【精校】2013年辽宁省大连市中考数学试卷(含答案)
- 格式:docx
- 大小:284.93 KB
- 文档页数:22
2013年辽宁省抚顺市中考真题数学一、选择题1.-4的绝对值是( )A.B.C. 4D. -4解析:-4的绝对值是4.答案:C.2.如果分式有意义,则x的取值范围是( )A. 全体实数B. x=1C. x≠1D. x=0解析:当分母x-1≠0,即x≠1时,分式有意义.答案:C.3.下列图形中,不是中心对称图形的是( )A.B.C.D.解析:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;答案:A.4.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是( )A.B.C.D.解析:由俯视图中的数字可得:左视图有2列,从左到右分别是3,2个正方形.答案:D.5.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是( )A. ∠1=∠3B. ∠5=∠4C. ∠5+∠3=180°D. ∠4+∠2=180°解析:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;B、不能判断;C、同旁内角互补,两直线平行,可以判断,故命题正确;D、同旁内角互补,两直线平行,可以判断,故命题正确.答案:B.6.下列计算正确的是( )A. (2a)3÷a=8a2B.C. (a-b)2=a2-b2D.解析:A、(2a)3÷a=8a2,故本选项正确;B、(-2ab)(-a2)=a3b,故本选项错误;C、(a-b)2=a2-2ab+b2,故本选项错误;D、-4(a-1)=-a+4,故本选项错误;答案:A.7.已知圆锥底面圆的半径为2,母线长是4,则它的全面积为( )A. 4πB. 8πC. 12πD. 16π解析:底面周长是:2×2π=4π,则侧面积是:×4π×4=8π,底面积是:π×22=4π,则全面积是:8π+4π=12π.答案:C.8.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是( )A.B.C.D.解析:设他骑自行车和步行的时间分别为x、y分钟,由题意得:. 答案:D.9.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是( )A.B.C.D.解析:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.答案:D.10.如图,等边△OAB的边OB在x轴的负半轴上,双曲线过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )A.B.C.D.解析:如图,过点C作CD⊥OB于点D.∵△OAB是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C是边OA的中点,∴OC=2,∴OD=OC·cos60°=2×=1,CD=OC·sin60°=2×=.∴C(-1,).则=,解得,k=-,∴该双曲线的表达式为.答案:B.二、填空题11.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为.解析:0.000 000 156=1.56×10-7,答案:1.56×10-7.12.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是.解析:∵,,∴S甲2>S乙2,则成绩较稳定的同学是乙.答案:乙.13.计算:= .解析:原式=1×4-1=3.答案:3.14.已知a、b为两个连续整数,且a<<b,则a+b= .解析:∵4<<5,∴a=4,b=5,∴a+b=9.答案:9.15.从-3、1、-2这三个数中任取两个不同的数,积为正数的概率是.解析:根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)==.答案:.16.把直线y=2x-1向上平移2个单位,所得直线的解析式是.解析:由“上加下减”的原则可知,直线y=2x-1向上平移2个单位,所得直线解析式是:y=2x-1+2,即y=2x+1.答案:y=2x+1.17.若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是.解析:∵矩形ABCD的对角线长为10,∴AC=BD=10∵点E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=HG=AC=×10=5EH=GF=BD=×10=5,∴四边形EFGH的周长为EF+FG+GH+HE=5+5+5+5=20.答案:2018.如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是.解析:如图所示,点P6与点P重合,∵2013÷6=335…3,∴点P2013是第336循环组的第3个点,与点P3重合,∴点P2013的坐标为(2,-4).答案:(2,-4).三、解答题19.先化简,再求值:,其中a=-1.解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a的值代入计算即可求出值.答案:原式=·=·=,当a=-1时,原式==.20.某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这四个班共植树棵;(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?解析:(1)根据乙班植树40棵,所占比为20%,即可求出这四个班种树总棵数;(2)根据丁班植树70棵,总棵数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总棵数,即可得出丙植树的棵数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)用总棵数×平均成活率即可得到成活的树的棵数.答案:(1)四个班共植树的棵数是:40÷20%=200(棵);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1-30%-20%-35%=15%,则丙植树的棵数是:200×15%=30(棵);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×95%=1900(棵).答:全校种植的树中成活的树有1900棵.故答案为:200.四、答案题21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)解析:(1)连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴AD=DC,∵AO=OB,∴OD是△ABC的中位线,∴DO∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O切线;(2)∵DG⊥AB,OB过圆心O,∴弧BG=弧BD,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠BOG=∠BOD=70°,∴∠GOD=140°,∴劣弧DG的长是=π.22.2013年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮.某体育用品商店预测某种品牌的运动鞋会畅销,就用4800元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双鞋进价多用了20元.(1)求该商店第二次购进这种运动鞋多少双?(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元?解析:(1)设该商场第一次购进这种运动鞋x双,则第二次购进数量为2x双,根据关键语句“每双进价多了20元”可得等量关系:第一次购进运动鞋的单价+20=第二次购进运动鞋的单价,根据等量关系列出方程,求出方程的解,再进行检验即可得出答案;(2)设每双售价是y元,根据数量关系:(总售价-总进价)÷总进价≥20%,列出不等式,解出不等式的解即可.答案:(1)设该商场第一次购进这种运动鞋x双,由题意得:+20=,解得:x=30经检验,x=30是原方程的解,符合题意,则第二次购进这种运动鞋是30×2=60(双);答:该商场第二次购进这种运动鞋60双.(2)设每双售价是y元,由题意得:×100%≥20%,解这个不等式,得y≥208,答:每双运动鞋的售价至少是208元.23.在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().解析:延长BD交AE于点F,作FG⊥ED于点G,Rt△FGD中利用锐角三角函数求得FD的长,从而求得FB的长,然后在直角三角形ABF中利用锐角三角函数求得AB的长即可. 答案:延长BD交AE于点F,作FG⊥ED于点G,∵斜坡的顶部CD是水平的,斜坡与地面的夹角为30°,∴∠FDE=∠AED=30°,∴FD=FE,∵DE=18米,∴EG=GD=ED=9米,在Rt△FGD中,DF===6,∴FB=(6+6)米,在Rt△AFB中,AB=FB·tan60°=(6+6)×=(18+6)≈28.2米,所以古塔的高约为28.2米.24.某服装店以每件40元的价格购进一批衬衫,在试销过程中发现:每月销售量y(件)与销售单价x(x为正整数)(元)之间符合一次函数关系,当销售单价为55元时,月销售量为140件;当销售单价为70元时,月销售量为80件.(1)求y与x的函数关系式;(2)如果每销售一件衬衫需支出各种费用1元,设服装店每月销售该种衬衫获利为w元,求w与x之间的函数关系式,并求出销售单价定为多少元时,商场获利最大,最大利润是多少元?解析:(1)设y与x的函数关系式y=kx+b,根据售价与销量之间的数量关系建立方程组,求出其解即可;(2)根据利润=(售价-进价)×数量就可以表示出W,答案:(1)设y与x的函数关系式y=kx+b,由题意,得,解得:,∴y与x的函数关系式为:y=-4x+360;(2)由题意,得W=y(x-40)-y=(-4x+360)(x-40)-(-4x+360)=-4x2+160x+360x-14400+4x-360=-4x2+524x-14760,∴w与x之间的函数关系式为:W=-4x2+524x-14760,∴W=-4(x2-131x)-14760=-4(x-65.5)2+2401,当x=65.5时,最大利润为2401元,∵x为整数,∴x=66或65时,W=2400元.∴x=65或66时,W最大=2400元.25.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.解析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC-BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF-BP=BC,所以BF-BP=DE.答案:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB-∠PDB=∠PDF-∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC-BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF-BP=BC,∴BF-BP=DE.26.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.解析:(1)先由直线AB的解析式为y=x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F的坐标为(m,-m2-2m+3),运用配方法求出抛物线的对称轴及顶点D的坐标,再设抛物线的对称轴与x轴交于点G,连接FG,根据S△AEF=S△AEG+S△AFG-S△EFG=3,列出关于m的方程,解方程求出m的值,进而得出点F的坐标;(3)设P点坐标为(-1,n).先由B、C两点坐标,运用勾股定理求出BC2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,据此列出关于n的方程,求出n的值,再计算出PD的长度,然后根据时间=路程÷速度,即可求出此时对应的t 值;②∠BPC=90°,同①可求出对应的t值;③∠BCP=90°,同①可求出对应的t值. 答案:(1)∵y=x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=-3,即A点坐标为(-3,0),当x=0时,y=3,即B点坐标为(0,3),将A(-3,0),B(0,3)代入y=-x2+bx+c,得,解得,∴抛物线的解析式为y=-x2-2x+3;(2)如图1,设第三象限内的点F的坐标为(m,-m2-2m+3),则m<0,-m2-2m+3<0.∵y=-x2-2x+3=-(x+1)2+4,∴对称轴为直线x=-1,顶点D的坐标为(-1,4),设抛物线的对称轴与x轴交于点G,连接FG,则G(-1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=-1时,y=-1+3=2,∴E点坐标为(-1,2).∵S△AEF=S△AEG+S△AFG-S△EFG=×2×2+×2×(m2+2m-3)-×2×(-1-m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得m1=,m2=(舍去),当m=时,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=,∴点F的坐标为(,);(3)设P点坐标为(-1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,化简整理得6n=16,解得n=,∴P点坐标为(-1,),∵顶点D的坐标为(-1,4),∴PD=4-=,∵点P的速度为每秒1个单位长度,∴t1=;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,化简整理得n2-3n+2=0,解得n=2或1,∴P点坐标为(-1,2)或(-1,1),∵顶点D的坐标为(-1,4),∴PD=4-2=2或PD=4-1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,化简整理得6n=-4,解得n=-,∴P点坐标为(-1,-),∵顶点D的坐标为(-1,4),∴PD=4+=,∵点P的速度为每秒1个单位长度,∴t4=;综上可知,当t为秒或2秒或3秒或秒时,以P、B、C为顶点的三角形是直角三角形.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2016 年辽宁省大连市中考数学试卷一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.﹣ 3 的相反数是( ) A . B .C .3D .﹣ 32.在平面直角坐标系中,点( 1, 5)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.方程 2x+3=7 的解是( ) A .x=5 B .x=4 C . x=3.5 D .x=2A .x>﹣ 2B .x<1C .﹣ 1<x<2D .﹣2<x<1 6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4 随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于 4的概率是( )A .B .C .D .7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 8.如图,按照三AB ∥CD ,AE 平分∠CAB .AE 与 CD 相交于点 E , ∠ACD=40°,则 ∠BAE 5.不等式组 的解集是4.如图,直线140视图确定该几何体的全面积是(图中尺寸单位:cm)()二、填空题:本大题共 8小题,每小题 3 分,共 24分29.因式分解: x ﹣ 3x= .10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为 .11.如图,将△ ABC 绕点 A 逆时针旋转的到 △ADE ,点 C 和点 E 是对应点, 若∠CAE=90°,12.下表是某校女子排球队队员的年龄分布 年龄 /岁13 14 15 16 频数1173则该校女子排球队队员的平均年龄是 岁.15.如图,一艘渔船位于灯塔 P 的北偏东 30°方向,距离灯塔 18 海里的 A 处,它沿正南方 向航行一段时间后, 到达位于灯塔 P 的南偏东 55°方向上的 B 处,此时A .40π cm 2B . 65π cm 2C . 80π cm 2D . 105π cm 213.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是a 的取值范是渔船与灯塔 P的距离约为海里(结果取整数)(参考数据: sin55 °≈ 0,.8cos55°≈ 0,.6tan55 °≈1).4.20.为了解某小区某月家庭用水量的情况, 从该小区随机抽取部分家庭进行调查,据调查数据绘制的统计图表的一部分 分组 家庭用水量 x/ 吨 家庭数 /户A 0≤x ≤ 4.0 4B 4.0<x ≤ 6.513C 6.5<x ≤ 9.0D 9.0<x ≤ 11.5E11.5< x ≤ 14.06 F x>4.03根据以上信息,解答下列问题216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B ( m+2, 0)与 y 轴相交于点 在该抛物线上,坐标为( m , c ),则点 A 的坐标是 .C ,点 D三、解答题:本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分17.计算:( +1)( ﹣ 1)+(﹣2)0﹣.18.先化简,再求值:( 2a+b )2﹣a ( 4a+3b ),其中 a=1, b= . 19.如图, BD 是? ABCD 的对角线, AE ⊥BD ,CF ⊥BD ,垂足分别为 E 、F ,AE=CF .以下是根1)家庭用水量在 4.0< x ≤6.5范围内的家庭有 户,在 6.5< x ≤9.0范围内的家庭数占被调查家庭数的百分比是 %; ( 2)本次调查的家庭数为 户,家庭用水量在 9.0< x ≤11.5范围内的家庭数占被 调查家庭数的百分比是 %;3)家庭用水量的中位数落在组;四、解答题:本大题共 3小题, 21、22各 9分 23题 10分,共 28分21.A 、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速 开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶 30 千米,求甲、乙 两车的速度.222.如图,抛物线 y=x 2﹣3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,点 D 是直线BC 下方抛物线上一点,过点 D 作 y 轴的平行线,与直线 BC 相交于点 E ( 1)求直线 BC 的解析式; (2)当线段 DE 的长度最大时,求点 D 的坐标.23.如图, AB 是⊙O 的直径,点 C 、D 在⊙O 上, ∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上, ∠AED= ∠ABC ( 1)求证: DE 与⊙O 相切; (2)若 BF=2,DF= ,求⊙O 的半径.200 户家庭,请估计该月用水量不超过9.0 吨的家庭数. 4)若该小区共五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图 1,△ABC 中,∠ C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m< x ≤3时,函数的解析式不同)( 1)填空: BC 的长是;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D在BC 边上,∠DAB= ∠ABD, BE⊥AD ,垂足为 E,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠ BEA ,从而可证△ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL中”的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3,△ ABC 中, AB=AC ,∠BAC=90° ,D为BC的中点, E为 DC的中点,点 F 在 AC 的延长线上,且∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长;3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D、E分别在 AB、AC 边上,且AD=kDB其中 0<k< ),∠AED= ∠BCD ,求的值(用含 k 的式子表示).26.