求量大,实际上是代替原油,必须大规模生产(10万吨/年)以上,才能形成经济规模。
现代煤化工技术应用及发展综述
煤是一种重要的化石能源,其资源储量丰富,但传统的煤炭利用方式存在着严重的环境污染问题。
为了解决这一问题,现代煤化工技术应运而生。
现代煤化工技术是指将煤转化为高附加值的化学品和燃料的技术,其应用范围广泛,包括煤制油、煤制天然气、煤制化学品等。
煤制油是现代煤化工技术的重要应用之一。
通过煤制油技术,可以将煤转化为液态燃料,如汽油、柴油等。
这种技术可以有效地解决石油资源短缺的问题,同时也可以减少对环境的污染。
目前,我国已经建成了多个煤制油项目,如山西大同煤制油项目、内蒙古煤制油项目等。
煤制天然气也是现代煤化工技术的重要应用之一。
通过煤制天然气技术,可以将煤转化为天然气,这种天然气与天然气管道输送的天然气具有相同的性质,可以直接用于城市燃气供应。
煤制天然气技术可以有效地解决我国天然气资源短缺的问题,同时也可以减少对环境的污染。
目前,我国已经建成了多个煤制天然气项目,如山西焦煤集团煤制天然气项目、陕西煤业化工集团煤制天然气项目等。
煤制化学品也是现代煤化工技术的重要应用之一。
通过煤制化学品技术,可以将煤转化为各种有机化学品,如甲醇、乙二醇、丙烯等。
这些有机化学品广泛应用于化工、医药、农药等领域,具有广阔的
市场前景。
目前,我国已经建成了多个煤制化学品项目,如山西焦煤集团煤制甲醇项目、山东鲁西化工煤制乙二醇项目等。
现代煤化工技术的应用范围广泛,可以有效地解决能源短缺和环境污染问题,具有重要的战略意义。
随着技术的不断发展,现代煤化工技术将会得到进一步的完善和发展,为我国经济的可持续发展做出更大的贡献。
石 油 炼 制 与 化 工 2014年第45卷without viscosity reducer.The heavy component is decreased,the light one is increased,and the molec-ular weight and the sulfur content are reduced after treatment.The aquathermolysis experiments ofdodecyl mercaptan and dioctyl sulfide with viscosity reducer indicate that the bond breakage of C—S,S—H,C—C,S—S are happened.The reasons for the irreversible viscosity reduction are the weakened molecu-lar interactions like hydrogen bond and coordination bond and bond breakages after treatment,resultingin smaller aggregation of resins and asphaltenes and thus the reduced viscosity.Key Words:heavy oil;catalysis;viscosity reduction;櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫸櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐殾殾殾殾mechanism简 讯煤制油新技术华东理工大学能源化工系应用非蒸发式褐煤水热处理工艺,开发了一种褐煤水介质合成气加氢液化新技术,为褐煤提质与制油引出新思路。
褐煤的含氧量高达20%左右,主要基团为羧基和羟基,容易被氧化,可使煤的燃点和黏结性显著下降。
煤制油技术总结引言煤制油技术是一种将煤炭转化为液体燃料和化工产品的方法。
随着石油资源的减少和能源需求的增加,煤制油技术在能源领域受到了广泛关注和研究。
本文将对煤制油技术的原理、工艺和发展进行总结和分析。
一、煤制油技术的原理煤制油技术的原理是利用煤炭中的有机物质,在高温、高压和催化剂的作用下,通过热解、裂解和氢化等反应,将煤转化为液体燃料和化工产品。
煤制油技术可以分为间接煤液化和直接煤液化两种方法。
1.间接煤液化:间接煤液化是将煤转化为合成气(由CO和H2组成的气体),然后再通过合成气的催化反应,将其转化为石油产品。
间接煤液化的主要步骤包括煤气化、合成气的净化、合成气的催化反应和产品分离等。
2.直接煤液化:直接煤液化是将煤直接转化为液体燃料和化工产品,不经过合成气的步骤。
直接煤液化的主要反应种类有热解、裂解、氢化和重聚等。
