【科学备考】2015高考数学(理)(新课标)二轮复习配套试题:第十八章 不等式选讲(含2014试题)]
- 格式:doc
- 大小:835.00 KB
- 文档页数:23
第2讲 不等式与线性规划考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题.1.四类不等式的解法 (1)一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法①变形⇒f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);②变形⇒f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.(3)简单指数不等式的解法①当a >1时,a f (x )>a g (x )⇔f (x )>g (x );②当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法①当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )且f (x )>0,g (x )>0; ②当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )且f (x )>0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2≥0(a R ∈). (2)a 2+b 2≥2ab (a 、b R ∈). (3)a +b2≥ab (a >0,b >0).(4)ab ≤(a +b 2)2(a ,b R ∈.(5)a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0). 3.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值. 4.两个常用结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.热点一 一元二次不等式的解法例1 (1)(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}(2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-2<x <2} C .{x |x <0或x >4}D .{x |0<x <4}思维启迪 (1)利用换元思想,设10x =t ,先解f (t )>0.(2)利用f (x )是偶函数求b ,再解f (2-x )>0.思维升华二次函数、二次不等式是高中数学的基础知识,也是高考的热点,“三个二次”的相互转化体现了转化与化归的数学思想方法.(1)不等式x -12x +1≤0的解集为( )A .(-12,1]B .[-12,1]C .(-∞,-12)∪[1,+∞)D .(-∞,-12]∪[1,+∞)(2)已知p :∃x 0R ∈,mx 20+1≤0,q :∀x R ∈,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( ) A .(-∞,-2) B .[-2,0) C .(-2,0)D .[0,2]热点二 基本不等式的应用例2 (1)(2014·湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.①如果不限定车型,l =6.05,则最大车流量为________辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加________辆/时.(2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3思维启迪 (1)把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值;(2)关键是寻找xyz 取得最大值时的条件.思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(1)若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值为________.(2)已知关于x 的不等式2x +2x -a ≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( )A .1B .32C .2D .52热点三 简单的线性规划问题例3 (2013·湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元 思维启迪 通过设变量将实际问题转化为线性规划问题.思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解.(3)对于应用问题,要准确地设出变量,确定可行域和目标函数.(1)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >04x +3y ≤4y ≥0,则w =y +1x的最小值是( )A .-2B .2C .-1D .1(2)(2013·北京)设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-531.几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点;分式不等式可转化为整式不等式(组)来解;以函数为背景的不等式可利用函数的单调性进行转化.2.基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题.解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创造基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可. 3.线性规划问题的基本步骤(1)定域——画出不等式(组)所表示的平面区域,注意平面区域的边界与不等式中的不等号的对应; (2)平移——画出目标函数等于0时所表示的直线l ,平行移动直线,让其与平面区域有公共点,根据目标函数的几何意义确定最优解,注意要熟练把握最常见的几类目标函数的几何意义; (3)求值——利用直线方程构成的方程组求解最优解的坐标,代入目标函数,求出最值.真题感悟1.(2014·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin yD .x 3>y 32.(2014·浙江)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.D 2.[1,32] A 2.6押题精练1.为了迎接2014年3月8日的到来,某商场举行了促销活动,经测算某产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足P =3-2x +1,已知生产该产品还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20P )万元/万件.则促销费用投入 万元时,厂家的利润最大?( )A .1B .1.5C .2D .32.若点P (x ,y )满足线性约束条件⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0,点A (3,3),O 为坐标原点,则OA →·OP →的最大值为________.(推荐时间:50分钟)一、选择题1.(2014·四川)若a >b >0,c <d <0,则一定有( ) A .a c >b d B .a c <b d C .a d >b c D .a d <b c2.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x R ∈)D .1x 2+1>1(x R ∈) 3.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A .52 B .72 C .154 D .1524.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3 5.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0x -2y +1≤0x -1≥0,则z =x +2y -1的最大值为( )A .9B .8C .7D .6 二、填空题6.已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________. 7.若x ,y 满足条件⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为________.8.若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1n 的最小值为________.三、解答题9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x+4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.10.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2.(1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.11.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5,0<x <6,14,x ≥6.已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.