如图,在平面直角坐标系xOy 中,抛物线 y=x2+ 与 y 轴相交于点 A,点 B 与点 O关于点 A 对称1)填空:点 B 的坐标是2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l 平行于 y轴,P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点P是否在抛物线上,说明理由;3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求2016 年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.﹣ 3 的相反数是()A. B.C.3 D.﹣ 3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣ 3)+3=0 .故选 C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点( 1, 5)所在的象限是()A .第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点( 1, 5)所在的象限是第一象限.故选 A .【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣, +);第三象限(﹣,﹣);第四象限( +,﹣).3.方程 2x+3=7 的解是() A.x=5 B.x=4 C . x=3.5 D .x=2 【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把 x 系数化为1,即可求出解.【解答】解: 2x+3=7 ,移项合并得: 2x=4 ,解得: x=2,故选 D点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线 AB ∥CD, AE 平分∠CAB.AE 与 CD 相交于点 E,∠ACD=40°,则∠BAE【考点】平行线的性质.【分析】先由平行线性质得出∠ACD 与∠BAC 互补,并根据已知∠ACD=4°0 计算出∠ BAC 的度数,再根据角平分线性质求出∠ BAE 的度数.【解答】解:∵AB ∥CD,∴∠ ACD+ ∠ BAC=18°0 ,∵∠ ACD=4°0 ,∴∠ BAC=18°0 ﹣ 40°=140°,∵AE 平分∠CAB ,∴∠ BAE= ∠ BAC= ×140°=70°,故选 B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③ 同旁内角互补;并会书写角平分线定义的三种表达式:若 AP 平分∠BAC ,则①∠ BAP= ∠PAC,②∠ BAP= ∠ BAC ,③∠ BAC=2 ∠BAP .5.不等式组的解集是A.x>﹣ 2 B.x<1 C.﹣ 1<x<2 D.﹣2<x<1考点】解一元一次不等式组.分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解答】解: 解① 得 x>﹣2, 解② 得 x<1, 则不等式组的解集是:﹣ 2< x<1. 故选 D .【点评】 本题考查了一元一次不等式组的解法: 解一元一次不等式组时, 一般先求出其中各 不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大 中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1,2,3,4 随机摸出个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于考点】列表法与树状图法.【分析】 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与两次摸出的小球 标号的积小于 4 的情况,再利用概率公式求解即可求得答案. 解答】解:画树状图得:故选 C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为: 概率 =所求情况数与总情况数之比.4 的概率是( )A .B .C .D .∵共有 12 种等可能的结果,两次摸出的小球标号的积小于 4 的有 4 种情况, ∴ 两次摸出的小球标号的积小于 4 的概率是: =.7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 【考点】由实际问题抽象出一元二次方程. 【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是 100( 1+x ),五月份的产量是 100(1+x )2,据此列方程即可. 【解答】解:若月平均增长率为x ,则该文具店五月份销售铅笔的支数是: 100(1+x ) 2, 故选: B .【点评】 本题考查数量平均变化率问题, 解题的关键是正确列出一元二次方程. 原来的数量 为 a ,平均每次增长或降低的百分率为 x 的话,经过第一次调整,就调整到a ×( 1±x ),再经过第二次调整就是 a ×(1±x )( 1±x )=a (1±x )2.增长用 “+”,下降用 “﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆 锥的母线长和底面半径,从而确定其表面积.【解答】 解: 由主视图和左视图为三角形判断出是锥体, 由俯视图是圆形可判断出cm )( )A .40π cm 2B . 65π cm 2C .80π cm 2D .105π cm 2这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为 10÷2=5cm ,2 2 2故表面积 =π rl+ π=rπ× 5× 8+ π=6×55π cm.故选: B.【点评】考查学生对三视图掌握程度和灵活运用同时也体现了对空间想象能力方面的能力,考查.二、填空题:本大题共8小题,每小题 3 分,共24分29.因式分解: x2﹣3x= x( x﹣3).【考点】因式分解 -提公因式法.【专题】因式分解.【分析】确定公因式是 x ,然后提取公因式即可.【解答】解: x 2﹣ 3x=x (x﹣3).故答案为: x(x﹣ 3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为﹣6 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点( 1,﹣ 6)代入反比例函数 y= ,求出 k 的值即可.【解答】解:∵反比例函数 y= 的图象经过点( 1,﹣ 6),∴ k=1×(﹣ 6) =﹣6.故答案为:﹣ 6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ ABC 绕点 A 逆时针旋转的到△ADE ,点 C和点 E是对应点,若∠ CAE=90°,【分析】由旋转的性质得: AB=AD=1 ,∠BAD= ∠CAE=90° ,再根据勾股定理即可求出 BD .【解答】解:∵将△ABC 绕点 A 逆时针旋转的到△ADE ,点C和点 E 是对应点,∴ AB=AD=1 ,∠BAD= ∠CAE=90° ,∴ BD= = = .故答案为.【点评】本题考查了旋转的性质:① 对应点到旋转中心的距离相等;② 对应点与旋转中心所连线段的夹角等于旋转角;③ 旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄 /岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是 15 岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得: (13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15 岁.故答案为: 15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是 24【分析】直接利用菱形的性质结合勾股定理得出 BD 的长,再利用菱形面积求法得出答案.【解答】解:连接 BD ,交 AC 于点 O,考点】旋转的性∵ 四边形 ABCD 是菱形,∴AC ⊥BD ,AO=CO=4 ,∴ BO= =3,故 BD=6 ,则菱形的面积是:×6×8=24 .点评】此题主要考查了菱形的性质以及勾股定理,正确求出214.若关于 x 的方程 2x 2+x ﹣a=0 有两个不相等的实数根,则实数 a的取值范围是 a>﹣【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于 a 的一元一次不等式,解不等式即可得出结论.【解答】解:2∵关于 x 的方程 2x2+x﹣a=0 有两个不相等的实数根,2∴△ =12﹣ 4×2×(﹣ a)=1+8a>0,解得: a>﹣.故答案为: a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a> 0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔 P的北偏东 30°方向,距离灯塔 18海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P的南偏东 55°方向上的 B 处,此时渔船与灯塔 P的距离约为 11 海里(结果取整数)(参考数据:BD 的长是解题关键.sin55 °≈0,.8cos55°≈0,.6tan55°≈1).4.考点】解直角三角形的应用 - 方向角问题.分析】作 PC⊥AB 于 C,先解 Rt△ PAC ,得出 PC= PA=9 ,再解 Rt△PBC,得出PB= ≈ 11.解答】解:如图,作 PC⊥ AB 于 C,在 Rt△PAC 中,∵PA=18 ,∠A=30°,∴PC= PA= ×18=9,在 Rt△PBC中,∵ PC=9,∠ B=55°,∴ PB= ≈≈11,答:此时渔船与灯塔 P 的距离约为 11海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B( m+2, 0)与 y 轴相交于点 C,点 D 在该抛物线上,坐标为( m, c),则点 A 的坐标是(﹣ 2,0).【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据 A 、B 关于对称轴对称,可得 A 点坐标.【解答】解:由 C ( 0, c ), D ( m , c ),得函数图象的对称轴是 x= , 设 A 点坐标为( x ,0),由 A 、 B 关于对称轴 x= ,得=,解得 x= ﹣2,即 A 点坐标为(﹣ 2, 0), 故答案为:(﹣ 2,0).【点评】本题考查了抛物线与 x 轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题: 本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分 17.计算:(+1)( ﹣ 1)+(﹣2)0﹣ . 【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简 3 个考点.在计算时,需要针对每 个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:( +1)(﹣ 1) +(﹣ 2)0﹣=5﹣ 1+1﹣3 =2.【点评】 本题主要考查了实数的综合运算能力, 是各地中考题中常见的计算题型. 解决此类 题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:( 2a+b)2﹣ a( 4a+3b),其中 a=1, b= .考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 a与 b的值代入计算即可求出值.【解答】解:原式 =4a2+4ab+b2﹣4a2﹣ 3ab=ab+b2,当 a=1, b= 时,原式 = +2 .【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图, BD 是? ABCD 的对角线, AE⊥BD,CF⊥BD,垂足分别为 E、F,求证:AE=CF .【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD,根据平行线的性质得出∠ABE= ∠CDF ,求出∠AEB=∠CFD=90°,根据 AAS 推出△ ABE ≌△ CDF,得出对应边相等即可.【解答】证明:∵ 四边形 ABCD 是平行四边形,∴ AB=CD ,AB ∥CD,∴∠ ABE= ∠CDF,∵AE ⊥BD ,CF⊥BD ,∴∠ AEB= ∠ CFD=90° ,在△ ABE 和△CDF 中,,∴△ ABE ≌△ CDF( AAS ),∴AE=CF .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ ABE ≌△ CDF 是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在 4.0<x≤6.5范围内的家庭有13 户,在 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比是 30 %;( 2)本次调查的家庭数为50 户,家庭用水量在 9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 18 %;( 3)家庭用水量的中位数落在 C 组;(4)若该小区共有 200 户家庭,请估计该月用水量不超过 9.0 吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】( 1)观察表格和扇形统计图就可以得出结果;(2)利用 C 组所占百分比及户数可算出调查家庭的总数,从而算出 D 组的百分比;( 3)从第二问知道调查户数为50,则中位数为第 25、26 户的平均数,由表格可得知落在 C组;( 4)计算调查户中用水量不超过 9.0 吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:( 1)观察表格可得 4.0< x≤6.5的家庭有 13 户, 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比为 30%;(2)调查的家庭数为: 13÷26%=50 ,6.5<x≤ 9.0的家庭数为: 50×30%=15 ,D 组 9.0<x≤ 11.5的家庭数为: 50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤ 11.5 的百分比是: 9÷50×100%=18%;(3)调查的家庭数为 50 户,则中位数为第 25、26 户的平均数,从表格观察都落在C组;故答案为:( 1)13,30;(2)50,18;( 3)C;( 4)调查家庭中不超过 9.0吨的户数有: 4+13+15=32 ,=128(户),答:该月用水量不超过 9.0 吨的家庭数为 128 户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是 x 千米 /时,乙车的速度为( x+30 )千米 /时,解得, x=60,则 x+30=90 ,即甲车的速度是 60千米/时,乙车的速度是 90 千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.考点】抛物线与 x 轴的交点;二次函数的性质.分析】( 1)利用坐标轴上点的特点求出 A 、B 、C 点的坐标,再用待定系数法求得直线BC 的解析式;2)设点 D 的横坐标为 m ,则纵坐标为 (m , ),E 点的坐标为 ( m , ),解答】解:( 1)∵抛物线 y=x 2﹣ 3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C , ∴ 令 y=0,可得 x= 或 x= , ∴A ( ,0), B ( ,令 x=0 ,则 y= , ∴ C 点坐标为( 0, )设 DE 的长度为 d ,可得两点间的距离为 d=,利用二次函数的最值可得 m ,可得点 D 的坐标.0);设直线 BC 的解析式为: y=kx+b ,则有,解得:∴ 直线 BC 的解析式为: y= x ;2)设点 D 的横坐标为 m ,则纵坐标为( m , ),∴ E 点的坐∵ 点 D 是直线 BC 下方抛物线上一点,整理得, d=﹣m2+ m,a=﹣1<0,∴ 当 m= = 时, d= 时, d 最大= = = ,∴ D 点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出 D 的坐标,利用二次函数最值得 D 点坐标是解答此题的关键.23.如图, AB 是⊙O 的直径,点 C、D 在⊙O 上,∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上,∠AED= ∠ABC( 1)求证: DE 与⊙O 相切;(2)若 BF=2,DF= ,求⊙O 的半径.【考点】切线的判定.【分析】( 1)连接 OD,由 AB 是⊙O的直径,得到∠ACB=90° ,求得∠A+∠ABC=90°,等量代换得到∠ BOD= ∠A ,推出∠ODE=9°0 ,即可得到结论;(2)连接 BD,过 D 作 DH⊥BF 于 H,由弦且角动量得到∠BDE= ∠BCD,推出△ACF 与△ FDB 都是等腰三角形,根据等腰直角三角形的性质得到 FH=BH= BF=1,则FH=1,根据勾股定理得到 HD= =3,然后根据勾股定理列方程即可得到结论.【解答】( 1)证明:连接 OD,∵ AB 是⊙O 的直径,∴∠ ACB=90° ,∴∠ A+ ∠ABC=90° ,∵∠ BOD=2 ∠BCD ,∠A=2∠BCD , ∴∠ BOD= ∠A , ∵∠ AED= ∠ABC , ∴∠ BOD+ ∠ AED=90° , ∴∠ ODE=9°0 , 即 OD ⊥DE ,∴DE 与⊙O 相切; (2)解:连接 BD ,过 D 作 DH ⊥BF 于 H , ∵DE 与⊙O 相切, ∴∠ BDE=∠ BCD , ∵∠ AED= ∠ABC , ∴∠ AFC=∠ DBF ,∵∠ AFC=∠ DFB , ∴△ ACF 与 △FDB 都是等腰三角形, ∴ FH=BH= BF=1,则 FH=1 ,∴ HD==3, 在 Rt △ ODH 中, OH 2+DH 2=OD 2,2 2 2 即( OD ﹣ 1)2+32=OD 2,∴ OD=5 ,五、解答题:本大题共 3小题, 24题 11 分, 25、26 各 12分,共 35分【点评】 本题考查了切线的判定和性质, 正确的作出辅助线是解题的等腰三角形的判定, 直角三角形的性质, 勾股定理, ∴⊙ O 的半径是24.如图 1,△ABC 中,∠C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m<x≤3时,函数的解析式不同)( 1)填空: BC 的长是 3 ;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.【考点】四边形综合题.【分析】( 1)由图象即可解决问题.(2)分三种情形①如图 1中,当 0≤x≤1时,作 DM ⊥AB 于 M,根据 S=S△ABC﹣S△BDF﹣S 四边形ECAG 即可解决.②如图 2中,作AN∥DF 交 BC 于 N,设 BN=AN=x ,在RT△ANC 中,利用勾股定理求出 x,再根据 S=S△ABC﹣S△BDF﹣S四边形ECAG 即可解决.③如图 3 中,根据 S= CD?CM ,求出 CM 即可解决问题.【解答】解;( 1)由图象可知 BC=3 .故答案为 3.(2)①如图 1中,当 0≤x≤1时,作 DM⊥AB 于 M,由题意 BC=3 , AC=2 ,∠C=90°,∴ AB= = ,∵∠ B=∠B,∠DMB= ∠ C=90°,∴△ BMD ∽△ BCA ,====∴DM= ∵BM=BD=DF ,DM⊥BF,∴ BM=MF ,∴ S △BDF = x 2 ∵EG ∥AC ,∴EG= (x+2 ),∴S四边形 ECAG = [2+ (x+2)]?(1﹣ x ),22∴ S=S△ ABC﹣ S △BDF ﹣ S 四边形 ECAG =3﹣x ﹣ [2+ (x+2)]?(1﹣x )=﹣ x + x+ .作 AN ∥DF 交 BC 于 N ,设 BN=AN=x ,③如图 3 中,当 <x ≤3时, ∵DM ∥AN ,∴ = ,∴ CM= (3﹣x ),综上所述 S=② 如图 ②中,在 RT △ ANC 中, ∵AN 2=CN 2+AC 2, ∴x 2=22+(3﹣x ) 2,∴ x= ,∴当 1< x ≤ 时,2S=S △ABC ﹣S△BDF =3﹣ x ,∴S= CD?CM= (3﹣x ) 2,【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D 在 BC 边上,∠DAB= ∠ABD, BE ⊥ AD ,垂足为 E ,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠BEA ,从而可证△ABF ≌△ BAE (如图 2),使问题得到解决.( 1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3, △ ABC 中, AB=AC ,∠BAC=90°,D 为 BC 的中点, E 为 DC 的中点,点 F 在 AC 的延长线上,且 ∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长; (3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D 、E 分别在 AB 、AC 边上,且 AD=kDB(其中 0<k< ), ∠AED= ∠BCD ,求 的值(用含 k 的式子表示).【考点】相似形综合题.