二、煤制油技术的工艺流程煤制油技术的工艺流程主要包括原料预处理、煤气化、合成气的净化、合成反应、产品分离和废水处理等环节。
1.原料预处理:将煤炭进行粉碎和筛分,去除杂质和含硫等有害物质。
2.煤气化:将预处理后的煤炭在高温下与氧气或蒸汽进行反应,产生合成气。
煤气化可以采用固定床、流化床或床浆等反应器。
3.合成气的净化:对合成气中的灰尘、硫化物、苯等有害物质进行净化和除尘处理。
4.合成反应:将净化后的合成气经过催化剂的作用,进行一系列的热解、裂解、氢化和重聚等反应,将其转化为液体燃料和化工产品。
5.产品分离:将合成反应产生的产品进行分离和提纯,得到液体燃料和化工产品。
6.废水处理:处理工艺中产生的废水,通过物理、化学等方法进行处理,达到环保要求后排放或回用。
三、煤制油技术的发展现状煤制油技术作为一种可替代石油资源的方法,已经在世界范围内得到广泛应用和研发。
以下是煤制油技术的一些发展现状:1.国际发展现状:美国、南非、中国等国家在煤制油技术研究和应用方面处于领先地位。
美国的CTL(Coal-to-Liquid)技术已经商业化应用,并取得了良好的经济和环境效益。
现代煤化工知识点总结煤化工是利用煤炭资源进行化学加工,生产燃料、化工产品和材料等的一种工业。
随着化工技术的发展和煤炭资源的丰富,煤化工技术在全球范围内得到了广泛应用。
现代煤化工已经取得了一系列重要的成就,为社会经济发展做出了重要贡献。
在这篇文章中,我们将对现代煤化工的一些重要知识点进行总结和分析。
一、煤化工的基本概念和工艺流程1. 煤化工的基本概念煤化工是利用煤炭资源进行化学加工的一种工业。
它主要包括煤气化、煤制油、煤制天然气、煤液化等技术。
通过煤化工技术,可以有效地利用煤炭资源,生产出各种化工产品,如甲醇、乙烯、丙烯、苯、合成氨等。
煤化工技术对于提高能源利用率、降低能源消耗、减少对化石燃料的依赖具有重要意义。
2. 煤气化工艺流程煤气化是煤化工的重要工艺之一,它是通过在高温、高压的条件下,将煤炭转化为一氧化碳和氢气的混合气体。
煤气化工艺可以分为干煤气化和湿煤气化两种类型。
在干煤气化过程中,煤炭通过加热和氧化反应,生成一氧化碳和氢气。
湿煤气化是在干燥的煤炭中混入水蒸气,通过煤与气化剂(空气、氧气或蒸汽)在高温条件下反应,成为颗粒状含可燃气体的气化气冶炼,这是煤气化的一种。
3. 煤制油工艺流程煤制油是通过加热和催化反应,将煤炭转化为液体燃料的工艺。
煤制油工艺主要包括煤直接液化(IDL)、煤间接液化(IDL)和煤基乙醇三种。
其中,煤直接液化是通过在高温、高压的条件下,将煤炭转化为石油产品。
煤间接液化是先将煤炭转化为合成气,然后再通过费雪-特罗普什法或贝尔法等加氢技术将合成气转化为液体燃料。
煤基乙醇是通过将煤制的气体转化为乙醇。
4. 煤制天然气工艺流程煤制天然气是通过在高温高压条件下,将煤炭转化为天然气的工艺。
煤制天然气工艺过程中主要包括煤气化、变换、净化和液化等步骤。
在煤制天然气工艺中,煤气化是将煤转化为一氧化碳和氢气的混合气体,在变换反应中,将一氧化碳和氢气转化为甲烷和其他烃类。
在净化阶段,通过物理吸附和化学吸附将废气中的杂质和有害物质去除。
煤制油技术总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、实习报告、活动方案、规章制度、心得体会、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, internship reports, activity plans, rules and regulations, personal experiences, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!煤制油技术总结煤制油技术总结(精品4篇)煤制油技术总结要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的煤制油技术总结样本能让你事半功倍,下面分享【煤制油技术总结(精品4篇)】相关方法经验,供你参考借鉴。
现代煤化工焦油加氢制油技术概述摘要:本文主要研究利用现代煤化工工业生产的煤焦油催化加氢后制备燃料油的技术。
简单介绍了煤焦油的来源、组成以及高温和中低温煤焦油性质上的差异;阐述了煤焦油加氢反应的基本原理以及反应过程中所用的催化剂;研究了高温煤焦油和中低温煤焦油的加氢反应工艺流程;简述了煤焦油在国内外的应用现状。
关键字:高温煤焦油;中低温煤焦油;加氢反应;催化引言现代煤化工是煤炭高效清洁利用最有效的路径,没有现代煤化工,煤炭清洁高效利用将无从谈起。