例1 (1)D (2)C 变式训练1 (1)A (2)C例2 (1)①1 900 ②100 (2)B 变式训练2 (1)3 (2)B 例3 C 变式训练3 (1)D (2)CDCADB 6.(1e ,e 2) 7.1 8.32+ 29.解 (1)由-x 2-2x +8>0得-4<x <2,即A =(-4,2). y =x +1x +1=(x +1)+1x +1-1,当x +1>0,即x >-1时y ≥2-1=1,此时x =0,符合要求; 当x +1<0,即x <-1时,y ≤-2-1=-3,此时x =-2,符合要求. 所以B =(-∞,-3]∪[1,+∞),所以A ∩B =(-4,-3]∪[1,2). (2)(ax -1a )(x +4)=0有两根x =-4或x =1a 2.当a >0时,C ={x |-4≤x ≤1a2},不可能C ⊆∁R A ;当a <0时,C ={x |x ≤-4或x ≥1a 2},若C ⊆∁R A ,则1a 2≥2,∴a 2≤12,∴-22≤a <0.故a 的取值范围为[-22,0). 10.(1)证明 求函数f (x )的导数f ′(x )=ax 2-2bx +2-b . 由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值, 知x 1、x 2是f ′(x )=0的两个根,所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f (x )为增函数,f ′(x )>0,由x -x 1<0,x -x 2<0得a >0. (2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b+2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为 A ⎝⎛⎭⎫47,67,B (2,2),C (4,2). z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).11.解 (1)由题意可得L =⎩⎪⎨⎪⎧2x +k x -8+2,0<x <6,11-x ,x ≥6.因为当x =2时,L =3,所以3=2×2+k2-8+2,解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-[2(8-x )+188-x ]+18≤-22(8-x )·188-x+18=6,当且仅当2(8-x )=188-x ,即x =5时取得等号.当x ≥6时,L =11-x ≤5. 所以当x =5时L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.。
2015年高考数学试题分类汇编及答案解析(不等式)姓名:沈金鹏院、系:数学学院专业: 数学与应用数学2015年10月10日专题七不等式1.(15北京理科)若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1C .32D .2【答案】D【解析】试题分析:如图,先画出可行域,由于2z x y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2. 考点:线性规划;2.(15北京文科)如图,C ∆AB 及其内部的点组成的集合记为D ,(),x y P 为D 中任意一点,则23z x y =+的最大值为.【答案】7考点:线性规划.3.(15年广东理科)若变量,满足约束条件则的最小值为A .B.6C.D. 4 【答案】.【解析】不等式所表示的可行域如下图所示,由得,依题当目标函数直线:经过时,取得最小值即,故选 【考点定位】本题考查二元一次不等式的线性规划问题,属于容易题.4.(15年广东文科)若变量,满足约束条件,则的最大值为() A .B .C .D .【答案】Cx y ⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x y x z 23+=531523C 32z x y =+322z y x =-+l 322z y x =-+41,5A ⎛⎫⎪⎝⎭z min 42331255z =⨯+⨯=C考点:线性规划. 5.(15年广东文科)不等式的解集为.(用区间表示)【答案】【解析】 试题分析:由得:,所以不等式的解集为,所以答案应填:.考点:一元二次不等式.5.6.(15年安徽文科)已知x ,y 满足约束条件,则z=-2x+y 的最大值是( )(A )-1 (B )-2 (C )-5 (D )1 【答案】A 【解析】0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩试题分析:根据题意作出约束条件确定的可行域,如下图:令,可知在图中处,取到最大值-1,故选A.考点:简单的线性规划.7.(15年福建理科)若变量满足约束条件则的最小值等于( ) A .B .C .D .2 【答案】A 【解析】试题分析:画出可行域,如图所示,目标函数变形为,当最小时,直线的纵截距最大,故将直线经过可行域,尽可能向上移到过点时,取到最小值,最小值为 ,故选A . 考点:线性规划.8.(15年福建理科)已知,若点是所在平面内一点,y x z +-=2⇒z x y --=2)1,1(A y x z +-=2,x y 20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩2z x y =-52-2-32-2y x z =-z 2y x z =-2y x =1(1,)2B -z 152(1)22z =⨯--=-1,,AB AC AB AC t t⊥==P ABC ∆且,则的最大值等于()A .13B .15C .19D .21 【答案】A考点:1、平面向量数量积;2、基本不等式. 9.(15年福建文科)若直线过点,则的最小值等于() A .2 B .3 C .4 D .5 【答案】C考点:基本不等式.4AB ACAP AB AC=+PB PC ⋅1(0,0)x ya b a b+=>>(1,1)a b +10.(15年福建文科)变量满足约束条件,若的最大值为2,则实数等于()A .B .C .D . 【答案】C 【解析】试题分析:将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示,其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C . 考点:线性规划.11.(15年新课标1理科)若x,y 满足约束条件则的最大值为. 【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故的最大值为3.,x y 02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩2z x y =-m 2-1-12–12y x z =-z 0m ≤0m >22(,)2121mB m m --(0,0)O 22(,)2121m B m m --4222121mm m -=--1m =yxyxy x12.(15年新课标2理科)若x ,y 满足约束条件,则的最大值为____________. 【答案】13.(15年新课标2文科)若x ,y 满足约束条件 ,则z =2x +y 的最大值为.【答案】850210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩考点:线性规划14.(15年陕西理科)设,若,,,则下列关系 式中正确的是()A .B .C .D . 【答案】C考点:1、基本不等式;2、基本初等函数的单调性.15.(15年陕西理科)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最 大利润为() A .12万元 B .16万元 C .17万元 D .18万元【答案】D 【解析】试题分析:设该企业每天生产甲、乙两种产品分别为、吨,则利润()ln ,0f x x a b =<<p f =()2a bq f +=1(()())2r f a f b =+q r p =<q r p =>p r q =<p r q =>x y 34z x y =+由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值,所以,故选D .考点:线性规划.16.(15年陕西文科)某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B .16万元C .17万元D .18万元【答案】32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩340x y z +-=(2,3)A z max 324318z =⨯+⨯=D当直线过点时,取得最大值故答案选考点:线性规划.17.(15年天津理科)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3 (B )4 (C )18 (D )40【答案】C考点:线性规划.340x y z +-=(2,3)A z 324318z =⨯+⨯=D18.(15年天津文科)设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数3y z x =+的最大值为()(A) 7 (B) 8 (C) 9 (D)14【答案】C考点:线性规划19.(15年天津文科)设x R Î,则“12x <<”是“|2|1x -<”的()(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A【解析】试题分析:由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.考点:1.不等式;2. 充分条件与必要条件.20.(15年天津文科)已知0,0,8,a b ab >>=则当a 的值为时()22log log 2a b ⋅取得最大值.