【分析】( 1)作 AF ⊥ BC ,判断出 △ABF ≌△ BAE ( AAS ),得出 BF=AE ,即可;( 2)先求出 tan ∠DAE= ,再由 tan ∠ F=tan ∠ DAE ,求出 CG ,最后用 △DCG ∽△ ACE 求 出 AC ;( 3)构造含 30°角的直角三角形,设出 DG ,在 Rt △ABH ,Rt △ ADN ,Rt △ABH 中分别用 a ,k 表示出 AB=2a ( k+1 ),BH= a (k+1),BC=2BH=2 a ( k+1),CG= a (2k+1 ),DN= ka ,最后用 △NDE ∽△ GDC ,求出 AE ,EC 即可. 【解答】证明:( 1)如图 2,∵BE ⊥AD ,∴∠AFB= ∠BEA , 在△ ABF 和△BAE 中,作 AF ⊥BC ,,∴△ ABF≌△ BAE (AAS ),∴ BF=AE∵ AB=AC ,AF ⊥BC,∴BF= BC ,∴ BC=2AE ,故答案为 AAS( 2)如图 3,在 Rt△ABC 中, AB=AC ,点 D 是 BC 中点,∴ AD=CD ,∵点 E是 DC 中点,∴DE= CD= AD ,∴ tan ∠ DAE= ∵ AB=AC ,∠BAC=90° ,点 D 为 BC 中点,∴∠ ADC=9°0 ,∠ ACB= ∠DAC=4°5 ,∴∠ F+∠CDF=∠ACB=45° ,∵∠ CDF=∠ EAC ,∴∠ F+∠ EAC=45° ,∵∠ DAE+ ∠EAC=45° ,∴∠ F=∠DAE ,∴ tan∠ F=tan ∠ DAE= ,,∴,∴,∴ CG= ×2=1,∵∠ ACG=9°0 ,∠ ACB=45° ,∴∠ DCG=4°5 ,∵∠ CDF=∠ EAC ,∴△ DCG∽△ ACE,∴,∴ AC=4 ; ∴ AB=4 ; 3)如图 4,过点 D 作 DG ⊥BC ,设 DG=a , 在 Rt △BGD 中, ∠B=30°, ∴ BD=2a , BG= a , ∵ AD=kDB ,∴ AD=2ka , AB=BD+AD=2a+2ka=2a ( k+1 ), 过点 A 作 AH ⊥BC , 在 Rt △ABH 中, ∠B=30°. ∴ BH= a (k+1), ∵ AB=AC ,AH ⊥BC , ∴ BC=2BH=2 a ( k+1), ∴ CG=BC ﹣BG= a ( 2k+1), 过 D 作 DN ⊥ AC 交 CA 延长线与 N , ∵∠ BAC=12°0 , ∴∠ DAN=6°0 ,∴ AN=ka , DN= ka , ∵∠ DGC= ∠ AND=9°0 ,∠AED= ∠BCD , ∴△ NDE ∽△ GDC .∴∠∴,∴,∴ NE=3ak (2k+1),∴ EC=AC ﹣ AE=AB ﹣AE=2a ( k+1)﹣ 2ak( 3k+1) =2a(1﹣ 3k2),【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.226.如图,在平面直角坐标系 xOy中,抛物线 y=x2+ 与y轴相交于点 A,点B与点 O 关于点 A 对称( 1)填空:点 B 的坐标是( 0,);(2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l平行于 y轴, P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;( 3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求此时点 P 的坐标.考点】二次函数综合题.分析】( 1)由抛物线解析式可求得 A 点坐标,再利用对称可求得 B 点坐标; 2)可先用 k 表示出 C 点坐标,过 B 作 BD ⊥l 于点 D ,条件可知 P 点在 x 轴上方,设 P 点纵坐标为 y ,可表示出 PD 、PB 的长,在 Rt △PBD 中,利用勾股定理可求得 y ,则可求出PB 的长,此时可得出 P 点坐标,代入抛物线解析式可判断 P 点在抛物线上; ∠ OBC=∠ CBP= ∠C ′BP=60°,则可求得OC 的长, 代入抛物线解析式可求得 P 点坐标. 解答】解:∴A (0, ), ∵点 B 与点 O 关于点 A 对称, ∴BA=OA= ,∴OB= ,即 B 点坐标为( 0, ), 故答案为:( 0, ); (2)∵B 点坐标为( 0, ),∴ 直线解析式为 y=kx+ ,令 y=0 可得 ∴OC= ﹣ , ∵ PB=PC , ∴点 P 只能在 x 轴上方, 如图 1,过 B 作 BD ⊥l 于点 D ,设 PB=PC=m ,3)利用平行线和轴对称的性质可得到 1)∵抛物线 y=x 2+ 与 y 轴相交于点 A ,kx+ =0,解得 x=﹣ ,∵l ∥y 轴, ∴∠ OBC= ∠PCB , 又 PB=PC , ∴∠ PCB=∠ PBC , ∴∠ PBC=∠OBC ,又 C 、C ′关于 BP 对称,且 C ′在抛物线的对称轴上,即在 ∴∠ PBC=∠ PBC ′,∴∠ OBC= ∠CBP=∠C ′BP=60°, 在 Rt △OBC 中, OB= ,则 BC=1则 BD=OC= ﹣ , CD=OB= , ∴PD=PC ﹣CD=m ﹣ ,在 Rt △PBD 中,由勾股定理可得 PB 2=PD 2+BD 2,即 m 2=(m ﹣ )(﹣)∴ PB + , 2+( )2,解得 m= + ,∴P 点坐标为(﹣),当 x= ﹣ 时,代入抛物线解析式可得 y= + , ∴点 P 在抛物线上; y 轴上, 3)如图 2,连接CC ′,∴OC= ,即 P 点的横坐标为,代入抛物线解析式可得 y=()2+ =1,∴P 点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于 PC 的长的方程是解题的关键,在( 3)中求得∠OBC= ∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.222.如图,抛物线 y=x2﹣3x+ 与 x轴相交于 A、B 两点,与 y 轴相交于点 C,点 D 是直线BC 下方抛物线上一点,过点 D 作 y轴的平行线,与直线 BC 相交于点 E( 1)求直线 BC 的解析式;( 2)当线段 DE 的长度最大时,求点 D 的坐标.。
图1O图4-2图4-1111AP2013年辽宁省葫芦岛市中考数学试卷一.选择题(每小题2分,共20分)1.计算:2×(-3)=()A .-6 B.-5 C.-1 D.62.下列图形中,既是轴对称图形又是中心对称图形的是( )DC B A3.下列运算中,正确的是()A.x ³·x ²=5x B.2x-x=2 C. x+y=xy D.(x ³)²=9x4.若a+1,则a+b=( )A.8 B.0 C.-8 D.65.如图1,AB 是半圆的直径,AB=2,∠B=30°,则BC 的长为( )A.13πB.23π C .π D.436.图2是反比例函数y=mx的图象,下列说法正确的是() A.常数m <-1B.在每个象限内,y 随x 的增大而增大;C.若A(-1,h),B(2,k)在图象上,则h <k ;D.若P(x,y)在函数图象上,则P ’(-x ,y)也在图象上 7.甲车行驶30km 与乙车行驶40km 所用的时间相同,已知乙车比甲车每小时多行驶15km ,设甲车的速度为xkm/h , 依题意,下列所列方程正确的是()A.3040=x x-15 B.304015x x =- C.304015x x =+ D.304015x x =+ 8.如图3,四边形ABCD 中,点M,N 分别在AB,BC 上,将△BMN △FMN ,若MF ∥AD,FN ∥DC ,则∠B=( ) A.60°B.70°C.80°D.90°9.装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图4-1所示,将容器倾斜如图4-2所示.已知液体部分正面的面积保持不变,当AA 1=4时,BB 1=( )A10 B8 C6 D4 10.如图5矩形ABCD 的对角线交于点O ,∠BOC=60°,AD=3.动点P 从点A 出发,沿折线AD-DO 以每秒1个单位的速度运动到点O 停止,设运动时间为x 秒,y=S △POC ,则y 与x 的函数关系式为( )A大题共6个小题,每小题3分,共18分) 11.计算:(2π-4)0= .12.若∠α=70°,则∠α的补角为 . 13.分解因式:a ²-2ab= .14.三个等边三角形的位置如图6所示,若∠3=50°,则∠1+∠2= °.15.如图7所示Rt △ABC 中,∠ACB=90°,AC=4,将斜边AB 绕点A 逆时针旋转90连接B ’C ,则△AB ’C 的面积为 .16.如图8所示,一段抛物线C 1:y=-x(x -3)(0≤x ≤3)与x 轴相交于点O ,A 1;将C 1移得到第二段抛物线C 2,交x 轴于点A 1,A 2;再将C 2向右平移得到第三段抛物线C 3,交x 轴于点A 2,A 3;又将C 3向右平移得到第四段抛物线C 4,交x 轴于点A 3,A 4.若P(11,m)在C 4上,则m= .图8三.解答题(本大题共9个小题,共82分) 17.(本小题8分)定义新运算:对于任意实数a 、b ,都有a ⊕b=a -2b ,例如3⊕2=3-2×2=-1. 若3⊕x 的值小于1,求x 的取值范围,并在图9所示的数轴上表示出来.18.( 本小题8分)关于x ,y 的二元一次方程ax+by=10(ab ≠0)的一个解为x=1y=-2⎧⎨⎩ 求2444()ab b a a a --÷的值.19.(本题8分)袋子中装有3个带号码的球,球号分别是2、3、5,这些球除号码不同外其它均相同, (1)从袋子中随机摸出一球,求恰好摸出3号球的概率;(2)从袋子中随机摸出一球后,再从剩下的球中随机摸出一个球,用树状图列出所有可能的结果,并求两次摸出的球的号码之和为5的概率.图10FA E D BC 如图10,四边形ABCD 中,AD ∥BC ,BA ⊥AD ,BC=DC, BE ⊥CD 于点E. (1)求证:△ABD ≌△EBD;(2)过点E 作EF ∥DA ,交BD 于点F ,连接AF. 求证:四边形AFED 是菱形.21.(本小题10分)某校要求340名学生进行社会调查,每人须完成3-6份报告,调查结束后随机抽查了20名学生每人完成报告的分数,并分为四类A :3分;B:4份;C:5份;D:6份,将各类的人数绘制成扇形图(如图11-1)和条形图(如图11-2),经过确认扇形图是正确的,而条形图尚有一处错误.图11-115%45%30%10%D C BA人数类别图11-23456789102DCBOA回答下列问题:(1)写出条形图中存在错误,并说明理由;(2)写出这20名学生每人完成报告分数的众数、中位数;(3)在求着20名学生每人完成报告份数的平均数时,小静是这样分析的:①小静的分析是从哪一步开始出现错误的?②请你帮助她计算出正确的平均数,并估计这340名学生工完成报告多少份.图12如图12,一热气球在离地面90米高的P 处,观测地面上点A 的俯角为60°.气球以每秒9米的速度沿AB 方向移动,5秒后到达Q 处,此时观测地面上点B 的俯角为45°.(点P,Q,A 在同一铅直线上).(1)若气球从Q 处继续向前移动,方向不变,再经过几秒位于B 点的正上方?(2)求AB 的长(结果保留π)23.(本小题满分9分)如图13,A(1,0),B(4,0),M(5,3).动点P 从点A 出发,以每秒1个单位长的速度向右移动,且经过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒. (1)当t=1时,求l 的解析式;(2)若l 与线段BM 有公共点,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在y 轴上.图14如图14,△ABC 中∠C=90°,BC=3,AC=4.点O 在CB 的延长线上,且OB=4,以O 为圆心,2为半径的半圆交CB 的延长线于点D ,E.点T 在半圆上,连接TB 并延长,交AC 于点P. (1)若PT 与半圆相切,求∠BPC 的度数; (2)当△TOB 的面积最大时,求PC 的长; (3)直接写出点T 到DE 的距离为多少时,恰有AP=3.25.(本小题满分12分)为衡量某种车辆的性能,研究制定了行驶指数P ,P=K+1000,而K 的大小与平均速度v (km/h )和行驶路程s (km )有关(不考虑其他因素),K 由两部分的和组成,一部分与v ²成正比,另一部分与sv 成正比.在实验中得到了表中的数据. (1)用含v 和s 的式子表示P ;(2)当P=500,而v=50时求s 的值;阅读文档须知:安装函数编辑器MathType 参考答案:一.ACADB CDCBA 11.1 12.110° 13.a(a-2b) 14.130° 15.8 16.217.解:由题意得3-2x <1,解得x >1–1–212345618.解:由题意得x -2y=10∴原式=22444a ab b a a -+=2211(2)102544a b -=⨯=19.(1)13(2)1320. (1)证明:∵BC=DC ∴∠EDB=∠BDC ∵AD ∥BC∴∠ADB=∠DBC ∴∠ADB=∠EDB ∵BA ⊥AD ,BE ⊥CD ∴∠BAD=∠BED=90°∵BD=BD ∴△ABD ≌△EBD(2)∵EF ∥DA ,DA ∥BC ∴EF ∥BC ∴∠CBD=∠DEF=∠EDF∴ED=EF 又∵ED=AD ∴AD=EF ∵AD ∥EF ∴四边形AFED 为平行四边形∵ED=AD ∴四边形AFED 是菱形(用四边相等的四边形是菱形也可)21.(1)C 类错误∵由扇形统计图可知B 类人数为20×30%=6(人)∴条形图中B 类人数为7人错误. (2)众数为5份,中位数为5份. (3)①小静从第二步出现错误 ②x -=32+46+59+6320⨯⨯⨯⨯=4.6522.解:(1)分别过点P,B 作PM ⊥AB 于点M ,BN ⊥PQ 于点N ,则PM=BN=90,∵∠BQN=45°∴NQ=NB=90,90÷9=10(秒)即若气球从Q 处继续向前移动,方向不变,再经过10秒位于B 点的正上方 (2)∵PQ=9×5=45,NQ=90∴PN=MB=45+90=135 Rt △PAM 中AM=PMtan30°=9033∴AB=MB -AM=(135-3(米)PAT∴l 的解析式为y=-x+2(2)∵A(1,0),B(4,0)∴AB=3当直线l 经过点B 时t=3当直线l 经过点M 时将M(5,3)代入y=-x+b 得3=-5+b 解得b=8∴y=-x+8当y=0时x=8此时P(8,0)∴AP=8-1=7此时t=7∴3≤t ≤7 (2)t=224. (1)当PT 与半圆相切时,OT ⊥PT,∵OT=2,OB=4∴OT=12OB ∴∠OBT=∠PBC=30°∴∠BPC=60°(2)当△TOB 面积最大时,只需OB 边上的高最大, 即当TO ⊥OB 时,△TOB 的面积最大,∵∠OBT=∠PBC∴tan ∠OBT =tan ∠PBC ∴OT PC OB BC =即2=43PC 解得PC=32 (3)65提示:如图,由△BTF ∽△BPC 得TF:FB=PC:CB=1:3, 设TF=m 则FB=3m ∴FO=3m -4在Rt △OFT中,由勾股定理得 m ²+(3m -4)²=2²解得m=65±25.解:(1)设K=mv ²+nsv 则p=mv ²+nsv+1000,由表中数据得:1000=1600m 160010001600360042001000n m n ++⎧⎨=++⎩解得:11m n =-⎧⎨=⎩ 故p=-v ²+sv+1000(2)当P=500, v=50时 500=-50²+50s+1000解得s=40 (3)当s=180时P=-v ²+180v+1000 ∵a=-1∴当v=-1802-⨯(1)=90时 P 有最大值。
辽宁省抚顺市2013年中考数学试卷一、选择题B•抚顺)如果分式有意义,则x的取值范围是()2.(2013B4.(2013•抚顺)如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()B5.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()6.(2013•抚顺)下列计算正确的是()(﹣a×8.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设.9.(2013•抚顺)在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸B,得出蓝球的个数,进而得出小球总数,即可得出,∴=随机摸出一个球是蓝球的概率是:10.(2013•抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为()B××=)=二、填空题11.(2013•抚顺)人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为 1.56×10﹣7.12.(2013•抚顺)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是乙.解:∵,,13.(2013•抚顺)计算:=3.14.(2013•抚顺)已知a、b为两个连续整数,且a<<b,则a+b=9.<<15.(2013•抚顺)从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.=.故答案为:.16.(2013•抚顺)把直线y=2x﹣1向上平移2个单位,所得直线的解析式是y=2x+1.17.(2013•抚顺)若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是20.AC=BD=18.(2013•抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(﹣1,﹣1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,﹣2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是(2,﹣4).三、解答题19.(2013•抚顺)先化简,再求值:,其中a=﹣1.==,=20.(2013•抚顺)某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这四个班共植树200棵;(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?)丁所占的百分比是:四、解答题21.(2013•抚顺)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)的长是=π22.(2013•抚顺)2013年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮.某体育用品商店预测某种品牌的运动鞋会畅销,就用4800元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双鞋进价多用了20元.(1)求该商店第二次购进这种运动鞋多少双?(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元?+20=,×五、解答题23.(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().ED=9=6+6×=18+6六、解答题24.(2013•抚顺)某服装店以每件40元的价格购进一批衬衫,在试销过程中发现:每月销售量y(件)与销售单价x(x为正整数)(元)之间符合一次函数关系,当销售单价为55元时,月销售量为140件;当销售单价为70元时,月销售量为80件.(1)求y与x的函数关系式;(2)如果每销售一件衬衫需支出各种费用1元,设服装店每月销售该种衬衫获利为w元,求w与x之间的函数关系式,并求出销售单价定为多少元时,商场获利最大,最大利润是多少元?,七、解答题25.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.BCDEDEBF+BP=BF+BP=BP=八、解答题26.(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.,××﹣3+m+3=m=的坐标为(n=)=,=,)==为秒时,以。