不能因出现了一些问题而否定现代煤化工,更不能否定现代煤化工对煤炭高效清洁利用的贡献。
现代煤化工项目均配套了先进的脱硫脱硝设施,有些项目还建成二氧化碳净化捕集与资源化利用装置,使煤炭清洁高效利用有技术支撑,有示范项目的经验可供借鉴。
现代煤化工不仅能够生产油品和天然气,还能生产甲醇、烯烃、芳烃、乙二醇、润滑油基础油、高级石腊等石油化工产品。
也就是说,现代煤化工达到一定规模,就相当于新发现了一个超大型且完全由我们掌控的油气田,为我们筑起了另一道能源保障线,从而大幅增强我国进口油气谈判的主动性、灵活性,继而获取更多低价油气订单,实现国家利益最大化。
煤焦油生产工艺[1]主要有以下两种,一种是煤焦油蒸馏分离技术,即利用焦油的各组分性质有差别,但性质相近组分较多,采用蒸馏方法切取各种馏分,使酚、萘、葸等欲提取的单组分产品浓缩集中到相应馏分中去,再进一步利用物理和化学的方法进行精细化工组分的分离。
另一种为煤焦油加氢轻质化处理工艺,即利用石油加氢及裂化的工艺原理脱除有害杂质、重金属,烯烃及芳烃饱和,原料烃裂解成较小的分子并异构化等反应将质量较差的重质原料转化为优质产品,生产替代石油产品的清洁燃料油技术[2]。
1煤焦油简介1.1煤焦油的来源煤焦油是煤在干馏和气化过程中获得的液体产物之一。
根据干馏方法和温度的不同,煤焦油可分为:低温干馏煤焦油(450~650℃)、低温、中温发生炉煤焦油(600~800℃)、中温立式炉煤焦油(900~1000℃)、高温炼焦煤焦油(>1000℃)[3]。
煤制油煤制油包括直接液化和间接液化两种工艺技术路线。
1.煤炭直接液化技术煤在高压和一定温度下直接与氢气反应生成液体燃料油的工艺技术称为直接液化。
煤炭直接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG(液化石油气),另外还可以提取BTX(苯、甲苯、二甲苯),副产品有硫磺、氨或尿素等。
直接液化工艺的产品中,柴油的比例在60~70%,汽油和LPG占40~30%左右。
直接液化的工艺主要有Exxon供氢溶剂法(EDS)。
氢-煤法等。
EDS法是煤浆在循环的供氢溶剂中与氢混合,溶剂首先通过催化器,拾取氢原子,然后通过液化反应器,释放出氢原子,使煤分解。
氢-煤法是采用沸腾床反应器,直接加氢将煤转化成液体燃料。
直接液化过程流程现代煤炭直接液化技术提高了产品质量,特别是通过液化后的提质加工工艺,使液化油通过加氢精制、重整、加氢裂化,可得到合格的汽油、柴油或航空煤油。
尤其是柴油的凝点很低,可以在高寒地区使用,所得航空煤油的比重较大,同样容积的油箱可使飞机的续航距离增加。
2. 煤炭间接液化技术间接液化是把煤炭先气化再合成,煤在高温下与氧气和水蒸气反应生成合成反应气(CO+H2),合成反应气再经F-T合成催化反应合成液体燃料及其化学品。
煤炭间接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG、以及乙烯、丙稀等重要化工原料,副产品有α烯烃、硬蜡、氨、醇、酮、焦油、硫磺、煤气等。
间接液化的产品品种是可以变通的,即可以生产油品,又可以根据市场需要加以调节,生产高附加值、价格高、市场紧缺的化工产品。
对中国的石油产品市场而言,以优质石脑油和高质量柴油、烯烃、LPG 和石蜡等产品为好。
另外烯烃的价值较高,LPG也是市场紧俏物资。
此外我国石蜡生产和销售市场上,高熔点微晶蜡缺口较大,高品位润滑油也是国内比较紧缺的。
因此,汽油、柴油与高附加值的润滑油、微晶蜡等市场紧缺的产品并举,可以作为合成油产品的主攻方向。
间接液化在可控制的条件下进行合成,获得的柴油的十六烷值达70,且低硫、无芳烃,既可直接供给环保要求高的地区使用,也可作为优质油与其它油品调配。
煤化工技术与新型煤化工技术分析煤化工技术是将煤通过化学反应转化成化学品和能源的技术,这是一种实现煤资源高效利用的重要手段。
目前,煤化工技术主要是由煤炭气化和煤直接液化两种技术路线构成。
煤炭气化是将煤炭在高温、高压状态下与水蒸气或空气反应,产生气体的过程。
这种气体主要包含一氧化碳、氢气、二氧化碳、氮气等,其中一氧化碳和氢气可以通过升压升温后进行合成气的生产,合成气可以作为化工原料或燃料。
煤炭气化技术具有货币化的目的和广泛的应用前景,但它也存在一些问题,如气体组分、气体净化和固体废弃物的处理等。
煤直接液化技术则是将煤在高压和高温的条件下进行化学反应,通过加氢、裂解等过程将煤转化为液体,并通过分离和精制过程得到高品质的液体燃料,如液化石油气、汽油、柴油等。
然而,煤直接液化技术的应用范围受到一些限制,包括操作成本较高、环保问题等。