【答案】4【解析】试题分析:()()()()22222222log log 211log log 2log 2log 164,244a b a b ab +⎛⎫⋅≤=== ⎪⎝⎭当2a b =时取等号,结合0,0,8,a b ab >>=可得4, 2.a b ==考点:基本不等式.21.(15年湖南理科)执行如图1所示的程序框图,如果输入,则输出的( )A. B. C. D.3n =S =67378949时,的最小值是,故选A.1=y y x z -=37-考点:线性规划.22.(15年山东理科)不等式|1||5|2x x ---<的解集是(A)(,4)-∞ (B)(,1)-∞ (C)(1,4) (D)(1,5)解析:当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,答案选(A)23.(15年山东理科)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A)3 (B)2 (C)2- (D)3-解析:由z a x y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >;答案选(B)24.(15年江苏)不等式224x x -<的解集为________.【答案】(1,2).-【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).-考点:解指数不等式与一元二次不等式。
2015年全国统一高考数学试卷(理科)(新课标II)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}考点:交集及其运算.专题:集合.分析:解一元二次不等式,求出集合B,然后进行交集的运算即可.解析:解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.评析:考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0C.1D.2考点:复数相等的充要条件.专题:数系的扩充和复数.分析:首先将坐标展开,然后利用复数相等解之.解析:解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.评析:本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关考点:频率分布直方图.专题:概率与统计.分析:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.解析:解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D评析:本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.解析:解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B评析:本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12考点:函数的值.专题:计算题;函数的性质及应用.分析:先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.解析:解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==12×=6,则有f(﹣2)+f(log212)=3+6=9.故选C.评析:本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.解析:解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.评析:本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10考点:两点间的距离公式.专题:计算题;直线与圆.分析:设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.解析:解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.评析:本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14考点:程序框图.专题:算法和程序框图.分析:由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.解析:解:由a=14,b=18,a>b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.评析:本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.解析:解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB ===36,故R=6,则球O的表面积为4πR2=144π,故选C.评析:本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据函数图象关系,利用排除法进行求解即可.解析:解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.评析:本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.解析:解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.评析:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)考点:函数的单调性与导数的关系.专题:创新题型;函数的性质及应用;导数的综合应用.分析:由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.解析:解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.评析:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.考点:平行向量与共线向量.专题:平面向量及应用.分析:利用向量平行即共线的条件,得到向量λ+与+2之间的关系,利用向量相等解析.解析:解:因为向量,不平行,向量λ+与+2平行,所以λ+=μ(+2),所以,解得;故答案为:.评析:本题考查了向量关系的充要条件:如果两个非0向量共线,那么存在唯一的参数λ,使得14.(5分)若x,y满足约束条件,则z=x+y的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.解析:解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.评析:本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.考点:二项式定理的应用.专题:计算题;二项式定理.分析:给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.解析:解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.评析:本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设S n是数列{a n}的前n项和,且a1=﹣1,a n+1=S n S n+1,则S n=﹣.考点:数列递推式.专题:创新题型;等差数列与等比数列.分析:通过an+1=S n+1﹣S n=S n S n+1,并变形可得数列{}是以首项和公差均为﹣1的等差数列,进而可得结论.解析:解:∵a n+1=S n S n+1,∴a n+1=S n+1﹣S n=S n S n+1,∴=﹣=1,即﹣=﹣1,又a1=﹣1,即==﹣1,∴数列{}是以首项和公差均为﹣1的等差数列,∴=﹣1﹣1(n﹣1)=﹣n,∴S n=﹣,故答案为:﹣.评析:本题考查求数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解析题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC 及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.解析:解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.评析:本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.考点:古典概型及其概率计算公式;茎叶图.专题:概率与统计.分析:(Ⅰ)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(Ⅱ)根据概率的互斥和对立,以及概率的运算公式,计算即可.解析:解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(Ⅱ)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.评析:本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.考点:直线与平面所成的角.专题:空间角;空间向量及应用.分析:(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.解析:解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.