2013年大连市中考二模数学试卷一、选择题(共8小题;共40分)1. 下列各数中,最小的数是A. B. C. D.2. 的意义是A. B.C. D.3. 已知两圆的半径分别为,,圆心距为,则这两圆的关系是A. 外切B. 相交C. 内含D. 内切4. 如图几何体的正视图是A. B.C. D.5. 把直线的图象关于轴对称,得到的直线是A. B. C. D.6. 下列事件中属于不可能事件的是A. 个同学中,至少有两名同学出生月份相同B. 天气预报对明天的天气预测不准C. 某班级共有学生人,男学生有人D. 小明的肤色和爸爸相同7. 关于的一元二次方程有实数根,则实数满足A. B.C. 且D. 且8. 如图,将一个高为,底面周长为的圆锥侧面展开得到一个扇形.保持扇形半径不变将其补全成一个圆,这个圆的面积为A. B. C. D.二、填空题(共8小题;共40分)9. 计算:.10. 若分式有意义,则的取值范围是.11. 化简:.12. 校本课上,同学们制作了不同主题的明信片,各个主题明信片个数如下表:主题奇趣动植物中国自然风名胜古迹文化传统名人明星个数个从所有的明信片(每张明信片大小、形状相同)中抽出一张,主题是“奇趣动植物”或“名人明星”的概率是.13. 如图,抛物线的图象与轴交于,两点,则的值为.14. 如图,在菱形中,,分别在,上,且.连接并取的中点,连接,.若,则.15. 初三一班同学体育测试后,老师将全班同学成绩绘制成如图所示的条形统计图.每个等级成绩的人数的众数是.16. 如图,正方形的面积为,是等边三角形,点在正方形内,为对角线上一动点,使最小,则这个最小值为.三、解答题(共10小题;共130分)17. 计算:(1).18. 解不等式组:并求此不等式组时的整数解.19. 已知,如图,在平行四边形中,,是对角线上的两点,且.求证:.20. 某公司想了解一款品牌运动服的销售情况来决定下一步的生产数量.该公司随机统计了某天各个摊位销售这款不同颜色的运动服的销售数量,并绘制成统计表和扇形统计图(如图).颜色红白蓝绿黑五彩销售量件(1)统计的这一天,根据统计图(白色:,红色:),红色运动服销售了件;五彩色运动服销售量约占总销量的(精确到),每种颜色平均销售件.(2)小明和小红恰好在这一天分别在店里购买了这款运动服一件,颜色不同.已知他们购买的是红、黄、蓝、绿四种颜色中的两种.那么他们购买的运动服恰好是红色和蓝色的概率是多少?(画树形图或列表格解题)(3)根据此次调查,在下一批生产的件这款运动服中,应该生产“五彩”颜色运动服多少件?21. 在弹性限度内,弹簧伸长的长度与拉力成正比.如图小明手中拿着由三根相同的弹簧组成的弹簧拉力器.已知拉力器的长度与拉力是一次函数关系,与的部分对应值如下表.单位单位(1)求与之间的函数关系,并直接写出的取值范围.(2)已知小明的最大拉力为.求小明能使单根弹簧伸长的最大长度.22. 某品牌瓶装饮料每箱价格元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了元.问该品牌饮料一箱有多少瓶?23. 如图,为的切线,为切点,过作的垂线,垂足为点,交于点,延长与交于点,与的延长线交于点.(1)求证:为的切线;(2)若,求.24. 已知:把和按如图摆放(点与点重合),点,,在同一条直线上.,,,,.如图,从图的位置出发,以的速度沿向匀速移动,在移动的同时,点从的顶点出发,以的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动,与相交于点,连接,设移动时间为.解答下列问题:(1)当时,点在线段的垂直平分线上.(2)当为何值时,?(3)连接,设四边形的面积为,求与之间的函数关系式,并写出的取值范围.25. 如图,在菱形和菱形中,点,,在同一条直线上,是线段的中点,连接,.若.(1)请直接写出线段与的位置关系及的值.(2)若将图中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变,如图.那么你在()中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.(3)在图中,若,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请直接写出的值(用含的式子表示).26. 如图,抛物线的顶点为,与轴交于点,直线的解析式为.(1)求,的值;(2)过作轴交抛物线于点,直线交轴于点,且,求抛物线的解析式;(3)在()条件下,抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.答案第一部分1. D2. D3. D4. A5. A6. C7. C8. A第二部分9.10.11.12.13.14.15.16.第三部分17. 原式.18. 由不等式得:由不等式得:即不等数组解集为:因为,所以不等式组的整数解为.19. 因为平行四边形中,,,所以.所以在与中,所以,所以.20. (1);;【解析】总销售量(件),红色运动服销售量(件);五彩色运动服销售量约占总销量的百分比;每种颜色平均销售量(件).(2)画树状图:共有种等可能的结果数,其中购买的运动服恰好是红色和蓝色的占种,.一红一蓝(3),应生产“五彩”颜色运动服件.21. (1)设与之间的函数关系式为,由题意,得解得:;(2)令,,拉力器伸长的长度为:,单根弹簧伸长的长度:,答:可以使一根弹簧伸长.22. 设该品牌饮料一箱有瓶,由题意,得解这个方程,得经检验,,都是原方程的根,但不符合题意,舍去.答:该品牌饮料一箱有瓶.23. (1)连接,为的切线,,,,于,,,在和中,,,为的切线.(2)连接,为直径,,由()知,,,,由得,,.设,则,,由,得,,.可设,,则,,,.24. (1)【解析】,,,,,,依题意,得.,,,.当点在线段的垂直平分线上时,,,解得,即当时,点在线段的垂直平分线上;(2),,.过点作,垂足为(如图).在中,,,,..故.解之得.(3)过点作,垂足为(如图),在中,,,.,四边形即.故的取值范围是:.25. (1);【解析】延长交于,,,是线段的中点,,在和中,,,,,,,,,,,,,;(2)()中的结论没有变化;;【解析】延长交于点,连接,(如图所示).是线段的中点,,由题意可知,故,在和中,,,,四边形是菱形,,,,在同一条直线上,,,(菱形),,在和中,,,,.即,,,,,;(3)【解析】延长至,使,连接,,,是线段的中点,,在和中,,,,,,,,又,,,,,,在和中,,,,又,,,,,,,.26. (1)因为直线的解析式为,所以,所以交轴于点,所以,所以,所以.过作轴于,所以,所以,设抛物线的顶点横坐标为,则,所以.所以,代入,所以,所以(舍),,所以,所以.(2)作抛物线的对称轴交轴于点,(如图),因为,所以,由抛物线的对称性,可得为等边三角形.因为轴,所以为等边三角形,所以为中点,因为,,所以.抛物线对称轴为直线,所以,所以,所以,所以,所以.(3)存在.过作于交抛物线于点,此时.因为为等边三角形,所以为的中垂线,所以,在和中,所以.因为,,所以.设代入,,解得,解得.。
2013年辽宁省鞍山市中考数学试卷一.选择题(共8小题,每小题2分,满分16分)1.3﹣1等于()A.3 B.﹣C.﹣3 D.2.一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.63.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°4.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2D.x≤25.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°6.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.2 9.2 9.2 9.2方差(环2)0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个 B.4个 C.3个 D.2个二.填空题(共8小题,每小题2分,满分16分)9.分解因式:m2﹣10m= .10.如图,∠A+∠B+∠C+∠D=度.11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.12.若方程组,则3(x+y)﹣(3x﹣5y)的值是.13.△ABC中,∠C=90°,AB=8,cosA=,则BC的长.14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.15.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是 cm.16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.三.计算题(共2小题,每小题6分,满分12分)17.先化简,再求值:,其中x=.18.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?四.应用题(共2小题,每小题6分,满分12分)19.小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.20.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)五.应用题(共2小题,每小题6分,满分12分)21.如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)22.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.六.应用题(共2小题,每小题6分,满分12分)23.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,AO=,求OD的长度.24.如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.七.应用题(满分10分)25.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?八.应用题(满分10分)26.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.1 2 3 4 5 6 7 8D C C D A C B B9. m(m﹣10)10. 36011. 四12. 2413. 214. 32+1﹣1=915. 8016. 1117. 解答:解:原式=÷(﹣)﹣1=÷﹣1=•﹣1=﹣1.当x=时,原式=﹣1,=﹣1=﹣1.18. 解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.19. 解答:解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.20. 解答:解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.21. 解答:解:如图所示:.22. 解答:证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).23. 解答:解:(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,解得:OD=1.24. 解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.25. 解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(3分)(2)解:GE=BE+GD成立.(4分)理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.(7分)∴GE=DF+GD=BE+GD.(8分)26. 解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a=++≠的顶点为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6B.6C.-16 D.162.如图所示的几何体中,主视图是()A.B.C.D.3.如图,直线,45,20AB CD ABE D∠=∠=︒︒∥,则E∠的度数为()A.20︒B.25︒C.30︒D.35︒4.某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为()A.40.1710⨯ B.51.710⨯ C.41.710⨯ D.31710⨯5.下列计算正确的是()A.22= B.3336+= C.842= D.)323263-=-6.将方程13311x x x+=--去分母,两边同乘()1x -后的式子为()A.()1331x x +=- B.()1313x x+-=- C.133x x-+=- D.()1313x x+-=7.已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.圆心角为90︒,半径为3的扇形弧长为()A.2πB.3πC.32π D.12π9.已知抛物线221y x x =--,则当03x ≤≤时,函数的最大值为()A .2- B.1- C.0D.210.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10︒二、填空题(本题共6小题,每小题3分,共18分)11.93x >-的解集为_______________.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.13.如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD ︒∠==,点F 为BC 中点,则EF的长为_______________.14.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.16.如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:21123926a a a a -⎛⎫+÷+-+⎝⎭.18.某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A 供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B 供应商供应材料的纯度(单位:%)如下:727572757877737576777178797275Ⅲ.A B 、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A7575743.07Ba75bc根据以上信息,回答下列问题:(1)表格中的=a _______________,b =_______________,c =_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?19.如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DE AC AE ==,180ACF AED ∠+∠=︒.求证:AB AD =.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.23.如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF 交AB 于点G .若35,4AD DE ==,求DG 的长.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.26.如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2-,点B 的横坐标为1,抛物线22:C y x bx c =-++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ''交抛物线1C 于点P ,交抛物线2C 于点Q .当点E '为线段PQ 的中点时,求m 的值;③抛物线2C 与边ED A C ''''、分别相交于点M N 、,点M N 、在抛物线2C 的对称轴同侧,当2103MN =时,求点C '的坐标.大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a=++≠的顶点为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6B.6C.-16 D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B.2.如图所示的几何体中,主视图是()A.B.C.D.【答案】B 【解析】【分析】根据主视图是从正面看得到的图形解答即可.【详解】解:从正面看看到的是,故选:B .【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键.3.如图,直线,45,20AB CD ABE D ∠=∠=︒︒∥,则E ∠的度数为()A.20︒B.25︒C.30︒D.35︒【答案】B 【解析】【分析】先根据平行线的性质可得45ABE BCD ∠∠==︒,再根据三角形的外角性质即可得.【详解】解:,45AB CD ABE ∠=︒ ∥,45ABE BCD ∴=∠=∠︒,20D ∠=︒ ,25BCD D E ∠-∠==∴∠︒,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.4.某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为()A.40.1710⨯ B.51.710⨯ C.41.710⨯ D.31710⨯【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.【详解】解:417000 1.710=⨯.故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.5.下列计算正确的是()A.0=B.+=C.= D.)26-=-【答案】D【解析】【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=,故该选项不正确,不符合题意;C.=D.)26-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.6.将方程13311x x x+=--去分母,两边同乘()1x -后的式子为()A.()1331x x +=- B.()1313x x +-=- C.133x x-+=- D.()1313x x +-=【答案】B【解析】【分析】根据解分式方程的去分母的方法即可得.【详解】解:13311x x x+=--,两边同乘()1x -去分母,得()1313x x +-=-,故选:B .【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.7.已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为()A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解析】【分析】利用待定系数法求出U 的值,由此即可得.【详解】解:由题意得:UR I =,∵当4A I =时,10ΩR =,104U∴=,解得40U =,40R I ∴=,则当5A I =时,()Ω4085R ==,故选:B .【点睛】本题考查了反比例函数,熟练掌握待定系数法是解题关键.8.圆心角为90︒,半径为3的扇形弧长为()A.2πB.3πC.32π D.12π【答案】C【解析】【分析】根据弧长公式180n rl π=(弧长为l ,圆心角度数为n ,圆的半径为r ),由此计算即可.【详解】解:该扇形的弧长90331801802n r l πππ⨯===,故选:C .【点睛】本题考查了扇形的弧长计算公式180n r l π=(弧长为l ,圆心角度数为n ,圆的半径为r ),正确记忆弧长公式是解答此题的关键.9.已知抛物线221y xx =--,则当03x ≤≤时,函数的最大值为()A.2- B.1- C.0 D.2【答案】D【解析】【分析】把抛物线221y x x =--化为顶点式,得到对称轴为1x =,当1x =时,函数的最小值为2-,再分别求出0x =和3x =时的函数值,即可得到答案.【详解】解:∵()222112y x x x =--=--,∴对称轴为1x =,当1x =时,函数的最小值为2-,当0x =时,2211y x x =--=-,当3x =时,232312y =-⨯-=,∴当03x ≤≤时,函数的最大值为2,故选:D【点睛】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.10.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10︒【答案】D【解析】【分析】A.随机选取100名学生进行问卷调查,数量100就是样本容量,据此解答;B.由扇形统计图中喜欢篮球的占比解答;C.用总人数乘以40%即可解答;D.先用1减去足球、篮球、乒乓球的占比得到排球的占比,再利用360︒乘以排球的占比即可解答.【详解】解:A.随机选取100名学生进行问卷调查,数量100就是样本容量,故A正确;B.由统计图可知,最喜欢篮球的人数占被调查人数的30%,故B正确;C.最喜欢足球的学生为10040%40⨯=(人),故C正确;D.“排球”对应扇形的圆心角为360(140%30%20%)36010%36︒⨯---=︒⨯=︒,故D错误故选:D.【点睛】本题考查扇形统计图及其相关计算、总体、个体、样本容量、样本、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11.93x>-的解集为_______________.【答案】3x>-【解析】【分析】根据不等式的性质解不等式即可求解.【详解】解:93x>-,解得:3x>-,故答案为:3x>-.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.【答案】1 2【解析】【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为2142P ==,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.13.如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD ︒∠==,点F 为BC 中点,则EF 的长为_______________.【答案】5【解析】【分析】根据题意得出BDC 是等边三角形,进而得出10DC BD ==,根据中位线的性质即可求解.【详解】解:∵在菱形ABCD 中,AC BD 、为菱形的对角线,∴AB AD DC BC ===,AC BD ⊥,∵60DBC ∠=︒,∴BDC 是等边三角形,∵10BD =,∴10DC BD ==,∵E 是BD 的中点,点F 为BC 中点,∴152EF DC ==,故答案为:5.