而新型煤化工技术则尽可能克服了传统煤化工技术的局限性,采用新的技术手段和材料,使煤的加工和利用更加高效、环保和经济。
具体而言,新型煤化工技术包括以下几方面的内容:一、气化技术:新型煤化工技术的气化技术是以多相流动理论为基础,将煤在高温高压条件下与氧气和水蒸气反应,将煤的碳及氧化物转化成一氧化碳和氢气,制备出合成气。
而气化反应会产生大量的固体物副产物,新型煤化工技术也需要解决这些问题。
二、煤制油技术:新型煤化工技术的煤制油技术主要是指用现代化的技术设备将煤转化成高质量的油、气、化学品等。
而煤制油技术的原理是在热量、压力和催化剂作用下加氢裂化煤,将煤中的烃类物质转化为油类物质。
但煤制油技术需要一定的压力和温度,因此其能耗较高。
三、煤衍生物制备技术:新型煤化工技术的煤衍生物制备技术是指利用煤制备出各种化学物质,主要有煤焦油、苯酚、胺、甲醇、二甲醚、一氧化碳、二氧化碳等。
这些化学物质通常被用于合成药品、化肥、塑料、涂料、颜料以及清洁能源等方面,可以有效提高煤的利用效率。
通过上述分析,我们可以发现,新型煤化工技术主要是为了解决传统煤化工技术存在的成本高、环保问题等局限性而提出的。
现代煤化工新技术随着世界能源消费量的不断增加,煤炭作为一种重要的化石能源,一直扮演着重要的角色。
然而,传统的煤炭化工过程还存在着许多问题,如排放量大、能源利用率低、资源浪费等。
为此,煤炭化工领域的科学家和工程师一直在探索和研究新的技术和方法,降低煤炭化工过程的成本和环境影响,提高能源利用效率。
以下将介绍几种现代煤化工新技术。
1.煤间接液化技术煤间接液化技术是一种将煤转化为液体燃料的方法,通过间接液化将煤转化为燃油、柴油等燃料。
这种技术可以大幅度降低煤的排放量,使得煤成为一种十分可持续的能源形式。
目前,美国、日本等国家的研究机构都在推动这一技术的发展。
2.煤直接液化技术煤直接液化技术是一种将煤转化为液态燃料的方法。
这种技术可以在较低温度和压力下将煤转化为液态燃料,比传统方法更为高效。
但是,这种技术需要大量的煤来转化为液态燃料,同时还需要大量的水和氢气。
因此,这种技术在现阶段还需要更多的研究和改进。
3.煤气化技术煤气化技术是一种将煤转化为气体燃料的方法。
它可以将煤中的碳转化为一种气体,称为合成气。
可以通过合成气来生产燃料、化学品和电力。
许多国家已经开始使用煤气化技术,因为它的产出比石油更为经济。
4.超临界水气化技术超临界水气化技术是一种将煤转化为液体燃料的方法。
超临界水是指在高温和高压下,水的状态不再是液态或气态。
这种技术可以在较短的时间内将煤转化为液体燃料,同时还可以降低污染物的排放。
目前,中国等国家的科学家正在探索和发展这种技术。
总结现代煤化工新技术的出现,不仅可以提高煤炭化工的环保性、效率,还可以促进能源行业的可持续发展。
虽然这些技术还存在一些问题和挑战,但是相信会有更多的煤化工科学家和实践者不断地探索和改进这些技术。
煤制油煤化工知识煤制油煤化工知识现代新型煤制油化工技术是以煤炭为基本原料,经过气化、合成、液化、热解等煤炭利用的技术途径,生产洁净能源和大宗化工产品,如合成气、天然气、柴油、汽油、航空煤油、液化石油气、聚乙烯、聚丙烯、甲醇、二甲醚等。
改变传统的煤炭燃烧、电石、炼焦等以高污染、低效率为特点的传统利用方式。
1、煤炭液化技术之——煤炭直接液化(煤加氢液化, Direct Coal Liquefaction)煤直接液化,将煤在氢气和催化剂作用下通过液化生成粗油,再经加氢精制转变为汽油、柴油等石油燃料制品的过程,因液化过程主要采用加氢手段,故又称煤加氢液化法。
煤直接液化典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、催化剂制备、氢制取、加氢液化、固液分离、液体产品分馏和精制,液化大规模制备氢气通常采用煤气化或者天然气转化。
煤加氢液化的过程基本分为三大步骤。
(1)当温度升至300℃以上时,煤受热分解,即煤的大分子结构中较弱的桥键开始断裂,产生大量以结构单元为基体的自由基碎片,自由基的相对分子质量在数百范围;(2)在具有供氢能力的溶剂环境和较高氢气压力的条件下、自由基加氢得到稳定,成为沥青烯及液化油分子。
能与自由基结合的氢并非是分子氢(H2),而应是氢自由基,即氢原子,或者是活化氢分子,氢原子或活化氢分子的来源有:①煤分子中碳氢键断裂产生的氢自由基;②供氢溶剂碳氢键断裂产生的氢自由基;③氢气中的氢分子被催化剂活化;④化学反应放出的氢。
当外界提供的活性氢不足时,自由基碎片可发生缩聚反应和高温下的脱氢反应,最后生成固体半焦或焦炭;(3)沥青烯及液化油分子被继续加氢裂化生成更小的分子。