评析:考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.考点:直线与圆锥曲线的综合问题;直线的斜率.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.解析:解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=因此x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.评析:本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:创新题型;导数的概念及应用.分析:(1)利用f'(x)≥0说明函数为增函数,利用f'(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.解析:解:(1)证明:f'(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f'(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f'(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f'(x)<0;当x∈(0,+∞)时,emx ﹣1<0,f'(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f (x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g'(t)=e t﹣1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e﹣m+m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]评析:本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.考点:相似三角形的判定.专题:开放型;空间位置关系与距离.分析:(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.解析:(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.评析: 本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:23cos ρθ=。
目录选择题的解法 (1)概率与统计 (12)函数与导数 (26)活用“审题路线图”,破解高考不再难 (40)集合与常用逻辑用语 (59)解答题的八个答题模板 (65)解析几何 (95)立体几何 (107)三角函数、解三角形、平面向量 (121)数列、不等式 (131)填空题的解法 (140)推理与证明、复数、算法 (149)选择题的解法【题型特点概述】高考数学选择题主要考查对基础知识的理解、基本技能的熟练程度、基本计算的准确性、基本方法的正确运用、考虑问题的严谨、解题速度的快捷等方面,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识、解决数学问题的能力.选择题是属于“小灵通”题,其解题过程“不讲道理”,所以解答选择题的基本策略是:充分地利用题干和选择支两方面的条件所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,先排除后求解,对于具有多种解题思路的,宜选最简解法等.解题时应仔细审题、深入分析、正确推演、谨防疏漏.初选后认真检验,确保准确.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12 B.23 C.32D .2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1,则有a n +1=a n ·a 1⇒a n +1a n =a 1=13,故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13(1-13n )1-13=12(1-13n )<12,由于S n <a对任意n ∈N *恒成立,故a ≥12,即实数a 的最小值为12,选A.答案 A思维升华 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( ) A.π6 B.5π6 C.π3 D.2π3答案 C解析 函数y =sin 2x (x ∈R )的图象向左平移m (m >0)个单位可得y =sin 2(x +m )=sin(2x +2m )的图象,向右平移n (n >0)个单位可得y =sin 2(x -n )=sin(2x -2n )的图象.若两图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则⎩⎨⎧2m =π3+2k 1π,2n =-π3+2k 2π,(k 1,k 2∈Z )即⎩⎨⎧m =π6+k 1π,n =-π6+k 2π.(k 1,k 2∈Z )所以|m -n |=|π3+(k 1-k 2)π|(k 1,k 2∈Z ),当k 1=k 2时,|m -n |min =π3.故选C.方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1 B .2∶1 C .4∶1D.3∶1解析 (1)取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210,选C.(2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA B V -=1A ABC V -=1113ABC A B C V -,故选B.答案 (1)C (2)B思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A=60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32B. 2 C .1 D.12答案 A解析 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点, AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A. 方法三 排除法(筛选法)例3 函数y =x sin x 在[-π,π]上的图象是( )解析容易判断函数y=x sin x为偶函数,可排除D;时,y=x sin x>0,排除B;当0<x<π2当x=π时,y=0,可排除C;故选A.答案 A思维升华排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y=2|x|的定义域为[a,b],值域为[1,16],a变动时,方程b=g(a)表示的图形可以是()答案 B解析 研究函数y =2|x |,发现它是偶函数,x ≥0时,它是增函数,因此x =0时函数取得最小值1,而当x =±4时,函数值为16,故一定有0∈[a ,b ],而4∈[a ,b ]或者-4∈[a ,b ],从而有结论a =-4时,0≤b ≤4,b =4时,-4≤a ≤0,因此方程b =g (a )的图形只能是B. 方法四 数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4 函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( ) A .2 B .4 C .6 D .8解析 由f (x )=⎝⎛⎭⎫12|x -1|+2cos πx =0, 得⎝⎛⎭⎫12|x -1|=-2cos πx , 令g (x )=⎝⎛⎭⎫12|x -1|(-2≤x ≤4), h (x )=-2cos πx (-2≤x ≤4),又因为g (x )=⎝⎛⎭⎫12|x -1|=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -1, 1≤x ≤4,2x -1, -2≤x <1.在同一坐标系中分别作出函数g (x )=⎝⎛⎭⎫12|x -1|(-2≤x ≤4)和h (x )=-2cos πx (-2≤x ≤4)的图象(如图),由图象可知,函数g(x)=⎝⎛⎭⎫1x-1|关于x=1对称,2|又x=1也是函数h(x)=-2cos πx(-2≤x≤4)的对称轴,所以函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2cos πx(-2≤x≤4)的交点也关于x=1对称,2|且两函数共有6个交点,所以所有零点之和为6.答案 C思维升华本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路范畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.- 3答案 B解析由y=1-x2,得x2+y2=1(y≥0),其所表示的图形是以原点O为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l的斜率必为负值,故排除A,C选项.当其斜率为-3时,直线l的方程为3x+y-6=0,点O到其距离为|-6|3+1=62>1,不符合题意,故排除D选项.选B.方法五估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次. 例5 若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A.34 B .1 C.74D .2 解析 如图知区域的面积是△OAB 去掉一个小直角三角形. 阴影部分面积比1大,比S △OAB =12×2×2=2小,故选C 项.