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.14.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.【答案】1+1+【解析】【分析】根据勾股定理求得AB ,根据题意可得BC AB ==,进而即可求解.【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===,∴BC AB ==,∴1OC OB BC =+=,O为原点,OC 为正方向,则C 点的横坐标为1+;故答案为:1+.【点睛】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.【答案】8374x x -=+【解析】【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解.【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,则可列方程为:8374x x -=+故答案为:8374x x -=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.16.如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【答案】4【解析】【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=︒,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =-,证明EFM EAB ∽,则FM ME AB BE =,即2332a a -=+,解得34a =,94DN CD CN =-=,由勾股定理得DF =【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=︒,∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =-,∵FM AB ∥,∴EFM EAB ∽,∴FM ME AB BE =,即2332a a -=+,解得34a =,∴94DN CD CN =-=,由勾股定理得4DF ==,故答案为:4.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:21123926a a a a -⎛⎫+÷+-+⎝⎭.【答案】23a -【解析】【分析】先计算括号内的加法,再计算除法即可.【详解】解:21123926a a a a -⎛⎫+÷ ⎪+-+⎝⎭()()()()()312333323a a a a a a a ⎡⎤--=+÷⎢⎥+-+-+⎢⎥⎣⎦()()()223323a a a a a --=÷+-+()()()232332a a a a a +-=⋅+--23a =-【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.18.某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:727572757877737576777178797275Ⅲ.A B、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息,回答下列问题:(1)表格中的=a_______________,b=_______________,c=_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【解析】【分析】(1)根据平均数、众数、方差的计算公式分别进行解答即可;(2)根据方差的定义,方差越小数据越稳定即可得出答案.【小问1详解】解:B供应商供应材料纯度的平均数为1(72375478277273767179)75 15⨯⨯+⨯+⨯+⨯++++=,故75a=,75出现的次数最多,故众数75b=,方差22222222 1[3(7275)4(7575)2(7875)2(7775)(7375)(7675)(7175)(7975)]6 15c=-+-+-+-+-+-+-+-=故答案为:75,75,6【小问2详解】解:服装店应选择A供应商供应服装.理由如下:由于A、B平均值一样,B的方差比A的大,故A更稳定,所以选A供应商供应服装.【点睛】本题考查了方差、平均数、中位数、众数,熟悉相关的统计量的计算公式和意义是解答此题的关键.19.如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DE AC AE ==,180ACF AED ∠+∠=︒.求证:AB AD =.【答案】证明见解析【解析】【分析】由180ACF AED ∠+∠=︒,180ACF ACB ∠+∠=︒,可得ACB AED ∠=∠,证明()SAS ABC ADE △≌△,进而结论得证.【详解】证明:∵180ACF AED ∠+∠=︒,180ACF ACB ∠+∠=︒,∴ACB AED ∠=∠,∵BC DE =,ACB AED ∠=∠,AC AE =,∴()SAS ABC ADE △≌△,∴AB AD =.【点睛】本题考查了全等三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.【答案】20%【解析】【分析】设20202022-年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ⨯+建立方程,解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x ,由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =-<(不符合题意,舍去),答:20202022-年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)【答案】楼AE 的高度为11m【解析】【分析】延长CD 交AE 于点F ,依题意可得 1.26m EF BC ==,在Rt ACF ,根据sin AF AC ACF =⋅∠,求得AF ,进而根据AE AF EF =+,即可求解.【详解】解:如图所示,延长CD 交AE 于点F ,∵,,AE BE BC BE CD BE ⊥⊥∥,∴ 1.26mEF BC ==在Rt ACF 中,70ACF ∠=︒,10.4m AC =,∵sin AF ACF AC∠=,∴sin 10.4sin 7010.40.949.776mAF AC ACF =⋅∠=⨯︒≈⨯=∴9.776 1.2611m AE AF EF =+=+≈,答:楼AE 的高度为11m .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)1000m(2)315m【解析】【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以2,即可求解(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,求得女生的速度,进而得出解析式为 3.580y x =+,联立求得30s x =,进而即可求解.【小问1详解】解:∵开始时男生跑了50m ,男生的跑步速度为4.5m /s ,从开始匀速跑步到停止跑步共用时100s .∴男生跑步的路程为50 4.5100500+⨯=m ,∴男女跑步的总路程为50021000m ⨯=,故答案为:1000m .【小问2详解】解:男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,设女生从开始匀速跑步到停止跑步的直线解析式为:80y kx =+,依题意,女生匀速跑了50080420-=m ,用了120s ,则速度为420120 3.5÷=m/s ,∴ 3.580y x =+,联立50 4.53.580y xy x =+⎧⎨=+⎩解得:30x =将30x =代入50 4.5y x=+解得:185y =,∴此时男、女同学距离终点的距离为500185315-=m .【点睛】本题考查了一次函数的应用,根据题意求得函数解析式是解题的关键.23.如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF 交AB 于点G .若4AD DE ==,求DG 的长.【答案】(1)90︒;(2).【解析】【分析】(1)根据圆周角定理证明两直线平行,再利用平行线的性质证明角度相等即可;(2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可.【小问1详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵AD 平分CAB ∠,∴12BAD BAC ∠=∠,即2BAC BAD ∠=∠,∵OA OD =,∴BAD ODA ∠=∠,∴2BOD BAD ODA BAD ∠=∠+∠=∠,∴BOD BAC ∠=∠,∴OD AC ,∴90OEB ACB ∠=∠=︒,∴90BED ∠=︒,【小问2详解】如图,连接BD ,设OA OB OD r ===,则4OE r =-,228AC OE r ==-,2AB r =,∵AB 是O 的直径,∴90ADB ∠=︒,在Rt ADB 中,有勾股定理得:222BD AB AD =-由(1)得:90BED ∠=︒,∴90BED BEO ∠=∠=︒,由勾股定理得:222BE OB OE =-,222BE BD DE =-,∴22222222BD AB AD BE DE OB OE DE =-=+=-+,∴()(()22222244r r r -=--+,整理得:22350r r --=,解得:7r =或5r =-(舍去),∴214AB r ==,∴BD ==,∵AF 是O 的切线,∴AF AB ⊥,∵DG AF ,∴DG AB ⊥,∴11··22ABD S AD BD AB DG == ,∴·23521414AD BD DG AB ===【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)4,83(2)2218402331424443t t S t t t ⎧⎛⎫-+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩【解析】【分析】(1)根据函数图象即可求解.(2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB 与DPB 的重叠面积为S ,分别求解即可.【小问1详解】解:当0=t 时,P 点与O 重合,此时83ABO S S == ,当4t =时,0S =,即P 点与B 点重合,∴4OB =,则()4,0B ,故答案为:4,83.【小问2详解】∵A 在y x =上,则45OAB ∠=︒设(),A a a ,∴1184223AOB S OB a a =⨯⨯=⨯⨯= ∴43a =,则44,33⎛⎫⎪⎝⎭A 当403t ≤≤时,如图所示,设DP 交OA 于点E ,∵45OAB ∠=︒,DP OB ⊥,则EP OP t==∴28132S t =-当443t <≤时,如图所示,∵()4,0B ,44,33⎛⎫ ⎪⎝⎭A 设直线AB 的解析式为y kx b =+,∴404433k b k b +=⎧⎪⎨+=⎪⎩解得:212b k =⎧⎪⎨=-⎪⎩,∴直线AB 的解析式为122y x =-+,当0x =时,2y =,则()0,2C ,∴2OC =,∵21tan 42DP OC CBO PD OB ∠====,∵4BP t =-,则122DP t =-,∴12DPB S S DP BP ==⨯ ()()222111144242244t t t t =⨯⨯-=-=-+,综上所述:2218402331424443t t S t t t ⎧⎛⎫-+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩.【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键.25.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.【答案】(1)见解析;(2)3572+;问题2:BC =【解析】【分析】(1)根据等边对等角可得ABC C ∠=∠,根据折叠以及三角形内角和定理,可得BDE A ∠=∠1802C =︒-∠,根据邻补角互补可得180EDC BDE ∠+∠=︒,即可得证;(2)连接AD ,交BE 于点F ,则EF 是ADC △的中位线,勾股定理求得,AF BF ,根据BE BF EF =+即可求解;问题2:连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,根据已知条件可得BM CD ∥,则四边形CGMD 是矩形,勾股定理求得AD ,根据三线合一得出,MD CG ,根据勾股定理求得BC 的长,即可求解.【详解】(1)∵等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到∴ABC C ∠=∠,BDE A ∠=∠1802C =︒-∠,∵180EDC BDE ∠+∠=︒,∴2EDC ACB ∠=∠;(2)如图所示,连接AD ,交BE 于点F ,∵折叠,∴EA ED =,AF FD =,122AE AC ==,AD BE ⊥,∵E 是AC 的中点,∴EA EC =,∴1322EF CD ==,在Rt AEF 中,72AF ==,在Rt ABF 中,572BF ===,∴3572BE BF EF =+=;问题2:如图所示,连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,∵AB BD =,∴AM MD =,12ABM DBM ABD ∠=∠=∠,∵2BDC ABD ∠=∠,∴BDC DBM ∠=∠,∴BM CD ∥,∴CD AD ⊥,又CG BM ⊥,∴四边形CGMD 是矩形,则CD GM =,在Rt ACD △中,1CD =,4=AD ,AD ===,∴152AM MD ==,152CG MD ==在Rt BDM 中,72BM ===,∴75122BG BM GM BM CD =-=-=-=,在Rt BCG 中,BC ===.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质与判定,熟练掌握以上知识是解题的关键.26.如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2-,点B 的横坐标为1,抛物线22:C y x bx c =-++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ''交抛物线1C 于点P ,交抛物线2C 于点Q .当点E '为线段PQ 的中点时,求m 的值;③抛物线2C 与边E D A C ''''、分别相交于点M N 、,点M N 、在抛物线2C 的对称轴同侧,当2103MN =时,求点C '的坐标.【答案】(1)224y x x =--+(2)①()2404n m m m =-+<<;②5172m =;③5959,636C ⎛⎫' ⎪ ⎪⎝⎭或5959,636C ⎛⎫'- ⎪ ⎪⎝⎭【解析】【分析】(1)根据题意得出点()2,4A -,()1,1B ,待定系数法求解析式即可求解;(2)①根据平移的性质得出()2,4C m n '--,根据点C 的对应点C '落在抛物线1C 上,可得()224m n -=-,进而即可求解;②根据题意得出()()222,442,24,P m m m Q m m m --++----+,求得中点坐标,根据题意即可求解;③连接MN ,过点N 作NG E D ''⊥于点G ,勾股定理求得23MG =,设N 点的坐标为()2,24a a a --+,则22,263M a a a ⎛⎫---+ ⎪⎝⎭,将22,263M a a a ⎛⎫---+ ⎪⎝⎭代入224y x x =--+,求得56a =,求得559,636N ⎛⎫ ⎪⎝⎭,进而根据C '落在抛物线1C 上,将5936y =代入21:C y x =,即可求解.【小问1详解】解:依题意,点A 的横坐标为2-,点B 的横坐标为1,代入抛物线21:C y x=∴当2x =-时,()224y =-=,则()2,4A -,当1x =时,1y =,则()1,1B ,将点()2,4A -,()1,1B ,代入抛物线22:C y x bx c =-++,∴()222411b c b c ⎧---+=⎪⎨-++=⎪⎩解得:24b c =-⎧⎨=⎩∴抛物线2C 的解析式为224y x x =--+;【小问2详解】①解:∵AC x ∥轴交抛物线21:C y x =另一点为点C ,当4y =时,2x =±,∴()2,4C ,∵矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上∴()2,4C m n '--,()224m n-=-整理得24n m m=-+∵0,0m n >>∴04m <<∴()2404n m m m =-+<<;②如图所示,。
2013年沈阳市中考数学(满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c的顶点是(-,4ac-b4a2),对称轴是直线x=-.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.(2013沈阳,1,3分)2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为A.1.96×108B. 19.6×108C. 1.96×1010D. 19.6×1010【答案】C2.(2013沈阳,2,3分)右图是一个几何体的三视图,这个几何体的名称是A.圆柱体B.三棱柱C.球体D.圆锥体【答案】A3.(2013沈阳,3,3分)下面的计算一定正确的是A.b3+b3=2b6B.(-3pq)2=-9p2q2C.5y3·3y5=15y8D.b9÷b3=b3【答案】C4.(2013沈阳,4,3分)如果m=7-1,那么m的取值范围是A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【答案】B5.(2013沈阳,5,3分)下列事件中,是不可能事件的是A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【答案】D6.(2013沈阳,6,3分)计算2x-1+31-x的结果是A.1x-1B.11-xC.5x-1D.51-x【答案】B7.(2013沈阳,7,3分)在同一平面直角坐标系中,函数y=x-1与函数y=1x的图象可能是b 2ab 2a主视图左视图俯视图A .B .C .D .【答案】C 8.( 2013沈阳,8,3分)如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD=4,BC=8,BD :DC=5:3,则DE 的长等于A .203 B .154 C .163 D .174【答案】B二、填空题(每小题4分,满分32分.)9. (2013沈阳,9,4分)分解因式:3a 2+6a +3= . 【答案】3(a+1)2 10.( 2013沈阳,10,4分)一组数据2,4,x ,-1的平均数为3,则x 的值是 . 【答案】7 11.( 2013沈阳,11,4分)在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 . 【答案】(3,-2) 12.( 2013沈阳,12,4分)若关于x 的一元二次方程x 2+4x+a=0有两个不相等的实数根,则a 的取值范围是 . 【答案】a <4 13.( 2013沈阳,13,4分)如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=-1时,代数式2ax 3+3bx+4的值是 . 【答案】3 14.( 2013沈阳,14,4分)如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .【答案】13yxO y xOy xOyxOBADCEBAC OD15.(2013沈阳,15,4分)有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212……请你观察它们的构成规律,用你发现的规律写出第8个等式为 . 【答案】82+92+722=732 16.(2013沈阳,16,4分)已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 . 【答案】1,7三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.(2013沈阳,17,8分)计算: (12)-2-6sin30°+(-2)0+|2-8|.【答案】22-6×21+1+22-2=22 18.(2013沈阳,18,8分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B(一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题: (1)本次调查的人数为 人;(2)图①中,a = ,C 等级所占的圆心角的度数为 度; (3)请直接在答题卡中补全条形统计图. 