一般来讲,煤炭直接液化的用煤要求如下:(1)煤中的灰分要低,一般小于5%,因此原煤要进行洗选,生产出精煤进行液化;(2)煤的可磨性要好;(3)煤中的氢含量越高越好,氧的含量越低越好;(4)煤中的硫分和氮等杂原子含量越低越好,以降低油品加工提质的费用;煤直接液化技术早在19世纪即已开始研究。
煤制油技术的研究与应用现状煤制油技术是一种将煤转化为液体燃料和化学品的技术,尤其对于中国这样资源相对匮乏的国家来说具有非常重要的意义。
早在20世纪初期,煤制油技术就已经得到过广泛的研究和应用。
然而,这并没有成为主流技术,而是随着石油的产量和应用范围的扩大逐渐被人忘却。
随着石油资源日益减少和能源环保的问题日益凸显,煤制油技术被重新关注,并得到了较多的研究和应用。
一、煤制油技术的分类煤制油技术主要分为两大类:直接液化和间接液化。
直接液化法是直接将煤加热到高温,压力下将其催化转化为液体油。
间接液化法是先将煤转化为合成气,再将合成气进行催化反应制造出液体燃料。
二者的原理和方法不同,但基本上都是通过催化反应将煤中的化学能转化为液体油。
二、煤制油技术的发展历程煤制油技术最开始的研究可以追溯到20世纪初。
2O世纪30年代,德国在二战前开始着手推进煤制油技术的开发,主要是由于德国国内石油的供应不足。
德国煤制油技术在二战期间扮演了重要的角色,但同时也产生了不少环境问题,例如污染了巨大的范围,在德国战败后引发了严重环境危机。
但正是这段历史,使得煤制油技术成为了一个国家安全的重要研究领域。
在中国,煤制油技术的研究也开始至少延续了一个世纪。
20世纪初,中国的煤制油技术研究就已经开始,1922年齐鲁煤矿公司就曾制成煤油,被称为中国的煤制油先驱。
但在20世纪80年代,由于增加的对外石油的购买和国内石油资源开发的增加,煤制油技术再次陷入低谷。
未来,随着社会经济发展和能源环保的转型,煤制油技术的前景将更加广阔。
三、煤制油技术的应用现状目前,煤制油技术已经获得了广泛的应用。
世界上一些国家,如南非、日本、中国等都建有多个煤制油生产基地。
尤其是在中国,由于国内石油的供应紧张,中国政府倡导和支持了煤制油技术的发展。
2010年,国家能源局发布了《煤制油产业“十一五”发展规划及实施方案》,旨在促进中国煤制油产业的发展。
2019年,国家发改委发布的《关于促进煤炭高质量发展的指导意见》再次强调煤制油技术的重要性,同时提出了未来的规划和目标。
现代煤制油工艺流程现代煤制油工艺流程是指通过将煤转化为石油产品的一种工艺流程。
下面是一个简单的现代煤制油工艺流程的描述。
首先,选择合适的煤矿进行开采和选煤。
在开采过程中,需要将煤矿中的杂质和污染物进行分离,以保证煤的质量。
选煤过程中,通过物理和化学方法分离煤矿中的杂质,以获取高质量的煤。
接下来,进行煤的预处理。
预处理主要包括粉碎和干燥两个过程。
粉碎过程中,将煤矿通过破碎机进行粉碎,得到适合下一步处理的颗粒煤。
干燥过程中,使用干燥设备将煤进行烘干,去除煤中的水分。
然后,进行煤的气化。
煤气化是指将煤在高温和高压下与气体或氧气进行化学反应,生成合成气(Syngas)的过程。
合成气中含有一定比例的一氧化碳(CO)和氢气(H2),这两种气体是制造石油产品的重要原料。
在煤气化过程中,首先将煤矿进行破碎,得到的颗粒煤与氧气或气态化合物混合,然后经过高温和高压下的反应器进行化学反应。
反应器内的温度和压力条件可以根据需要进行调控,以控制煤气化反应的产物。
接着,对合成气进行进一步处理。
合成气中含有一定比例的一氧化碳和氢气,但还有其他杂质成分,需要进行处理。
通常,合成气中的硫化物会被吸附剂吸收,以去除硫化物。
此外,也需要将合成气中的一氧化碳和二氧化碳进行转化,以提高气体的质量。
最后,将处理好的合成气转化为石油产品。
石油产品的生产可以通过多种方法进行,包括催化裂化、合成和加氢等。
催化裂化是指将气化合成气中的一氧化碳和氢气转化为石油产品的过程。
合成是指在合成气中进行多次反应,生成不同种类的石油产品。
加氢是指加入氢气,使石油产品中的不饱和化合物转化为饱和化合物,提高产品的稳定性和质量。
综上所述,现代煤制油工艺流程包括选煤、煤的预处理、煤的气化和合成气的处理等多个步骤。
这些步骤的目的是将煤转化为合成气,然后将合成气转化为石油产品。
这个工艺流程在能源利用和环境保护方面具有重要的意义,可以高效地利用煤炭资源,减少对传统石油资源的依赖,并减少对环境的污染。
煤制油工艺技术煤制油工艺技术是一种通过煤炭资源转化成石油产品的过程。
煤制油工艺技术是一项发展中的新能源技术,其主要流程包括煤气化、合成气制油、产品分离和精制等环节,能够将煤转化为石油和化学产品。
首先是煤气化过程。
煤气化是将煤炭在高温和压力下进行催化反应,生成一种称为合成气的气体混合物。