答案 C思维升华 “估算法”的关键是确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( )A.m -39-mB.m -3|9-m |C.13 D .5答案 D解析 利用同角正弦、余弦的平方和为1求m 的值,再根据半角公式求tan θ2,但运算较复杂,试根据答案的数值特征分析.由于受条件sin2θ+cos2θ=1的制约,m为一确定的值,进而推知tanθ2也为一确定的值,又π2<θ<π,因而π4<θ2<π2,故tanθ2>1.1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.概率与统计1.随机抽样方法简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[问题1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________. 答案 24解析 由抽样比例可知6x =480-200-160480,则x =24.2.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的损失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了. [问题2] 从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________.答案 203.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数. 众数为频率分布直方图中最高矩形的底边中点的横坐标.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标. 平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).平均数等于频率分布直方图中每个小矩形的面积乘以小距形底边中点的横坐标之和. 标准差的平方就是方差,方差的计算(1)基本公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)简化计算公式①s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方和的平均数减去平均数的平方.[问题3] 已知一个样本中的数据为0.12,0.15,0.13,0.15,0.14,0.17,0.15,0.16,0.13,0.14,则该样本的众数、中位数分别是________. 答案 0.15、0.145 4.变量间的相关关系假设我们有如下一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ).回归方程y ^=b ^x +a ^,其中⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x2,a ^=y -b ^x .[问题4] 回归直线方程y ^=b ^x +a ^必经过点________. 答案 (x ,y )5.独立性检验的基本方法一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表如表:y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计a +cb +da +b +c +d根据观测数据计算由公式k =n (ad -bc )2(a +b )(a +c )(b +d )(c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y 有关系”的可信程度.[问题5] 为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:喜爱打篮球不喜爱打篮球合计 男生 20 5 25 女生 10 15 25 合计302050则至少有________的把握认为喜爱打篮球与性别有关.(请用百分数表示) 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )P (K 2>k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828答案 99.5%6.互斥事件有一个发生的概率P (A +B )=P (A )+P (B ) (1)公式适合范围:事件A 与B 互斥. (2)P (A )=1-P (A ).[问题6] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.答案 237.古典概型P (A )=mn (其中,n 为一次试验中可能出现的结果总数,m 为事件A 在试验中包含的基本事件个数)[问题7] 若将一枚质地均匀的骰子先后抛掷2次,则出现向上的点数之和为4的概率为________. 答案1128.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的度量D 的度量.此处D 的度量不为0,其中“度量”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的度量分别为长度、面积和体积等. 即P (A )=构成事件A 的区域长度(面积和体积)试验的全部结果所构成的区域长度(面积和体积)[问题8] 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B .1-π12C.π6 D .1-π6答案 B解析 记“点P 到点O 的距离大于1”为A , P (A )=23-12×43π×1323=1-π12. 9.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列、组合问题的规律是:相邻问题捆绑法;不相邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配分步法;综合问题先选后排法;至多至少问题间接法. (1)排列数公式A m n =n (n -1)(n -2)…[n -(m -1)]=n !(n -m )!,其中m ,n ∈N *,m ≤n .当m =n 时,A n n =n ·(n-1)·……·2·1=n !,规定0!=1. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…[n -(m -1)]m !=n !m !(n -m )!. (3)组合数性质C m n =C n-mn,C m n +C m -1n =C m n +1,规定C 0n =1,其中m ,n ∈N *,m ≤n .[问题9] (1)将5封信投入3个邮筒,不同的投法共有________种.(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有________种. 答案 (1)35 (2)70 10.二项式定理(1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n -1n ab n -1+C n nb n (n ∈N *). 通项(展开式的第r +1项):T r +1=C rna n -r b r ,其中C r n (r =0,1,…,n )叫做二项式系数. (2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n. ②二项式系数的和等于2n (组合数公式),即C 0n +C 1n +C 2n +…+C n n=2n . ③二项式展开式中,偶数项的二项式系数和等于奇数项的二项式系数和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 特别提醒:二项式系数最大项与展开式系数最大项是两个不同的概念,在求法上也有很大的差别,往往因为概念不清导致出错. [问题10] 设⎝⎛⎭⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A ∶B =________. 答案 4∶1解析 T r +1=C r 6x6-r (-1)r ⎝⎛⎭⎫2x r=C r 6(-1)r 2r362r x-,6-32r =3,r =2,系数A =60,二项式系数B =C 26=15,所以A ∶B =4∶1. 4∶1.11.要注意概率P (A |B )与P (AB )的区别:(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).[问题11] 设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.答案 3512.求分布列,要检验概率的和是否为1,如果不是,要重新检查修正.还要注意识别独立重复试验和二项分布,然后用公式.如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k ·(1-p )n -k . [问题12] 若随机变量ξ的分布列如下表,则E (ξ)的值为________.ξ 0 1 2 3 4 5 P2x3x7x2x3xx答案209解析 根据概率之和为1,求出x =118,则E (ξ)=0×2x +1×3x +…+5x =40x =209.13.一般地,如果对于任意实数a <b ,随机变量X 满足P (a <X ≤b )=ʃba φμ,σ(x )d x ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是: ①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.[问题13] 已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( ) A .0.6 B .0.4 C .0.3 D .0.2 答案 C解析 ∵P (ξ<4)=0.8,∴P (ξ>4)=0.2, 由题意知图象的对称轴为直线x =2, P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3.