【答案】(1)200; (2) 35,126 (3)19. (2013沈阳,19,10分)如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,,AD 与BE 交于点F ,连接CF.60 - 40 -20 - 80 -204664ABC D O人数(人) 等级C:a %D:32%B:23%A:10%图①图②60 - 40 - 20 - 80 - 204664ABC D O人数(人) 等级图②70(1)求证:BF=2AE; (2)若CD=2,求AD 的长.【答案】(1)证明:∵AD ⊥BC, ∠BAD=45°, ∵∠ABD=∠BAD=45°. ∵AD=BD ,∵AD ⊥BC, BE ⊥AC, ∵∠CAD+∠ACD=90°, ∠CBE +∠ACD=90°, ∵∠CAD=∠CBE.又∵∠CDA=∠BDF=90°, ∵△ADC ≌△BDF. ∵AC=BF.∵AB=BC,BE ⊥AC, ∵AE=EC 即AC=2AE, ∵BF=2AE;(2)解:∵△ADC ≌△BDF ∵DF=CD=2,∵在Rt △CDF 中,CF=2=+22CD DF , ∵BE ⊥AC, AE=EC, ∵AF=FC=2, ∵AD=AF+DF=2+2.四、(每小题10分,共20分)20.(2013沈阳,20,10分)在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,2,2+6.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数; 卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.【答案】(1)31(2)画树状图得:BAFE由树状图可知,共有6种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的实数之差为有理数的结果有两种,因此,两次抽取的卡片上的实数之差为有理数的概率是31=62. 五、(本题10分)21.(2013沈阳,21,10分)身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF 代表建筑物,兵兵位于建筑物上方的树枝点B 处,风筝挂在建筑物上方的树枝点G 处(点G 在FE 的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G 与建筑物顶点D 及风筝线在手中的点A 在同一条直线上,点A 距地面的高度AB=1.4米,风筝线与水平线夹角为37°. (1)求风筝距地面的高度GF ;(2)在建筑物后面有长5米的梯子MN ,梯脚M 在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝? (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)过点A 作AP ⊥GP 于P ,由题意得AP=BF=12,AB=PF=14,∠GAP=37° 在Rt △PAG 中,tan ∠GAP=APGP, ∴GP=AP·tan37°≈12×0.75=9, ∴GF=GP+PF=9+1.4=10.4.答:风筝距地面的高度为10.4米. (2)由题意可知MN=5,MF=3,∴在Rt △MNF 中,NF=4=22MF MN -, ∵10.4-5-1.65=3.75<4开 始3+6+6 3+6 3MFCBA 37°DE NG∴能触到挂在树上的风筝.22.(2013沈阳,22,10分)如图,OC 平分∵MON ,点A 在射线OC 上,以点A 为圆心,半径为2的∵A 与OM 相切于点B ,连接BA 并延长交∵A 于点D ,交ON 于点E. (1)求证:ON 是∵A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)【答案】(1)证明:过点A 作AF ⊥ON 于F. ∵∵A 与OM 相切于点B , ∵AB ⊥OM,∵OC 平分∵MON , ∵AF=AB=2,∵ON 是∵A 的切线;(2) ∵∠MON=60°,AB ⊥OM, ∵∠OEB=30°, ∵AF ⊥ON, ∵∠FAE=60°在Rt △AEF 中,tan ∠FAE=AFFE, ∵EF=AF·tan60°=32,∵S 阴=S △AEF -S 扇形ADF =21AF·EF-36060πAF 2=32-32π 六、(本题12分)23.(2013沈阳,23,12分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的正比例函数关系满足图∵中的图象,每个无人售票窗口售出的车票数y 2(张)与售票时间x (小时)的函数关系满足图∵中的图象.(1)图∵中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为 ,其中自变量x 的取值范围是 ;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图∵中图象的后半段一次函数的表达式.O BAMCDEN【答案】(1)y=60x 2,0≤x ≤23(2)上午9点y 1=80,y 2=60. 设需要开放x 个普通售票窗口. 依题意得80x+60×5≥1450, x ≥1483. ∵x 为整数,∴x 取15.答:至少需要开放15个普通售票窗口.、 (3)设y 1= k 1x ,把(1,80)代入得80= k 1 ∴y 1= 80x.当x=2时,y 1= 160, 上午10点,y 2= y 1=160,由(1)得当x=23时,y 2=135, ∴图②中一次函数过点(23,135)、(2,160)设一次函数表达式为y 2= k 2x+b,23k 2+b=135,2k 2+b=160, 解得:k 2=50,b=60,∴一次函数表达式为y 2= 50x+60. 七、(本题12分)24.(2013沈阳,24,12分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图∵,在∵ABC 中,CD 是AB 边上的中线,那么∵ACD 和∵BCD 是“友好三角形”,并且S ∵ACD =S ∵BCD . 应用:如图∵,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O. (1) 求证:∵AOB 和∵AOE 是“友好三角形”;(2) 连接OD ,若∵AOE 和∵DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在∵ABC 中,∵A=30°,AB=4, 点D 在线段AB 上,连接CD ,∵ACD 和∵BCD 是“友好三角形”,将∵ACD沿CD 所在直线翻折,得到∵A′CD ,若∵A′CD 与∵ABC 重合部分的面积等于∵ABC 面积的41,请直接写出∵ABC的面积.80160 -240 -y 1(张) x (小时)O 1 2 3 60 120 -180 -y 2(张) x (小时)O1 23240 - 图①图②【答案】(1)证明:∵ 四边形ABCD 为矩形, ∵AD ∥BC,∵∵EAO=∵BFO,又∵∵AOE=∵FOB,AE=BF , ∵∵AOE ≌∵FOB , ∵EO=BO.∵∵AOB 和∵AOE 是“友好三角形”.(2)∵∵AOE 和∵DOE 是“友好三角形”, ∵S ∵AOE =S ∵DOE ,AE=ED=21AD=3. ∵∵AOB 和∵AOE 是“友好三角形” ∵S ∵AOB =S ∵AOE∵∵AOE ≌∵FOB , ∵S ∵AOE =S ∵FOB , ∵S ∵AOD =S ∵ABF ,∵S 四边形CDOF =S 矩形ABCD -2S ∵ABF =4×6-2×21×4×3=12. 探究:2或32. 八、(本题14分)25.(2013沈阳,25,14分)如图,在平面直角坐标系中,抛物线y=c bx x ++5282经过点A (23,0)和点B (1,22),与x 轴的另一个交点C.(1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∵BAD=∵DAC ,求点D 的坐标; (3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE. ①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 上的一个动点,且点M 与点B 不重合,当∵BMF=31∵MFO 时,请直接写出线段BM 的长.CA DB A BCF OE D图①图②【答案】(1)将A (23,0)、B (1,22)代入y=c bx x ++5282得,0=+23+49×528c b ,22=++528c b ,得b=-,28c=5242. ∵y=2528x -28x+5242. (2)当∵BAD=∵DAC 时,BD ∥x 轴. ∵B (1,22),∵当y=22时,22=2528x -28x+5242, 解得:x 1=1,x 2=4 ∵D(4, 22).(3)①四边形OAEB 是平行四边形. 理由如下:抛物线的对称轴是x=25, ∵BE=25-1=23, ∵B (23,0),∵OA=BE=23,又∵BE ∥OA∵四边形OAEB 是平行四边形.∵21或25. yxO A C BF。
2023年辽宁省大连市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −6的绝对值是( )A. 6B. 16C. −16D. −62. 如图,几何体的主视图是( )A. B.C. D.3. 2023年5月10日“大连1号——连理卫星”搭乘天舟六号货运飞船飞向太空,它的质量为17000g .数17000用科学记数法表示为( )A. 17×103B. 0.17×105C. 1.7×104D. 1.7×1054.如图,AB //CD ,∠A =45°,∠C =20°,则∠E 的度数为( )A. 20°B. 25°C. 35°D. 45°5. 下列计算正确的是( )A. ( 2)0= 2B. 327=9C. 8=4 2D. 3( 3− 2)=3− 66. 解方程1x−1−2=3x 1−x 去分母,两边同乘(x−1)后的式子为( )A. 1−2=−3xB. 1−2(x−1)=−3xC. 1−2(1−x )=−3xD. 1−2(x−1)=3x7. 在半径为3的圆中,90°的圆心角所对的弧长是( )A. 92πB. 9πC. 32πD. 14π8. 某种蓄电池的电压U (单位:V )为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系.当R =5时,I =8,则当R =10时,I 的值是( )A. 4B. 5C. 10D. 09. 已知二次函数y =x 2−2x−1,当0≤x ≤3时,函数的最大值为( )A. −2B. −1C. 0D. 210. 2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是( )A. 最喜欢看“文物展品”的人数最多B. 最喜欢看“文创产品”的人数占被调查人数的14.3%C. 最喜欢看“布展设计”的人数超过500人D. 统计图中“特效体验及其他”对应的圆心角是23.76°二、填空题(本大题共6小题,共18.0分)11. 不等式−3x >9的解集是______ .12. 一个不透明的口袋中有2个完全相同的小球,分别标号为1,2.随机摸出一个小球记录标号后放回,再随机摸出一个小球记录标号,两次摸出小球标号的和等于3的概率是______ .13.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,∠ADC=60°,AC =10,E 是AD 的中点,则OE 的长是______ .14. 如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是______ .15. 我国古代著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.”其大意是:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、鸡价各是多少.”设共有x人合伙买鸡,根据题意,可列方程为______ .16. 如图,正方形ABCD中,AB=3,点E在BC的延长线上,且CE=2.连接AE,∠DCE的平分线与AE相交于点F,连接DF,则DF的长为______ .三、解答题(本大题共10小题,共102.0分。
A B C D2013年初中毕业生毕业升学考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)1.5-()A.5-B.5±C.51D.52.据测算,我国每天因土地沙漠化造成的经济损失约为5.1亿元,一年的经济损失约为5475000000元,用科学记数法表示这个数为()A.1110475.5⨯元B.1010475.5⨯元C.11105475.0⨯元D.8105475⨯元3.如图,下列水平放置的几何体中,主视图是三角形的是()4.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D5.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元),55,50,25,30,50,20,50这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元6.不等式组⎩⎨⎧+>-+xxx2125)5(2的解集在数轴上表示正确的是()7.炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.25060-=xxB.xx50260=-C.25060+=xxD.xx50260=+8.如图1,在矩形ABCD中,动点E从点B出发,沿B A DC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当7=x时,点E应运动到()≥6B C DA第13题图第16题图A .点C 处B .点D 处C .点B 处D .点A 处二、填空题(每小题3分,共24分)9.函数5-=x y 中,自变量x 的取值范围是 . 10.=-+-- 60cos 2)21()2013(10π .11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为56.02=甲s ,45.02=乙s ,61.02=丙s ,则三人中射击成绩最稳定的是 . 12.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D =65,则∠AEC = . 13.二次函数c bx x y ++-=2的图象如图所示,则一次函数c bx y +=的图象不经过第 象限.2cm . 14.一个圆锥形零件,高为8cm 15.已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = .16.按如图方式作正方形和等腰直角三角形.若第一个正方形的边 长AB =1,第一个正方形与第一个等腰直角三角形的面积和为1S , 第二个正方形与第二个等腰直角三角形的面积和为2S ,……,则第n 个正方形与第n 个等腰直角三角形的面积和n S = .三、解答题(17、18、19小题,每小题8分,共24分) 17.先化简,再求值:1221315(22+-+÷---+x x x x x ,其中3=x .18.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫做格点).第15题图 第12题图 D A CB F E(1)画出△ABC 向下平移3个单位后的△111C B A ;(2)画出△ABC 绕点O 顺时针旋转90后的△222C B A ,并求出点A 旋转到2A 所经过的路线长.(结果保留π)19.如图,△ABC 中,AC AB =,AD 是△ABC 一个外角的平分线,且∠BAC =∠ACD . (1)求证:△ABC ≌△CDA ;(2)若∠ACB = 60,求证:四边形ABCD 是菱形.四、解答题(20小题10分,21小题10分,共20分) 20.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选. 同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). 请根据图中提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中, “公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?0其他他家车交车行 行车282420161284第20题图 第19题图DACB F E第23题图21.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率. (2)你认为这个游戏公平吗?请说明理由.五、解答题(22小题8分,23小题10分,共18分) 22.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为45.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度为21(即21tan =∠PCD ). (1)求该建筑物的高度(即AB 的长).(2)求此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)23.如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直.D (1)求证:AC 平分BAD ∠;(2)若10,1==AC CD ,求⊙O 的半径长.第22题图六、解答题(本题满分12分) 24..某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y =802+-x .设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?25.如图1,ABC △为等腰直角三角形,90=∠ACB ,F 是AC 边上的一个动点(点F 与A 、C 不重合),以CF 为一边在等腰直角三角形外作正方形,CDEF 连接BF 、AD .(1)①猜想图1中线段BF 、AD 的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形,CDEF 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形. 图2中BF 交AC 于点H ,交AD 于点O ,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC 改为直角三角形ABC ,90=∠ACB ,正方形CDEF 改为矩形CDEF ,如图4,且4=AC ,3=BC ,=CD 34,1=CF ,BF 交AC 于点H ,交AD 于点O ,连接BD 、AF ,求22AF BD +的值.评卷人 七、解答题(本题满分14分)图1图2图3F图4ABDE F HO C26.如图,抛物线与x 轴交于A ()0,1 、)03(, B 两点,与y 轴交于点C (),3,0设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标. (2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以C A P 、、为顶点的三角形与△BCD 相似? 若存在,请直接写出点P八、解答题(本题满分14分)2013年初中毕业生毕业升学考试数学试卷答案说明:1.此答案仅供参考,阅卷之前请做答案。