煤炭中的碳和水分被分解并与气体中的氧气反应生成一氧化碳和氢气。
同时,还会产生一些其他气体和小分子物质,如氮气、二氧化碳等。
这一步骤是煤制油工艺技术的关键环节。
合成气制油是将合成气进行化学反应,生成石油产品的过程。
合成气中的一氧化碳和氢气通过催化剂催化反应,生成液体烃类化合物。
这些化合物可以进一步转化为石油产品,如汽油、柴油、机油等。
合成气制油环节中的催化剂选择和反应条件的控制对于产品的质量和产率有着重要影响。
产品分离是将合成油中混合的各种组分进行分离的过程。
合成油中常常含有多种不同的烃类化合物,这些组分的沸点和性质不同,因此需要通过分馏等方式进行分离和提纯。
分离过程通常包括蒸汽压差蒸馏、精馏、萃取、吸附等方法。
最后是产品精制过程。
煤制油产品在分离过程中可能会含有一些杂质和不纯物质,需要通过精炼来进一步提纯。
常见的精炼方法包括脱硫、脱磷、脱氮、脱色、脱臭等。
精炼过程可以进一步提高产品的质量和纯度,使其适用于更广泛的应用领域。
煤制油工艺技术具有一定的优势和潜力。
首先,煤炭作为我国主要能源资源,储量丰富。
通过煤制油工艺技术能够有效利用这一资源,减少石油和天然气等化石能源的需求,从而实现能源结构的多元化和可持续发展。
其次,煤制油工艺技术的发展还能够促进煤炭产业的升级和转型,提高煤炭资源的综合利用效率。
此外,煤制油产品的质量和性能也能够满足现代社会对能源和化工产品的需求。
然而,煤制油工艺技术还存在一些挑战和问题。
首先是技术难题。
煤制油工艺技术需要具备高温高压的条件和一系列复杂的催化反应,这对设备和催化剂的选择与设计提出了较高的要求。
煤制油技术我国总的能源特征是“富煤、少油、有气”。
在人类面临能源短缺、国际石油价格剧烈波动的情况下,煤制油逐渐进入了公众的视野。
煤制油属于新型煤化工的一部分,是以煤炭为原料,通过化学加工过程生产油品和石油化工产品的一项技术,对于中国减轻燃煤造成的环境污染、降低中国对进口石油的依赖均有着重大意义。
煤制油包含煤直接液化和煤间接液化两种技术路线。
一、煤制油的技术发展。
当前,我国己投入工业化示范的煤制油项目有5个,产能达160万吨。
根据煤制油项目进展情况和几个煤制油企业规划,到2015年煤制油产能可达1200万吨,2020年可达3300万吨的规模。
根据《中国煤制油行业深度调研与投资战略规划分析报告前瞻》分析,现阶段,我国煤制油行业处在大型国有煤炭企业中试点阶段。
随着煤制油行业竞争的不断加剧,大型煤制油企业间并购整合与资本运作日趋频繁,国内优秀的煤制油生产企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。
正因为如此,一大批国内优秀的煤制油品牌迅速崛起,逐渐成为煤制油行业中的翘楚!当前,煤制油技术已取得了一系列重要进展。
与我们常见的柴油判若两物的源自煤炭的高品质柴油,清澈透明,几乎无味,柴油中硫、氮等污染物含量极低,十六烷值高达75以上,具有高动力、无污染特点。
这种高品质柴油与汽油相比,百公里耗油减少30%,油品中硫含量小于0.5×10-6,比欧Ⅴ标准高10倍,比欧Ⅳ标准高20倍,属优异的环保型清洁燃料。
二、煤制油概念。
煤制油是以煤炭为原料,通过化学加工过程生产油品和石油化工产品的一项技术,包含煤直接液化和煤间接液化两种技术路线。
煤的直接液化将煤在高温高压条件下,通过催化加氢直接液化合成液态烃类燃料,并脱除硫、氮、氧等原子。
具有对煤的种类适应性差,反应及操作条件苛刻,产出燃油的芳烃、硫和氮等杂质含量高,十六烷值低的特点,在发动机上直接燃用较为困难。
三、煤制油背景介绍。
煤制油煤化工知识现代新型煤制油化工技术是以煤炭为基本原料,经过气化、合成、液化、热解等煤炭利用的技术途径,生产洁净能源和大宗化工产品,如合成气、天然气、柴油、汽油、航空煤油、液化石油气、聚乙烯、聚丙烯、甲醇、二甲醚等。
改变传统的煤炭燃烧、电石、炼焦等以高污染、低效率为特点的传统利用方式。
1、煤炭液化技术之——煤炭直接液化<煤加氢液化, Direct Coal Liquefaction)煤直接液化,将煤在氢气和催化剂作用下通过液化生成粗油,再经加氢精制转变为汽油、柴油等石油燃料制品的过程,因液化过程主要采用加氢手段,故又称煤加氢液化法。
煤直接液化典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、催化剂制备、氢制取、加氢液化、固液分离、液体产品分馏和精制,液化大规模制备氢气通常采用煤气化或者天然气转化。
煤加氢液化的过程基本分为三大步骤。