易错点1 统计图表识图不准致误例1 如图所示是某公司(共有员工300人)2012年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的大约有________人.错解 由频率分布直方图,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.10+0.10+0.08)=0.62.∴估计年薪在1.4万元~1.6万元之间约有300×0.62=186(人).找准失分点 本题主要混淆频率分布直方图与条形图纵轴的意义,频率分布直方图中,纵轴(矩形高)表示“频率组距”,每个小矩形的面积才表示落在该区间上的频率,由于概念不清,识图不准导致计算错误.正解 由所给图形可知,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24.所以员工中年薪在1.4万元~1.6万元之间的共有300×0.24=72(人). 答案 72易错点2 在几何概型中“测度”确定不准致误例2 如图所示,在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.错解 记AM <AC 为事件E ,设CA =CB =a ,因为△ABC 是直角三角形, 所以,AB =2a ,在AB 上取一点D ,使AD =AC =a ,那么对线段AD 上的任意一点M 都有AM <AD ,即AM <AC , 因此AM <AC 的概率为P (E )=AD AB =a 2a =22. 找准失分点 据题意,过直角顶点C 在∠ACB 内部作一条射线CM ,射线CM 在∠ACB 内部均匀分布,但是点M 在AB 上的分布不是均匀的.正解 在AB 上取一点D ,使AD =AC ,因为AD =AC =a ,∠A =π4,所以∠ACD =∠ADC =3π8,则P (E )=∠ACD ∠ACB =3π8π2=34.易错点3 分不清是排列还是组合致误例3 如图所示,A ,B ,C ,D 是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有多少种?错解 对于有一个中心的结构形式有A 44,对于四个岛依次相连的形式有A 44,∴共有2A 44=48(种).找准失分点 没有分清是排列还是组合. 正解 由题意可能有两种结构,如图:第一种:,第二种:对于第一种结构,连接方式只需考虑中心位置的情况,共有C 14种方法.对于第二种结构,有C 24A 22种方法. ∴总共有C 14+C 24A 22=16(种).易错点4 均匀分组与非均匀分组混淆致误例4 4个不同的小球放入编号为1、2、3、4的4个盒中,则恰有1个空盒的放法共有________种.(用数字作答) 错解 288错误!未找到引用源。
2015届高考数学(理)二轮复习专题综合检测试题:不 等 式(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“a >b >0”是“ab<a 2+b22”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:由a >b >0 ab <a 2+b 22,而ab <a 2+b22a ,b ∈R 且a≠b,但不能推出a >b >0.答案:A2.下列函数中,y 的最小值为4的是( ) A .y =x +4x B .y =sin x +4sin x (0<x <π)C .y =e x+4e x D .y =log 2x +4log 2x解析:A 成立需x >0;B 取不到等号;D 成立需x >1. 答案:C3.不等式4x 2-12x +9≤0的解集为( )A .B .RC.⎩⎨⎧⎭⎬⎫x|x≠ 32 D.⎩⎨⎧⎭⎬⎫32答案:D4.不等式x -1x ≥2的解集为( )A .[-1,0)B .[-1,+∞)C . (-∞,-1]D .(-∞,-1]∪(0,+∞)解析:x -1x ≥2x -1x -2≥0 -x -1x≥0 ⎩⎪⎨⎪⎧x (x +1)≤0,x ≠0 -1≤x <0.答案:A5.若不等式mx 2+x +n>0的解集是{x|-13< x <12},则m ,n 分别是( )A .6,-1B .-6,-1C .6,1D .-6,1答案:D6.下列函数中,最小值是2的是( ) A .y = 2x+2-xB .y =x 2+2+1x 2+2C .y =sin x +1sin x ,x ∈⎝⎛⎭⎪⎫0,π2D .y =x 2+2x答案:A7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表所示.植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x 亩,y 亩,总利润为z 万元,则目标函数为z =(0.55×4x-1.2x)+(0.3×6y -0.9y)=x +0.9y.线性约束条件为⎩⎪⎨⎪⎧x +y≤50,1.2x +0.9y≤54,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y≤50,4x +3y≤180,x ≥0,y ≥0,作出不等式组⎩⎪⎨⎪⎧x +y≤50,4x +3y≤180,x ≥0,y ≥0表示的可行域(如图),易求得点A(0,50),B(30,20),C(45,0). 平移直线z =x +0.9y ,可知当直线z =x +0.9y 经过点B(30,20),即x =30,y =20时,z 取得最大值,且z max =48 万元.答案:B8.(2014·湖北卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≤4,x -y≤2,x ≥0,y ≥0,则2x +y 的最大值是( )A .2B .4C .7D .8解析:不等式组表示的平面区域如图的四边形OABC(包括边界),解方程组⎩⎪⎨⎪⎧x -y =2,x +y =4,得点B(3,1),令z =2x +y ,平移直线z =2x +y 经过点B 使得z 取最大值,即z max =2×3+1=7.故选C.答案:C9.已知向量a =(x ,2),b =(1,y),其中x >0,y >0.若a·b =4,则1x +2y 的最小值为( )A.32 B .2 C.94 D .2 2 答案:C10.(2013·新课标Ⅱ卷)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y≤3,y ≥a (x -3).若z =2x +y的最小值为1,则a =( )A.14B.12 C .1 D .2 解析:本题可先画出可行域,然后根据图形确定出最小值点进行解答.作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11. 已知x >2,则2x2x -2的最小值是________.解析:2x 2x -2=2(x -2)2+8(x -2)+8x -2=2(x -2)+8x -2+8≥22(x -2)·8x -2+8=16,当且仅当2(x -2)=8x -2即x =4时等号成立.答案:1612.(2014·福建卷)已知圆C :(x -a)2+(y -b)2=1,设平面区域Ω=⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0,若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为________.解析:a 2+b 2即圆心(a ,b)到原点O 距离的平方.画出可行域,由已知,当圆心为A(6,1)时,|OA|最大,此时(a 2+b 2)max =62+11=37.答案:3713.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.答案:(0,8)14.若不等式x 2-(2a +1)x +a 2+a<0的解集为A ,不等式x 2-5x +4≥0的解集为B ,且AB ,则实数a 的取值范围是________.答案:(-∞,0]∪[4,+∞)三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知函数y =(k 2+4k -5)x 2+4(1-k)x +3的图象都在x 轴上方,求实数k 的取值范围.解析:①由k 2+4k -5=0,得k =-5或k =1, 当k =1时,y =3,满足题意; 当k =-5时,y =24x +3,不合题意. ②当k 2+4k -5≠0,即k≠-5且k≠1时, 函数的图象都在x 轴上方,则⎩⎪⎨⎪⎧k 2+4k -5>0,Δ=16(1-k )2-12(k 2+4k -5)<0, 解得1<k <19.综上所述,k 的取值范围是(1,19).16. (12分) 已知直线过点P(3,2)且与x 轴正半轴,y 轴正半轴分别交于A 、B 两点. (1)求△AOB 面积的最小值及此时直线l 方程(O 为原点); (2)求直线l 在两坐标轴上截距之和的最小值.解析:(1)设直线l 的方程x a +yb =1(a >0,b >0).则3a +2b=1≥26ab,ab ≥26,ab ≥24.S =12ab ≥12. 仅当3a =2b =12,即a =6,b =4,S min =12.此时l :x 6+y4=1,即2x +3y -12=0.(2)∵3a +2b =1,∴a +b =⎝ ⎛⎭⎪⎫3a +2b (a +b)=5+3b a +2a b ≥5+2 6. 仅当3b a =2ab 时,即a =3+ 6 ,b =2+6时,(a +b)min =5+2 6.17.(14分)设f(x)=3ax 2+2bx +c ,若a +b +c =0,f(0)>0,f(1)>0,求证: (1)a >0且-2<ba<-1;(2)方程f(x)=0在(0,1)内有两个实根.