358y y=31536÷=,故本选项错误.故选b b154BD DC AD =∠都在O上,ABC22AD CD+=故答案为:1,7.(3)见下图(3)补全统计图如图所示:19.【答案】(1)证明:∵AD BC ⊥,45BAD ∠=︒,∴ABD △是等腰直角三角形,∴AD BD =,∵BE AC ⊥,AD BC ⊥,∴90CAD ACD ∠+∠=︒,90CBE ACD ∠+∠=︒,∴CAD CBE ∠=∠,在AD C △和BDF △中,90CAD CBE AD BDADC BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴()ADC BDF ASA △≌△,∴BF AC =,∵AB BC =,BE AC ⊥,∴2AC AF =,∴2BF AE =.20.【答案】(1)1 3(2)见下图(2)画树状图得:21.【答案】(1)过A 作AP GF ⊥于点P .则12AP BF ==, 1.4AB PF ==,37GAP ∠=︒,在直角PAG △tan GP PAG AP ∠=tan37120.759GP AP ︒=≈⨯=9 1.410.4GF =+≈∵10.45 1.65 3.754--=<,∴能触到挂在树上的风筝.22.【答案】(1)证明:过点A 作AF ON ⊥于点F .∵A 与OM 相切与点B ,∴AB OM ⊥,∵OC 平分MON ∠,∴2AF AB ==,∴ON 是A 的切线.tan602AF ︒=6023603AF EF -是A 的切线,由,即可求得答案.六、23.【答案】(1)260y x =,302x ⎛⎫≤≤ ⎪⎝⎭ (2)15个窗口(3)5060y x =+24.【答案】(1)证明:∵四边形ABCD 是矩形,∴AD BC ∥,∵AE BF =,∴四边形ABFE 是平行四边形,∴OE OB =,∴AOE △和AOB △是友好三角形.探究:分为两种情况:①如图1②如图2,【提示】利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE OB=,即可证得AOE△和AOB△是友好三角形,△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得ABE△、ABF△的面积.根据2CDOF ABCD ABFS S S=-四边形矩形△探究:画出符合条件的两种情况:①求出四边形A DCB'是平行四边形,求出BC和A D'推出90ACB∠=︒,根据三角形面积公式求出即可;②求出高CQ,求出A DC'△的面积,即可求出ABC△的面积.【考点】四边形综合题八、25.【答案】(1)将32A B⎛⎫⎪⎝⎭,、代入抛物线解析式2y bx c=++,得:9342b cb c++=++=,解得:bc⎧=-⎪⎨=⎪⎩2y x∴=-.(2)当BDA DAC∠=∠时,BD x∥轴.(122)B,,当y=255x=-+1x=或4x=,(4D∴.(3)①四边形OAEB是平行四边形.抛物线的对称轴是52x=,53122BE∴=-=.32A⎛⎫⎪⎝⎭,,32OA BE∴==.又BE OA∥,∴四边形OAEB是平行四边形.②(00)(1O B,,,F为OB的中点,12F⎛∴⎝.过点F作FN⊥直线BD于点N,则FN==11122BN=-=.在Rt BNF△中,由勾股定理得:32BF=.13BMF MFO MFO FBM BMF∠=∠∠=∠+∠,,2FBM BMF∴∠=∠.(Ⅰ)当点M位于点B右侧时.11 / 11在直线BD 上点B 左侧取一点G ,使32BG BF ==,连接FG ,则1GN BG BN =-=, 在Rt FNG △中,由勾股定理得:FG ==BG BF BGF BFG =∴∠=∠,.又2FBM BGF BFG BMF ∠=∠+∠=∠,BFG BMF MGF MGF ∴∠=∠∠=∠,又,GFB GMF ∴△∽△,GM GF GF GB ∴=3232=,12BM ∴=. (Ⅱ)当点M 位于点B 左侧时.设BD 与y 轴交于点K ,连接FK ,则FK 为Rt KOB △斜边上的中线,1322KF OB FB ∴===,2FKB FBM BMF ∴∠=∠=∠,又FKB BM F M FK ∠=∠+∠, BMF MFK ∴∠=∠,32MK KF ∴==,35122BM MK BK ∴=+=+=. 综上所述,线段BM 的长为12或52.【提示】(1)利用待定系数法求出抛物线的函数表达式.(2)由BDA DAC ∠=∠,可知BD x ∥轴,点B 与点D 纵坐标相同,解一元二次方程求出点D 的坐标.(3)①由BE 与OA 平行且相等,可判定四边形OAEB 为平行四边形.②点M 在点B 的左右两侧均有可能,需要分类讨论.综合利用相似三角形的性质、等腰三角形的性质和勾股定理,求出线段BM 的长度.【考点】二次函数综合题。
辽宁省大连市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
2013年辽宁大连沙河口区初三一模数学试卷一、选择题(共8小题;共40分)1. −2的绝对值是 A. −2B. −12C. 12D. 22. 如图,在平面直角坐标系中,坐标是0,−3的点是 A. 点AB. 点BC. 点CD. 点D3. 在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是 A. 测量对角线是否相互平分B. 测量两组对边是否分别相等C. 测量其中三个角是否都为直角D. 测量对角线是否相等4. 下列一元二次方程中,有两个相等的实数根的是 A. x2+2x−1=0B. x2−2x+1=0C. x2+2x+4=0D. x2−2x−4=05. 如图是由5个大小相同的正方体组成的几何体,它的俯视图是 A. B.C. D.6. 下列各式中,一定成立的是 A. a+b2=a2+b2B. 2a2+a=3a3C. 2a−1=12aD. a3⋅a2=a57. 小华用了x元买学习用品,若全买钢笔刚好买3枝,若全买笔记本刚好买4本.已知一个笔记本比一枝钢笔便宜2元,下列方程中正确的是 A. x3=x4+2 B. x4=x3+2 C. x4=x+23D. x+24=x38. 二次函数 y =x 2+1 的图象过 A ,B 两点,若 A ,B 两点坐标分别为 a ,294 , b ,294 ,则 AB 的长度是 A. 254B.292C. 5D. 292二、填空题(共8小题;共40分)9. 如图,在 △ABC 中,∠C =90∘,若 ∠B 的外角为 145∘,则 ∠A 的度数为 度.10. 计算 −38+ −258 的值为 . 11. 不等式 2x −2>3x −4 的解集为 .12. 甲、乙、丙、丁四人进行射击测试,每人 10 次射击的平均成绩恰好都是 9.4 环,方差分别是s 甲2=0.90,s 乙2=1.22,s 丙2=0.43,s 丁2=1.68,在本次射击测试中,成绩最稳定的是 (填甲、乙、丙、丁).13. Rt △ABC 中,∠C =90∘,如果 a =3,b =4,那么 cos B 的值为 .14. 在一个不透明的袋中装有 20 个除颜色外都相同的红球和黄球,同学们通过大数次实验得知摸到红球的概率是 25,则袋中黄球有 个.15. 如图,在 △ABC 中,∠B =60∘,∠C =70∘,若 AC 与以 AB 为直径的 ⊙O 相交于点 D ,则∠BOD 的度数是 度.16. 如图,直径 AB 为 12 的半圆,绕 A 点逆时针旋转 60∘,此时点 B 到了点 Bʹ,则图中阴影部分的面积是 .三、解答题(共10小题;共130分)17. 计算:3+13−1+12−13−1.18. 解方程:32−13x−1=56x−2.19. 如图,在平行四边形ABCD中,点E,F在对角线BD上,且BE=DF,连接AE,CF.求证:AE=CF.20. 某校9年1班班主任老师为了对班级学生使用零花钱进行教育指导,对全班50名学生每人一周的零花钱数额进行了调查,并绘制了如下的统计图.请根据图中的信息解决下列问题:(1)求a的值;(2)求这50名学生一周的零花钱数额的平均数、中位数和众数;(3)为进一步了解学生如何使用零花钱,老师准备从甲、乙、丙、丁4位班委中选出2位进行座谈.用列举法求甲和乙被同时选中的概率.21. 如图,一次函数y=k1x+b的图象交y轴的正半轴于点A,与反比例函数y=k2x图象在第二象限的分支交于点B−2,3,BC⊥x轴于点C,四边形OABC面积为4.(1)求这两个函数的解析式;(2)点D m,n是反比例函数图象上一点,直接写出当m>−2时n的取值范围.22. 在校运动会男子400 m比赛中,甲乙两名运动员同时起跑.刚跑出80 m,甲不慎摔倒,他迅速地爬起来并按原速度再次投入比赛,最终取得了优异的成绩.如图分别表示甲、乙两名运动员所跑的路程y m与比赛时间x s之间的关系(假设他们跑步时都是匀速的).根据图象解答下列问题:(1)图中线段OA表示的是(填“甲”或填“乙”)所跑的路程与比赛时间之间的关系;(2)求甲跑步的速度;(3)甲再次投入比赛后,在距离终点多远处追上乙?23. 如图,AB为⊙O的直径,点C是⊙O上一点,AD平分∠CAB交⊙O于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若AC=3,DE=2,求AD的长.24. 如图,Rt△ABC中,∠C=90∘,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点Aʹ.(1)当CM与AB垂直时,求点M运动的时间;(2)当点Aʹ落在△ABC的一边上时,求点M运动的时间.25. 如图1,矩形ABCD中,BC=mCD(m是常数,m>0).连接BD,BE平分∠DBC交DC于点E,过点D作DG⊥BE,交BE的延长线于点G,交BC的延长线于点F.连接CG.(1)如图2,当m=1时,①判断DF,BE的数量关系是;②若H是BE的中点,判断△GCH的形状并说明理由;(2)求tan∠CGB的值(用含m的代数式表示).26. 已知抛物线y=ax2+bx+c经过点A−6,0,B2,0和C0,3,点D是该抛物线的顶点.AC,OD相交于点M..(1)求点D的坐标;(2)在x轴下方的平面内是否存在点N,使△DBN与△ADM全等?若存在,请求出该点的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上求点P的坐标,使∠DOP=45∘(直接写出结果).答案第一部分1. D2. D3. C4. B5. C6. D7. A8. C第二部分9. 5510. −311. x<212. 丙13. 3514. 1215. 10016. 24π第三部分17. 原式=32−1+23−3=23−1.18. 设3x−1=y则原方程可化为:3y−2=5,解得y=7 3 ,所以有3x−1=7 ,解得x=10 9 ,将x=109代入最简公分母进行检验,6x−2≠0,所以x=109是原分式的解.19. 四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,AB=CD,∠ABE=∠CDF, BE=DF,∴△ABE≌△CDF SAS,∴AE=CF.20. (1)共有50名学生,则a=50−15−20−5=10(人).(2)这50名学生一周的零花钱数额的平均数:10×5+15×10+20×15+5×20÷50=12(元),∵共有50名学生,把这些数据从小到大排列起来,处于中间位置的数是第25个数和26个数的平均数,∴这组数据的中位数是10+15÷2=12.5(元);本周内零花钱是15元的人有20人,出现次数最多,则众数是15.(3)根据题意画树状图:共有12种情况,甲和乙被同时选中的情况有2种,则甲和乙被同时选中的概率是212=16.21. (1)把B的坐标−2,3代入反比例函数的解析式y=k2x 得:k2=−6,即反比例函数的解析式是:y=−6x.∵B−2,3,BC⊥x轴于C,∴C−2,0,OC=2,BC=3,∵四边形OABC面积为4,∴12×OA+3×2=4,OA=1,即A的坐标是0,1,把A,B的坐标代入y=k1x+b得:1=b,3=−2k+b,解得:k=−1,b=1,即一次函数的解析式是y=−x+1.(2)把x=−2代入y=−6x得:y=3,∵反比例函数y=−6x中k=−6<0,∴y随x的增大而增大,∴当0>m>−2时n的取值范围是n>3,当m>0时,n<0.22. (1)甲【解析】由函数图象得线段OA表示的是甲跑的路程与时间之间的关系.(2)由函数图象,得80÷10=8米/秒.答:甲跑步的速度为8米/秒.(3)由图象及甲的速度可以求出甲不摔倒跑完全程的时间为:400÷8=50秒,∴甲摔倒耽误的时间为:60−50=10秒,∴B20,80.设直线BC的解析式为:y1=k1x+b1,设直线CD的解析式为y2=k2x,由图象,得80=20k1+b1,400=60k1+b1,400=65k2,解得:k1=8,b1=−80,k2=8013,∴直线BC的解析式为:y1=8x−80,直线OD的解析式为:y2=8013x,当y1=y2时,8x−80=8013x,解得:x=1303.∴相遇时离终点的距离为:400−8013×1303=4003米.答:甲再次投入比赛后,在距离终点4003米处追上乙.23. (1)连接OD,∵AD为∠EAB的平分线,∴∠EAD=∠BAD,∵OA=OD,∴∠BAD=∠ODA,∴∠EAD=∠ODA,∴OD∥AE,∵AE⊥ED,∴OD⊥DE,则DE为圆O的切线.(2)∵DE为圆的切线,AE为圆的割线,∴DE2=EC⋅EA=EC⋅EC+AC,∵AC=3,DE=2,∴4=EC EC+3,即EC2+3EC−4=0,即EC−1EC+4=0,解得:EC=1,则AE=AC+CE=3+1=4,在Rt△AED中,AE=4,DE=2,根据勾股定理得:AD=25.24. (1)∵Rt△ABC中,∠C=90∘,CM⊥AB,∴∠A=∠A,∠AMC=∠ACB=90∘,∴△ACM∽△ABC,∴ACAB =AMAC,∵AC=3,BC=4,∴AB= AC2+BC2=5,∴AM=AC2AB =95,∴点M运动的时间为:95.(2)①如图1,当点Aʹ落在AB上时,此时CM⊥AB,则点M运动的时间为:95;②如图2,当点Aʹ落到BC上时,CM是∠ACB平分线,过点M作ME⊥BC于点E,作MF⊥AC于点F,∴ME=MF,∵S△ABC=S△ACM+S△BCM,∴12AC⋅BC=12AC⋅MF+12BC⋅ME,∴12×3×4=12×3×MF+12×4×MF,解得:MF=127,∵∠C=90∘,∴MF∥BC,∴△AMF∽△ABC,∴MFBC =AMAB,即1274=AM5,解得:AM=157,综上可得:当点Aʹ落在△ABC的一边上时,点M运动的时间为:95或157.25. (1)①DF=BE;②△GCH的形状是等腰直角三角形,理由是:因为BE⊥DG,所以∠DGB=∠FGB=90∘,因为BE平分∠DBC,所以∠DBG=∠FBG,因为在△DBG和△FBG中,∠DBG=∠FBG,BG=BG,∠DGB=∠FGB.所以△DBG≌△FBG ASA,所以DG=FG,因为∠DCF=90∘,DF,所以CG=DG=GF=12所以∠FDC=∠ECG,因为H为BE中点,∠BCE=90∘,BE,所以CH=BH=HE=12所以∠HCB=∠EBC,因为∠FDC=∠EBC,BE=DF,所以CG=CH,∠ECG=∠BCH,因为∠DCB=90∘=∠ECH,∠BCH=∠ECH+∠ECG,所以∠HCG=90∘,即△HCG是等腰直角三角形.【解析】理由是:当m=1时,矩形ABCD是正方形,则∠DCF=∠DCB=90∘,因为BE⊥DG,所以∠DGE=90∘,所以∠FDC+∠DEG=90∘,∠CBE+∠BEC=90∘,因为∠DEG=∠BEC,所以∠FDC=∠EBC,因为在△FDC和△EBC中,∠FDC=∠EBC,DC=BC,∠DCF=∠BCE,所以△FDC≌△EBC ASA,所以DF=BE.(2)因为∠CGB=180∘−∠GCB−∠GBC=180∘−∠GCD−∠=90∘−∠EBC=90∘−2∠EBC,因为BE平分∠DBC,所以∠DBC=2∠EBC,所以∠CGB=90∘−∠DBC=∠CDB,所以tan∠CGB=tan∠CDB=BCCD =mCDCD=m.26. (1)∵抛物线y=ax2+bx+c经过点A−6,0,B2,0和C0,3,∴36a−6b+c=0,4a+2b+c=0,c=3.解得a=−14,b=−1,c=3.∴抛物线解析式为y=−14x2−x+3,∵y=−14x+22+4,∴顶点D的坐标为−2,4.(2)设对称轴与x轴相交于点E,∵A−6,0,B2,0,C0,3,D−2,4.∴OA=6,OC=3,OE=2,DE=4,∵OAOC =DEOE=2,∠AOC=∠DEO=90∘,∴△AOC∽△DEO,∴∠OAC=∠EDO,又∵∠DOE=∠AOM,∴∠AMO=∠DEO=90∘,在Rt△AOC中,AC=2+OC2=62+32=35,∵cos∠OAC=OAAC =AMOA,∴35=AM6,解得AM=1255,在Rt△ADE中,AD=2+DE2=42+42=42,在Rt△ADM中,DM=2−AM2=422−12552=455,∵∠DAM+∠ADM=180∘−90∘=90∘,∠BDO+∠ADM=90∘,∴∠DAM=∠BDO,∴点N在DO的延长线上,∵△DBN≌△ADM SAS.∴BN=DM=455,过点N作NF⊥x轴于F,∵∠ODE+∠DOE=90∘,∠OBN+∠BON=90∘,∴∠ODE=∠OBN,在Rt△ODE中,OD= DE2+OE2=42+22=25,∴NF=BN⋅sin∠OBN=455×25=45.BF=BN⋅cos∠OBN=455×25=85.∴OF=OB−BF=2−85=25,∴点N的坐标为25,−45.【解析】设对称轴与x轴相交于点E,∵A−6,0,B2,0,C0,3,D−2,4,O0,0,∴K OD=4−0−2−0=−2,K AC=0−3−6−0=12,∴K OD×K AC=−1,∴OD⊥AC,K AD=4−0−2+6=1,K BD=4−0−2−2=−1,∴K AD×K BD=−1,∴AD⊥BD,∴∠BDO+∠ADM=∠DAC+∠ADM=90∘,∴∠DAC=∠BDO,∵D为线段AB垂直平分线上一点,∴AD=BD,∴欲使△DBN≌△ADM,只需过点B作DO垂线交DO延长线于N,∵∠BND=∠AMD,∠DAC=∠BDO, AD=BD,∴△DBN≌△ADM AAS,∵BN⊥DN,∴K BN×K DN=−1,∵K DN=−2,∴K BN=12,∵B2,0,∴l BN:y=12x−1,∵l DN:y=−2x,∴l BN与l DN的交点N25,−45.(3) −2,23【解析】方法一:∵DE=4,BE=2−−2=4,∴△BDE是等腰直角三角形,∴∠ABD=45∘,∵∠DOE=∠BDO+∠ABD,∠DOE=∠DOP+∠EOP,∠ABD=∠DOP=45∘,∴∠EOP=∠BDO,∴PE=OE⋅tan∠EOP=2×455125=23.∴点P的坐标为 −2,23.方法二:过点P作DO的垂线,垂足为H,∵D−2,4,∴l OD:y=−2x,∴设H a,−2a,O0,0,∵∠DOP=45∘,∴△PHO为等腰直角三角形,∴点P可视为点O绕点H顺时针旋转90∘而成,将H点平移至原点,Hʹ0,0,则Oʹ−a,2a,将Oʹ点绕原点顺时针旋转90∘,则Pʹ2a,a,将Hʹ点平移至H点,则Pʹ平移后即为P3a,−a,∵点P在对称轴上,∴P x=−2,3a=−2,a=−23,∴P −2,23.。
2013年辽宁省锦州市中考真题数学一、选择题1.(3分)-3的倒数是( )A.B. -3C. 3D.解析:∵-3×(-)=1,∴-3的倒数是-.答案:A.2.(3分)下列运算正确的是( )A. (a+b)2=a2+b2B. x3+x3=x6C. (a3)2=a5D. (2x2)(-3x3)=-6x5解析:A、(a+b)2=a2+2ab+b2,本选项错误;B、x3+x3=2x3,本选项错误;C、(a3)2=x6,本选项错误;D、(2x2)(-3x3)=-6x5,本选项正确,答案:D3.(3分)下列几何体中,主视图和左视图不同的是( )A.圆柱B.正方体C.正三棱柱D.球解析:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.答案:C.4.(3分)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是( )A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4解析:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.答案:B.5.(3分)不等式组的解集在数轴上表示正确的是( )A.B.C.D.解析:,由①得:x<1;由②得:x≤4,则不等式组的解集为x<1,表示在数轴上,如图所示答案:C6.(3分)如图,直线y=mx与双曲线y=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为( )A. -2B. 2C. 4D. -4解析:∵直线y=mx与双曲线y=交于A,B两点,∴点A与点B关于原点中心对称,∴S△OAM=S△OBM,而S△ABM=2,∴S△OAM=1,∴|k|=1,∵反比例函数图象在第二、四象限,∴k<0,∴k=-2.答案:A.7.(3分)有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有( )A. 1个B. 2个C. 3个D. 4个解析:(1)三角形的内切圆的圆心是三个内角平分线的交点,有且只有一个交点,所以任意一个三角形一定有一个内切圆,并且只有一个内切圆,则正确;(2)根据题意得:(n-2)·180=360,解得n=4.则四边形的内角和与外角和相等正确;(3)顺次连接四边形各边中点所得的四边形一定是矩形,故不正确;(4)一组对边平行且一组对角相等的四边形是平行四边形,正确;答案:C.8.(3分)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是( )A.B. =C.D.解析:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有=,答案:B.二、填空题9.(3分)分解因式x3-xy2的结果是.解析:x3-xy2,=x(x2-y2),=x(x+y)(x-y).答案:x(x+y)(x-y).10.(3分)(2014·攀枝花)函数中自变量x的取值范围是.解析:依题意,得x-2≥0,解得:x≥2,答案:x≥2.11.(3分)据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为.解析:将154000用科学记数法表示为1.54×105.答案:1.54×105.12.(3分)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选参加全运会.解析:∵S2甲=1.22,S2乙=1.68,S2丙=0.44,∴S2丙最小,∴则应该选丙参加全运会.答案:丙.13.(3分)计算:|1-|+-(3.14-π)0-(-)-1= .解析:原式=-1+2-1-=-1+2-1+2=3.答案:314.(3分)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是.解析:正三角形,正六边形、平行四边形和圆中,是中心对称图形的有圆、平行四边形、正六边形3个,所以从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为:.答案:.15.(3分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE= .解析:①若∠BAC为锐角,如答图1所示:∵AB的垂直平分线是DE,∴AE=BE,ED⊥AB,AD=AB,∵AE=5,tan∠AED=,∴sin∠AED=,∴AD=AE·sin∠AED=3,∴AB=6,∴BE+CE=AE+CE=AC=AB=6;②若∠BAC为钝角,如答图2所示:同理可求得:BE+CE=16.答案:6或16.16.(3分)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n-1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n-1B n A n=60°,菱形A n-1B n A n C n的周长为.