<1)当温度升至300℃以上时,煤受热分解,即煤的大分子结构中较弱的桥键开始断裂,产生大量以结构单元为基体的自由基碎片,自由基的相对分子质量在数百范围;<2)在具有供氢能力的溶剂环境和较高氢气压力的条件下、自由基加氢得到稳定,成为沥青烯及液化油分子。
能与自由基结合的氢并非是分子氢<H2),而应是氢自由基,即氢原子,或者是活化氢分子,氢原子或活化氢分子的来源有:①煤分子中碳氢键断裂产生的氢自由基;②供氢溶剂碳氢键断裂产生的氢自由基;③氢气中的氢分子被催化剂活化;④化学反应放出的氢。
当外界提供的活性氢不足时,自由基碎片可发生缩聚反应和高温下的脱氢反应,最后生成固体半焦或焦炭;<3)沥青烯及液化油分子被继续加氢裂化生成更小的分子。
一般来讲,煤炭直接液化的用煤要求如下:(1>煤中的灰分要低,一般小于5%,因此原煤要进行洗选,生产出精煤进行液化;(2>煤的可磨性要好;(3>煤中的氢含量越高越好,氧的含量越低越好;(4>煤中的硫分和氮等杂原子含量越低越好,以降低油品加工提质的费用;煤直接液化技术早在19世纪即已开始研究。
1913年德国化学家F.柏吉尼乌斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项实验的专利权,创造了煤加氢液化历史的开始。
至第二次世界大战后期,德国由煤及低温干馏煤焦油生产液体燃料,总生产能力达到4Mt;二战结束后,随着中东大量廉价石油的开发,煤加氢液化失去了竞争力和继续存在的必要,发展基本停滞。
至1973年和1979年的两次世界石油危机,促使煤炭液化技术的研究开发形成了一个新的高潮,开发了一批新的加工过程,如溶剂精炼煤<SRC)工艺、埃克森<Exxon)供氢溶剂<EDS)工艺、HRI公司氢-煤法<H-COAL)工艺等。
日本在上世纪末,NEDOL开发出了针对褐煤的BCL工艺和针对烟煤的NEDOL工艺。
中国煤加氢液化技术研究始于上世纪70年代末,主要采用了国际合作和跟踪研究的方式。
煤炭科学研究总院先后建立了0.1t/d的NEDOL工艺连续实验装置、德国0.12t/d的新IG工艺连续实验装置,并完成对中国50多种煤种运转实验研究。
2002年,在国家支持下,神华煤加氢液化项目正式启动,通过借鉴国外煤加氢液化工艺技术特点,在优化创新的基础上,开发成功具有自主知识产权的神华煤加氢液化工艺,并建成6t/d的神华煤加氢液化工艺的PDU中试装置放大实验。
同时,煤炭科学研究总院与神华共同开发成功具有国内自主知识产权的纳M级“863”高效合成煤加氢液化催化剂,建成催化剂放大制备装置。
2004年,神华百万吨级煤直接液化示范项目开始建设,并于2008年底顺利投产运行。
由此,完全依靠国内技术力量的具有自主知识产权的神华煤加氢液化工艺<CDCL)开发成功,其工艺主要特点有:采用高活性铁系液化催化剂、循环溶剂预加氢、强制循环悬浮床反应器、减压蒸馏分离沥青和固体等。
2、煤炭液化技术之——煤炭间接液化<煤基费托合成技术, F-T Coal Liquefaction)煤炭间接液化<煤基费托合成,F-T合成)是首先将煤通过气化制成原料气,然后经过净化、变换获得合成气,合成气通过费托合成反应转化为合成油品,再经过油品加氢提质得到柴油、石脑油等产品。
煤基费托合成可分为高温费托合成<350℃)和低温费托合成<250℃),高温合成可以生产石脑油、聚稀烃等多种化工品和燃油,低温合成以柴油等燃油为主。
费托合成产品可以根据市场需要加以调节,生产高附加值、价格高、市场紧缺的化工产品。
相比煤炭直接液化,煤基费托合成工艺用煤取决于煤种与气化工艺的相对适应性,因此具有煤种适应性强的特点。
典型的煤炭间接液化工艺包括煤气化<煤气净化、变换和脱碳)、F-T合成、油品加工等3个“串联”过程。
由煤气化装置产出的粗煤气经除尘、冷却得到净煤气,净煤气经CO宽温耐硫变换和酸性气体<包括H2S和CO2等)脱除,得到成分合格的合成气。
合成气进入合成反应器,在一定温度、压力及催化剂作用下,H2和CO转化为直链烃类<H2/CO在0.8-2之间)、水以及少量的含氧有机化合物。
生成物经三相分离,水相去提取醇、酮、醛等化学品;油相采用常规石油炼制手段<如常、减压蒸馏),根据需要切割出产品馏份,经进一步加工<如加氢精制、临氢降凝、催化重整、加氢裂化等工艺)得到合格的油品或中间产品;气相经冷冻分离及烯烃转化处理得到LPG、聚合级丙烯、聚合级乙烯及中热值燃料气。
煤基费托合成工艺的核心技术——费托合成技术,是1913年,由德国科学家F.Fisher和H.Tropsc利用碱性铁催化剂,在温度400~455℃、压力10~15Mpa条件下,用一氧化碳与氢气合成了烃类化合物与含氧化合物的混合液体开始的,并根据两位科学家姓名而命名。