证明:(1)∵f(0)>0,f(1)>0,∴⎩⎪⎨⎪⎧c >0,3a +2b +c >0. 又∵a+b +c =0,∴b =-a -c ,代入不等式组得a >c >0. 要证-2<ba<-1,∵a >0,∴只需证-2a <b <-a ,即需证⎩⎪⎨⎪⎧2a +b >0,a +b <0.又∵a+b =-c <0,∴2a +b =a +(a +b)=a -c >0. ∴原不等式成立,即-2<ba <-1.(2)证法一 f ⎝ ⎛⎭⎪⎫12=3a4+b +c =-14a <0,又因为f(0)>0,f(1)>0,所以f ⎝ ⎛⎭⎪⎫12·f(0)<0,f ⎝ ⎛⎭⎪⎫12·f(1)<0,且f(x)为连续函数,所以方程f(x)=0在区间⎝ ⎛⎭⎪⎫0,12与⎝ ⎛⎭⎪⎫12,1内分别有一个实根,故方程f(x)=0在(0,1)内有两个实根.证法二 ∵-2<ba <-1,∴对称轴x =-b 3a ∈⎝ ⎛⎭⎪⎫13,23,又∵b=-a -c.∴Δ=4b 2-12ac =4(-a -c)2-12ac =4(a 2+c 2-ac)>0. 由⎩⎪⎨⎪⎧f (0)>0,f (1)>0,Δ>0,得方程f(x)=0在(0,1)内有两个实根.18. (14分)某公司计划2015年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500 元/分钟和200 元/分钟.假定甲、乙两个电视台为该公司做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大收益是多少万元?分析:先列出约束条件,建立目标函数;然后求解.解析:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,收益为z 元.由题意得⎩⎪⎨⎪⎧x +y≤300,500x +200y≤90 000,x ≥0,y ≥0,目标函数z =3 000x +2 000y.二元一次不等式组等价于⎩⎪⎨⎪⎧x +y≤300,5x +2y≤900,x ≥0,y ≥0,作二元一次不等式组所表示的平面区域,即可行域,如右图. 作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,从图中可知,当直线过点M 时,目标函数取得最大值.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200. ∴点M 的坐标为(100,200).∴z max =700 000 元,即该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,才能使公司的收益最大,最大收益是70万元.19. (14分)某厂家拟在2015年举行促销活动,经调查测算,该产品的年销售量(即该产品的年产量)x 万件与年促销费用m 万元(m≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2015年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2015年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2015年的促销费用投入多少万元时,厂家的利润最大?解析:(1)由题意可知当m =0时,x =1 万件, ∴1=3-kk =2,∴x =3-2m +1.每件产品的销售价格为1.5×8+16xx元,2015年的利润y =x·⎣⎢⎡⎦⎥⎤1.5×8+16x x -(8+16x +m)=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m≥0).(2)当m≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1m =3 万元时,y max =21 万元.∴促销费用投入3 万元时,厂家的利润最大.20.(14分)已知函数f(x)=x2ax +b (a ,b 为常数)且方程f(x)-x +12=0有两个实根为x 1=3,x 2=4.(1)求函数f(x)的解析式;(2)设k >1,解关于x 的不等式:f(x)<(k +1)x -k2-x .解析:(1)将x 1=3,x 2=4分别代入方程 x2ax +b -x +12=0得⎩⎪⎨⎪⎧93a +b =-9,164a +b =-8,解得⎩⎪⎨⎪⎧a =-1,b =2.所以f(x)=x 22-x(x≠2).(2)不等式即为x 22-x <(k +1)x -k2-x ,可化为x 2-(k +1)x +k2-x <0,即(x -2)(x -1)(x -k)>0.①当1<k <2时,解集为{}x|1<x <k 或x >2;②当k =2时,不等式化为(x -2)2(x -1)>0,解集为{}x|x >1且x≠2;③当k >2时,解集为{}x|1<x <2或x >k .。
一、选择题:1.(北京2)若x ,y 满足010x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .1C .32D .22.(福建5)若变量x ,y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则2z x y =-的最小值等于 ( )A .52-B .2-C .32- D .2 3.(广东6)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x ,则y x z 23+=的最小值为( )A .531 B .6 C .523 D .4 4.(福建文5)若直线1(0,0)x y a b a b +=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .55.(湖南文7)若实数a ,b满足12a b+=,则ab 的最小值为( ) AB .2C .D .46.(浙江文6)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++7.(重庆文10)若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43D .38.(福建文10)变量x ,y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .29.(山东6)已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .3B .2C .2-D .3-二、填空题:1.(新课标2,14)若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.2.(新课标1,15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .33.(天津文12)已知0a >,0b >,8ab =,则当a 的值为 时()22log log 2a b ⋅取得最大值.4.(重庆文14)设,0a b >,5a b +=________.5.(山东文14)定义运算“⊗ ”:()22,,0x y x y x y R xy xy-⊗=∈≠,当0,0x y >>时,()2x y y x ⊗+⊗的最小值为 .6.(浙江文14)已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .7.(浙江14)若实数x ,y 满足221x y +≤,则2263x y x y +-+--的最小值是 .3答案:D A C C C ;B B C B ;32,3,4,,15,3。
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2 B.8 C.4 D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2 B.8 C.4 D.10【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣===36,故R=6,则球O的表面积为4πR2=144π,AOB故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【分析】通过S n﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
精品题库试题理数1. (2014江西,11(1),5分) (1)(不等式选做题)对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为()A.1B.2C.3D.41.C1.∵|x-1|+|x|≥|(x-1)-x|=1,|y-1|+|y+1|≥|(y-1)-(y+1)|=2,∴|x-1|+|x|+|y-1|+|y+1|≥3,当且仅当x∈,y∈时,|x-1|+|x|+|y-1|+|y+1|取到最小值3,故选C.2.(2014安徽,9,5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.-1或5C.-1或-4D.-4或82.D2.f(x)=|x+1|+|2x+a|=|x-(-1)|++,在x轴上取点A(-1,0),B,P(x,0),则f(x)=|PA|+|PB|+|PB|≥|AB|=f==3,∴|a-2|=6,即a=8或-4.故选D.3.(2014辽宁,12,5分)已知定义在上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈,且x≠y,有|f(x)-f(y)|<|x-y|.若对所有x,y∈,|f(x)-f(y)|<k恒成立,则k的最小值为()A. B. C. D.3.B3.当x=y时,|f(x)-f(y)|=0.当x≠y时,当|x-y|≤时,依题意有|f(x)-f(y)|<|x-y|≤;当|x-y|>时,不妨设x<y,依题意有|f(x)-f(y)|=|f(x)-f(0)+f(1)-f(y)|≤|f(x)-f(0)|+|f(1)-f(y)|<|x-0|+|1-y|=-(y-x),又y-x>,∴|f(x)-f(y)|<-×=.综上所述,对所有x,y∈,都有|f(x)-f(y)|<.因此,k≥,即k的最小值为,故选B.4.(2014湖北八市高三下学期3月联考,10) 实数a i(i=1,2, 3,4, 5,6)满足(a2-a1)2+(a3-a2)2+(a4-a3)2+(a5-a4)2+(a6-a5)2=1则(a5+a6)-(a1+a4)的最大值为( )A.3 B.2 C. D.14. B4. 因为, 所以,即.5. (2014重庆,16,5分)若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是________.5.5.令f(x)=|2x-1|+|x+2|,易求得f(x)min=,依题意得a2+a+2≤⇔-1≤a≤.6. (2014湖南,13,5分)若关于x的不等式|ax-2|<3的解集为x-<x<,则a=________. 6.-36.依题意,知a≠0.|ax-2|<3⇔-3<ax-2<3⇔-1<ax<5,当a>0时,不等式的解集为,有此方程组无解.当a<0时,不等式的解集为,从而有解得a=-3.7.(2014重庆一中高三下学期第一次月考,16)若关于实数的不等式无解,则实数的取值范围是。