解析:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:()2=,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,同理可求得△A1B2A2的边长为2,…依此类推,等边△A n-1B n A n的边长为n,故菱形A n-1B n A n C n的周长为4n.答案:4n.三、答案题17.(8分)先将(1-)÷化简,然后请自选一个你喜欢的x值代入求值.解析:原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x=2代入计算即可得到结果.答案:原式=·=x+2,当x=2时,原式=2+2=4.18.(8分)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.解析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理列式求出A1C1的长,然后利用弧长公式列式计算即可得解.答案:(1)Rt△A1B1C1如图所示,A1(-4,0);(2)Rt△A2B2C2如图所示,根据勾股定理,A1C1==,所以,点C1所经过的路径长==π.19.(10分)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息答案下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.解析:(1)用2013年比2012年多的人数除以2012年的人数,计算即可求出2013年的增长率;(2)设2011年的毕业生人数约是x万人,根据2011年的增长率是4.6%列式计算即可得解;(3)根据计算补全统计图即可.答案:(1)×100%≈2.8%,故2013年全国普通高校毕业生数年增长率约是2.8%;(2)设2011年的毕业生人数约是x万人,根据题意得,≈4.6%,解得x≈660,故2011年全国普通高校毕业生数约是660万人;(3)补全统计图如图所示.20.(10分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.解析:先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,利用勾股定理即可求出BC=OE.答案:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴D E=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC=,OE=,∴BC=OE.21.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平. 解析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.答案:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(和小于4)=,P(和大于等于4)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两指针所指数字之和为偶数,则小颖获胜;若两指针所指数字之和为奇数,则小亮获胜;P(和为偶数)=P(和为奇数)=.22.(10分)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)解析:(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE-CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.答案: (1)如图,过点B作BE⊥AC于点E,在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE-CE=293.4-60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.23.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.解析:(1)首先连接OC,易证得△COE≌△BOE(SAS),即可得∠OCE=∠OBE=90°,证得BE与⊙O相切;(2)首先设OC=x,则OD=OF-DF=x-1,易求得OC的长,即可得∠BOC=120°,又由S=S四边形OBEC-S扇形OBC求得答案.答案:(1)连接OC,∵CE是⊙O的切线,∵OB=OC,OD⊥BC,∴∠EOC=∠EOB,∵在△EOC和△EOB中,,∴△COE≌△BOE(SAS),∴∠OCE=∠OBE=90°,即OB⊥BE,∴BE与⊙O相切;(2)∵OD⊥BC,∴CD=BC=×2=,设OC=x,则OD=OF-DF=x-1,在Rt△OCD中,OC2=OD2+CD2,∴x2=(x-1)2+()2,解得:x=2,∴OC=2,∠COD=60°,∴∠BOC=120°,∴CE=OC·tan60°=2,∴S=S四边形OBEC-S扇形OBC=2S△OCE-S扇形OBC=2××2×2-×π×22=4-π.24.(10分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途经C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A 地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x 的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?解析:(1)根据甲车休息1小时列式求出m,再根据乙车2小时距离B地120千米求出速度,然后求出a,根据甲的速度列式求出到达B地行驶的时间再加上休息的1小时即可得到n的值;(2)分休息前,休息时,休息后三个阶段,利用待定系数法求一次函数解析式答案;(3)求出甲车的速度,然后分①相遇前两人的路程之和加上相距的120千米等于总路程列出方程求解即可;②相遇后,两人行驶的路程之和等于总路程加120千米,列出方程求解即可.答案:(1)∵甲车途经C地时休息一小时,∴2.5-m=1,∴m=1.5,乙车的速度==,即=60,解得a=90,甲车的速度为:=,解得n=3.5;所以,a=90,m=1.5,n=3.5;(2)设甲车的y与x的函数关系式为y=kx+b(k≠0),①休息前,0≤x<1.5,函数图象经过点(0,300)和(1.5,120),所以,解得,所以,y=-120x+300,②休息时,1.5≤x<2.5,y=120,③休息后,2.5≤x≤3.5,函数图象经过(2.5,120)和(3.5,0),所以,,解得,所以,y=-120x+420.综上,y与x的关系式为y=;(3)设两车相距120千米时,乙车行驶了x小时,甲车的速度为:(300-120)÷1.5=120千米/时,①若相遇前,则120x+60x=300-120,解得x=1,②若相遇后,则120(x-1)+60x=300+120,解得x=3,所以,两车相距120千米时,乙车行驶了1小时或3小时.25.(12分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.解析:(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ≌△EAF,推出EF=EQ即可.答案:(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中,∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.26.(14分)如图,抛物线y=-x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?解析:(1)利用待定系数法求出抛物线的解析式,令y=0解方程,求出点C的坐标;(2)如答图1所示,由△CEF∽△COA,根据比例式列方程求出OE的长度;(3)如答图2所示,若△DMN是等腰三角形,可能有三种情形,需要分类讨论;(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示.利用S=S正方形DEFG-S梯形MEDN-S△FJK求出S关于t的表达式,然后由二次函数的性质求出其最值.答案:(1)∵抛物线y=-x2+mx+n经过点A(0,3),B(2,3),∴,解得:,∴抛物线的解析式为:y=-x2+x+3. 令y=0,即-x2+x+3=0,解得x=6或x=-4,∵点C位于x轴正半轴上,∴C(6,0).(2)当正方形的顶点F恰好落在线段AC上时,如答图1所示:设OE=x,则EF=x,CE=OC-OE=6-x.∵EF∥OA,∴△CEF∽△COA,∴,即,解得x=2.∴OE=2.(3)存在满足条件的t.理由如下:如答图2所示,易证△CEM∽△COA,∴,即,得ME=2-t.过点M作MH⊥DN于点H,则DH=ME=2-t,MH=DE=2.易证△MHN∽△COA,∴,即,得NH=1.∴DN=DH+HN=3-t.在Rt△MNH中,MH=2,NH=1,由勾股定理得:MN=.△DMN是等腰三角形:①若DN=MN,则3-t=,解得t=6-;②若DM=MN,则DM2=MN2,即22+(2-t)2=()2,解得t=2或t=6(不合题意,舍去);③若DM=DN,则DM2=DN2,即22+(2-t)2=(3-t)2,解得t=1.综上所述,当t=1、2或6-时,△DMN是等腰三角形.(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示:设EF、DG分别与AC交于点M、N,由(3)可知:ME=2-t,DN=3-t.设直线BC的解析式为y=kx+b,将点B(2,3)、C(6,0)代入得:,解得,∴y=x+.设直线BC与EF交于点K,∵x K=t+2,∴y K=x K+=t+3,∴FK=y F-y K=2-(t+3)=t-1;设直线BC与GF交于点J,∵yJ=2,∴2=x J+,得x J=,∴FJ=x F-x J=t+2-=t-.∴S=S正方形DEFG-S梯形MEDN-S△FJK=DE2-(ME+DN)·DE-FK·FJ=22-[(2-t)+(3-t)]×2-(t-1)(t-)=t2+2t-.过点G作GH⊥y轴于点H,交AC于点I,则HI=2,HJ=,∴t的取值范围是:2<t<.∴S与t的函数关系式为:S=t2+2t-(2<t<).S=t2+2t-=(t-)2+1,∵<0,且2<<,∴当t=时,S取得最大值,最大值为1.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 2答案:A4. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 一个数列的前三项是1, 1, 2,如果这个数列是等差数列,那么第四项是:A. 3B. 4C. 5D. 6答案:A6. 如果一个二次方程 \( ax^2 + bx + c = 0 \) 的判别式 \( b^2 - 4ac \) 小于0,那么这个方程:A. 有实数解B. 有重根C. 无解D. 有无穷多解答案:C7. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是:A. 24B. 36C. 48D. 64答案:A8. 函数 \( y = x^2 \) 在 \( x = 2 \) 时的导数是:A. 0B. 2C. 4D. 8答案:C9. 一个圆的周长是12π,那么它的半径是:A. 2B. 3C. 4D. 6答案:C10. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是________。
答案:±512. 如果一个角的补角是120°,那么这个角是________。
答案:60°13. 一个数的立方根是2,这个数是________。
答案:814. 一个数的倒数是1/3,这个数是________。
答案:315. 一个三角形的内角和是________。
答案:180°16. 一个数的平方是25,这个数可以是________。
答案:±517. 如果一个三角形的两边长分别是5和7,第三边的长度至少是________。
- 1 - 辽宁省大连市2013年中考数学试卷 一、选择题(本题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)(2013•大连)﹣2的相反数是( ) A. ﹣2 B. ﹣ C. D. 2
解答: 解:﹣2的相反数是2.故选D. 2.(3分)(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )
A. B. C. D. 解答: 解:从上面看易得三个横向排列的正方形. 故选A.
3.(3分)(2013•大连)计算(x2)3的结果是( ) A. x B. 3x2 C. x5 D. x6
解答: 解:(x2)3=x6, 故选:D.
4.(3分)(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( ) A. B. C. D. - 2 -
解答: 解;袋子中球的总数为:2+3=5, 取到黄球的概率为:. 故选:B.
5.(3分)(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( )
A. 35° B. 70° C. 110° D. 145° 解答: 解:∵射线OC平分∠DOB. ∴∠BOD=2∠BOC, ∵∠COB=35°, ∴∠DOB=70°, ∴∠AOD=180°﹣70°=110°, 故选:C.
6.(3分)(2013•大连)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( ) A. m<﹣4 B. m>﹣4 C. m<4 D. m>4
解答: 解:∵△=(﹣4)2﹣4m=16﹣4m<0, ∴m>4. 故选D
7.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示: 金额/元 5 6 7 10 - 3 -
人数 2 3 2 1 这8名同学捐款的平均金额为( ) A. 3.5元 B. 6元 C. 6.5元 D. 7元
解答: 解:根据题意得: (5×2+6×3+7×2+10×1)÷8=6.59(元); 故选C.
8.(3分)(2013•大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是( ) A. OP1⊥OP2 B. OP1=OP2 C. OP1⊥OP2且OP1=OP2 D. OP1≠OP2
解答: 解:如图,∵点P关于直线OA、OB的对称点P1、P2, ∴OP1=OP2=OP, ∠AOP=∠AOP1,∠BOP=∠BOP2, ∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2, =2(∠AOP+∠BOP), =2∠AOB, ∵∠AOB度数任意, ∴OP1⊥OP2不一定成立. 故选B.
二、填空题(本题8小题,每小题3分,共24分) 9.(3分)(2013•大连)因式分解:x2+x= x(x+1) . - 4 -
解答: 解:x2+x=x(x+1). 10.(3分)(2013•大连)在平面直角坐标系中,点(2,﹣4)在第 四 象限. 解答: 解:点(2,﹣4)在第四象限. 故答案为:四.
11.(3分)(2013•大连)把16000 000用科学记数法表示为 1.6×107 . 解答: 解:将16 000 000用科学记数法表示为:1.6×107. 故答案为:1.6×107.
12.(3分)(2013•大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示: 移植总数(n) 400 750 1500 3500 7000 9000 14000 成活数(m) 369 662 1335 3203 6335 8073 12628 成活的频率 0.923 0.883 0.890 0.915 0.905 0.897 0.902 根据表中数据,估计这种幼树移植成活率的概率为 0.9 (精确到0.1).
解答: 解: =(0.923+0.883+0.890+0.915+0.905+0.897+0.902)÷7≈0.9, ∴这种幼树移植成活率的概率约为0.9. 故本题答案为:0.9.
13.(3分)(2013•大连)化简:x+1﹣= . 解答: 解:原式=﹣
= - 5 -
=. 故答案为:.
14.(3分)(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为 8 cm.
解答: 解:∵=16π,
圆锥的底面周长等于侧面展开图的扇形弧长, ∴圆锥的底面周长是16πcm, 设圆锥的底面半径是r, 则得到2πr=16π, 解得:r=8(cm). 故答案为:8.
15.(3分)(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为 15.3 m(精确到0.1m).(参考数据:≈1.41,,1.73)
解答: 解:在Rt△ACD中,CD=21m,∠DAC=30°, 则AC=CD≈36.3m; 在Rt△BCD中,∠DBC=45°, 则BC=CD=21m, 故AB=AC﹣BC=15.3m. 故答案为:15.3. - 6 -
16.(3分)(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为 y=x2﹣x+ .
解答: 解:∵令x=0,则y=, ∴点A(0,), 根据题意,点A、B关于对称轴对称, ∴顶点C的纵坐标为×=,
即=, 解得b1=3,b2=﹣3, 由图可知,﹣>0, ∴b<0, ∴b=﹣3, ∴对称轴为直线x=﹣=, ∴点D的坐标为(,0), 设平移后的抛物线的解析式为y=x2+mx+n,
则,
解得, 所以,y=x2﹣x+. - 7 -
故答案为:y=x2﹣x+. 三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分) 17.(9分)(2013•大连)计算:()﹣1+(1+)(1﹣)﹣.
解答: 解:原式=5+1﹣3﹣2=3﹣2.
18.(9分)(2013•大连)解不等式组:. 解答: 解:解不等式①得:x>2 解不等式②得:x>4 在数轴上分别表示①②的解集为: ∴不等式的解集为:x>4.
19.(9分)(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.
解答: 证明:∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC, ∵AE=CF, ∴DE=BF,DE∥BF, ∴四边形DEBF是平行四边形, ∴BE=DF. - 8 -
20.(12分)(2013•大连)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天). 大连市2012年海水浴场环境质量监测结果统计表,监测时段:2012年7月至9月 浴场名称 优(%) 良(%) 差(%) 浴场1 25 75 0 浴场2 30 70 0 浴场3 30 70 0 浴场4 40 60 0 浴场5 50 50 0 浴场6 30 70 0 浴场7 10 90 0 浴场8 10 50 40 根据以上信息,解答下列问题: (1)2012年7月至9月被监测的8个海水浴场环境质量最好的是 浴场5 (填浴场名称),海水浴场环境质量为优的数据的众数为 30 %,海水浴场环境质量为良的数据的中位数为 70 %; (2)2012年大连市区空气质量达到优的天数为 129 天,占全年(366)天的百分比约为 35.2% (精确到0.1%); (3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).
解答: 解:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5, 海水浴场环境质量为优的数据30出现了3次,出现的次数最多, - 9 -
则海水浴场环境质量为优的数据的众数为30; 把海水浴场环境质量为良的数据从小到大排列为:50,50,60,70,70,70,75,90, 海水浴场环境质量为良的数据的中位数为(70+70)÷2=70; 故答案为:浴场5,30,70;
(2)从条形图中可以看出2012年大连市区空气质量达到优的天数为129天, 所占的百分比是×100%=35.2%; 故答案为:129,35.2%;
(3)污染的天数是:366×3.8%≈14(天), 良的天数是366﹣129﹣14=223(天), 答:2012年大连市区空气质量为良的天数是223天.
四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分) 21.(9分)(2013•大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?
解答: 解:设A种糖果购进x千克,则B种糖果购进3x千克,根据题意得: ﹣=2, 解得:x=30, 经检验x=30是原方程的解, 则B购进的糖果是:30×3=90(千克), 答:A种糖果购进30千克,B种糖果购进90千克.
22.(9分)(2013•大连)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且AC=OC. (1)求该反比例函数和一次函数的解析式; (2)直接写出不等式ax+b≥的解集.