其反应过程包括:<1)烃类生成反应;<2)水气变换反应;<3)烷烃生成反应;<4)烯烃生成反应。
因为反应条件的不同,还有甲烷生成反应、醇类生成反应<生产甲醇就需要此反应)、醛类生成反应等等,可采用调节生产工艺条件、改变催化剂等措施满足工艺产品需求。
南非因为特殊的政治、经济环境和能源资源特点,成功地发展了煤炭间接液化合成燃料工业,居世界领先。
目前南非SASOL公司三个工厂年处理煤炭总计达到4590万t<占全国煤炭消费的20%),主要产品为汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛、酮等113种,总产量达760万t/a,其中油品占60%左右,提供南非石油产品需求的30%。
南非SASOL公司的煤基费托合成技术,但基本处于技术封锁。
中国煤基费托合成技术的开发起步晚,以中科院山西煤化所开发的低温浆态床费托合成技术建设的神华内蒙鄂尔多斯、山西潞安、内蒙伊泰三个16~18万t/a示范项目的建设均已建成投运。
3、煤炭气化<Coal Gasification)煤炭气化是现代煤化工的龙头关键单元技术,以生产洁净合成煤气为指主要产品,煤液化技术均离不开煤炭气化技术。
煤在气化炉内,在一定温度及压力下与气化剂<如蒸汽/空气或氧气等)发生气化过程,包括煤的热解、气化和燃烧反应等一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。
煤炭气化三个条件为气化炉、气化剂、原料煤。
煤炭气化过程发生的主要化学反应有:1、水蒸气转化反应:C+H2O=CO+H2-131KJ/mol2、水煤气变换反应:CO+ H2O =CO2+H2+42KJ/mol3、部分氧化反应:C+0.5 O2=CO+111KJ/mol4、完全氧化<燃烧)反应:C+O2=CO2+394KJ/mol5、甲烷化反应:CO+2H2=CH4+74KJ/mol6、Boudouard反应:C+CO2=2CO-172KJ/mol煤炭气化工艺的分类可按压力、气化剂、气化过程供热方式等分类。
按照压力分为常压气化和加压气化,按照是否需要煤炭开采分为地面气化和地下气化,按灰渣排出形态分为固态排渣气化、液态排渣气化、灰团(熔>聚气化等,最常用的是按气化炉内煤料与气化剂的接触方式区分,当前主要的气化技术有:<1)加压固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化。
而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。
固定床气化炉常见有间歇式气化<UGI)和连续式气化<鲁奇Lurgi)2种,气化炉压力<2.5~4.0)MPa;<2)流化床气化:以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。
流化床气化炉常见有温克勒<Winkler)、灰熔聚<U-Gas)、循环流化床<CFB)、加压流化床<PFB是PFBC的气化部分)等;<3)气流床气化:一种并流气化,用气化剂将粒度为100um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。
煤料在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。
干粉进料的主要有K-T<Koppres-Totzek)炉、Shell- Koppres炉、Prenflo炉、Shell炉、GSP炉、ABB-CE炉,湿法煤浆进料的主要有德士古<Texaco)气化炉、Destec炉;<4)熔浴床气化:粉煤和气化剂以切线方向高速喷入一温度较高且高度稳定的熔池内,把一部分动能传给熔渣,使池内熔融物做螺旋状的旋转运动并气化。
目前此气化工艺已不再发展。
煤气化工艺选择原则是:<1)根据煤质选择相适应的煤气化工艺;<2)根据煤气加工的产品及用途选择煤气化工艺;<3)装置规模的大型化。
4、煤制天然气<SNG)煤制天然气属煤化工技术,主要工艺由气化、变换、净化和甲烷化单元工艺组成,因变换、净化技术在国内已成熟可靠,大规模甲烷化技术虽然在国内属新技术,但在国外已有长期工业化应用实例,技术也成熟可靠。
所以,决定SNG项目成败的关键在煤气化技术,高甲烷含量煤气化可大大降低SNG总体项目投资,比如Lurgi和BGL气化技术。
5、煤制甲醇及烯烃、聚烯烃煤制甲醇再转制烯烃<Methanol to Olefins,MTO)和甲醇制丙烯<Methanol to Propylene)是两个重要的新型煤炭C1化工新工艺,是指以煤气化合成气后转化甲醇,再通过MTO/MTP生产低碳烯烃的化工技术。