7.7. 当时,可得,令t=,欲使无解,只需使无解即可;只需,可得;当时,对也能使不等式无解,综上可得.8. (2014重庆杨家坪中学高三下学期第一次月考,16) 若的最小值为3, 则实数的值是______________.8. 2或88.因为,即,解得或.9. (2014山东实验中学高三第一次模拟考试,12) 设函数的图象关于点中心对称,则的值为_______.9.或9. 由已知可得,解得.10. (2014重庆铜梁中学高三1月月考试题,15) 若关于的不等式的解集为,则实数的取值范围是_________.10.10. 由绝对值的几何意义知,要不等式的解集为,所以实数的取值范围是.11.(2014江西红色六校高三第二次联考理数试题,15(2) )(不等式选讲选做题)对于任意实数,不等式恒成立时,若实数的最大值为3,则实数的值为.11.(2)答案4或-811. 由题意可得的最小值为3,当时,,由此可知当时其有最小值,由题意得,解得;当时,,由此可知当时其有最小值,由题意得,解得;综上可得m可取4或-8.12.(2014江西重点中学协作体高三第一次联考数学(理)试题,15(2))(不等式选做题)在实数范围内,不等式的解集为.12.12. 不等式等价于或或,解得.13.(2014吉林实验中学高三年级第一次模拟,16)设函数f(x) 的定义域为D,如果存在正实数k,使对任意x D,都有x+k D,且f(x+k) > f(x) 恒成立,则称函数f(x) 为D上的“k型增函数” 。
已知f(x) 是定义在R上的奇函数,且当x> 0时,,若f(x) 为R上的“2014型增函数” ,则实数a的取值范围是______.13.13. ∵f(x)是定义在R上的奇函数,且当x>0时,,∴当x<0时,可得f(x) =-|x+a|+2a,又f(x)为R上的“2014型增函数” ,(1)当x>0时,由定义有|x+2014-a|-2a>|x-a|-2a,即|x+2014-a|>|x-a|,其几何意义为到点a小于到点a-2014的距离,由于x>0故可知a+a-2014<0得a<1007;(2)当x<0时,分两类研究,若x+2014<0,则有-|x+2014+a|+2a>-|x+a|+2a,即|x+a|>|x+2014+a|,其几何意义表示到点-a的距离小于到点-a-2014的距离,由于x<0,故可得-a-a-2014>0,得a<1007; 若x+2014>0,则有|x+2014-a|-2a>-|x+a|+2a,即|x+a|+|x+2014-a|>4a,其几何意义表示到到点-a的距离与到点a-2014的距离的和大于4a,当a≤0时,显然成立,当a>0时,由于|x+a|+|x+2014+a|≥|-a-a+2014|=|2a-2014|,故有|2a-2014|>4a,必有2014-2a>4a,解得. 综上可得.14. (2014重庆五区高三第一次学生调研抽测,16) 若函数的定义域为,则实数的取值范围为.14.14. 据题意,不等式恒成立,所以.又,所以.15.(2014江苏苏北四市高三期末统考, 10) 已知函数,则不等式的解集为▲.15.15. 当时,,当时,,此时函数单调递增,由,解得,由图象知,要不等式成立,则,即,故不等式的解集为.16. (2014重庆七校联盟, 16) 在实数范围内,不等式的解集为.16.16. 由,则,即,,故不等式的解集为.17. (2014陕西宝鸡高三质量检测(一), 15C) (不等式选做题) 不等式对任意实数恒成立,则实数的取值范围为_________________.17.17. ,,解得.18.(2014福建,21(3),7分) (3)(本小题满分7分)选修4—5:不等式选讲已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.(Ⅰ)求a的值;(Ⅱ)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3.18.查看解析18.(Ⅰ)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当-1≤x≤2时,等号成立,所以f(x)的最小值等于3,即a=3.(Ⅱ)由(Ⅰ)知p+q+r=3,又因为p,q,r是正实数,所以(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=9,即p2+q2+r2≥3.19.(2014江苏,21(D),10分)(本小题满分10分)已知x>0,y>0,证明:(1+x+y2)(1+x2+y)≥9xy.19.查看解析19.因为x>0,y>0,所以1+x+y2≥3>0,1+x2+y≥3>0,故(1+x+y2)(1+x2+y)≥3·3=9xy.20.(2014辽宁,24,10分)选修4—5:不等式选讲设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N. (Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x2≤.20.查看解析20.(Ⅰ)f(x)=当x≥1时,由f(x)=3x-3≤1得x≤,故1≤x≤;当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1.所以f(x)≤1的解集为M=.(Ⅱ)证明:由g(x)=16x2-8x+1≤4得16≤4,解得-≤x≤.因此N=,故M∩N=.当x∈M∩N时, f(x)=1-x,于是x2f(x)+x·2=xf(x)=x·f(x)=x(1-x)=- ≤.21.(2014课标全国卷Ⅱ,24,10分)选修4—5:不等式选讲设函数f(x)=+|x-a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.21.查看解析21.(Ⅰ)由a>0,得f(x)=+|x-a|≥=+a≥2.所以f(x)≥2.(Ⅱ)f(3)=+|3-a|.当a>3时,f(3)=a+,由f(3)<5得3<a<.当0<a≤3时,f(3)=6-a+,由f(3)<5得<a≤3.综上,a的取值范围是.22.(2014课表全国Ⅰ,24,10分)选修4—5:不等式选讲若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.22.查看解析22.(Ⅰ)由=+≥,得ab≥2,且当a=b=时等号成立. 故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(Ⅱ)由(Ⅰ)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.23. (2014山西太原高三模拟考试(一),24) 选修4—5:不等式选讲已知函数(I)解不等式;(Ⅱ)若存在x使得成立,求实数的取值范围.23.查看解析23.24. (2014河北石家庄高中毕业班复习教学质量检测(二),24) 不等式选讲:已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若的解集包含,求的取值范围.24.查看解析24.(Ⅰ)当时,不等式可化为,①当时,不等式为,解得,故;②当时,不等式为,解得,故;③当时,不等式为,解得,故;综上原不等式的解集为或. (5分)(Ⅱ)因为的解集包含,不等式可化为,解得,由已知得,解得,所以的取值范围是. (10分)25. (2014河北唐山高三第一次模拟考试,24) 选修4-5: 不等式选讲已知函数.(Ⅰ)若当时,恒有,求的最大值;(Ⅱ)若当时,恒有求的取值范围. 25.查看解析25.(Ⅰ)若,所以,解得;由,所以,所以,依题意有,,即,故的最大值为1.(6分)(Ⅱ),当且仅当时等号成立.解不等式,解得,所以的取值范围是.(10分)26. (2014贵州贵阳高三适应性监测考试, 24) 选修4-5:不等式选讲设函数(Ⅰ)当=1时,求函数;(Ⅱ)若对任意的实数恒成立,求实数的取值范围.26.查看解析26.(Ⅰ)当时,. (5分)(Ⅱ)对任意的实数恒成立对任意的实数恒成立当时,上式成立;当时,当且仅当即时上式取等号,此时成立.综上,实数的取值范围为. (10分)27. (2014黑龙江哈尔滨第三中学第一次高考模拟考试,24) 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.27.查看解析27. (Ⅰ)不等式的解集是. (5分)(Ⅱ)要证,只需证,只需证而,从而原不等式成立. (10分)28.(2014吉林实验中学高三年级第一次模拟,24)选修4—5: 不等式选讲已知函数。