(完整word)2019年浙江高职考数学试卷

  • 格式:doc
  • 大小:1.37 MB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省单独考试招生文化考试

数学试题卷

本试题卷共三大题,共4页.满分150分,考试时间120分钟.

考生事项:

1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.

一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)

(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)

1. 已知集合{}1,01,

-=A ,{}3,1,1,3--=B ,则=B A A. {-1,1} B. {-1} C. {1} D.Ø

2. 不等式x 2-4x ≤0的解集为

A.[0,4]

B.(0,4)

C.[-4,0)∪(0,4]

D.(-∞,0]∪[4,+∞)

3. 函数()3

1)2ln(-+-=x x x f 的定义域为 A.(2,+∞) B.(0,4) C.(-∞,2]∪[3,+∞) D..(2,3)∪(3,+∞) 4. 已知平行四边形ABCD,则向量BC AB +=

A. BD

B. DB

C.AC

D.CA

5. 下列函数以π为周期的是

A.)8

sin(π-=x y B. x y cos 2= C. x y sin = D.x y 2sin = 6. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是

A. 400

B.380

C. 190

D.40

7. 已知直线的倾斜角为60°,则此直线的斜率为 A.33- B.3- C. 3 D.3

3 8. 若sin α>0且tan α<0,则角α终边所在象限是

A.第一象限

B.笫二象限

C.第三象限

D.第四象限

9. 椭圆标准方程为14422

2=-++t

y t x ,一个焦点为(-3,0),则t 的值为 A. -1 B.0 C. 1 D.3

10. 已知两直线l 1、l 2分别平行于平面β,则两直线l 1、l 2的位置关系为

A.平行

B.相交

C.异面

D.以上情况都有可能

11. 圆的一般方程为x 2+y 2-8x +2y+13=0,则其圆心和半径分别为

A. (4,-1),4

B.(4,-1),2

C.(-4,1),4

D.(-4,1),2

12. 已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率是 A.100001 B.501 C. 1003 D.100

17 13.

a 、

b 、

c 为实数,则下列各选项中正确的是 A.c b c a b a -<-⇔<-0 B.b a b a ->⇔>-0

C.b a b a 220->-⇔<-

D.c b a a c b a >⇔>>>0

14. s in1050°的值为

A. 22

B.2

3 C.21- D.21 15. 双曲线122

22=-b

y a x 的实轴长为10,焦距为26,则双曲线的渐近线方程为 A.x y 513±= B.x y 512±= C.x y 125±= D.x y 13

5±= 16. 方程442+-=x x y 对应曲线的图形是

A. B.

C. D.

17. 若角α的终边经过点(4,-3),则cos2α的值为

A.257

B.2516-

C. 257-

D.25

16 18. 动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是

A.(0,6)

B.(0,5)

C.(0,4)

D.(0,3)

19. “1201912=-k ”是“k=1”的

A.充分不必要条件

B.必要不充分条件

C.充分且必要条件

D.既不充分也不必要条件

20. 某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30

人以上含30人)打七折,按照购票费用最少原则,建立实际游览人数x 与购票费用y(元)的函数关系,以下正确的是

A. ⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3024,1344,240,80

B.⎪⎩

⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3021,1680,210,80 C. ⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3024,1920,240,80 D.⎪⎩

⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3021,2400,210,80

二、填空题(本大题共7小题,每小题4分,共28分)

21. 等比数列4

1,1,4,16,…的第5项是 22. 化简:cos(π+θ)tan(π-θ)=

23. (2x -y)6展开式的第5项为

24. 圆柱的轴截面是边长为3的正方形,则圆柱的体积等于 25. 如图所示,函数y=f (x)的图象关于直线x=8对称,则

f (6) f (13)(填“>”、“<”或“=”)

26. 正数xy 满足Igx+lgy=2,则x+y 的最小值等于

27. 已知椭圆中心在原点且对称轴为坐标轴,它与双曲线132

2

=-y x 有且仅有两个公共点,它们的离心率之积为1,则椭圆标准方程为

三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤) 28. 计算:()25215!33225.01000lg 2sin

-+-÷+--π

29. (本题满分8分)在△ABC 中,∠B=∠C=30°,32=a

(1)求c;(4分)

(2)N 为AC 中点时,求△ABN 的面积.(4分)

30. 已知圆C 的圆心为(-1,1),半径为2

(1)写出圆C 的标准方程;(3分)

(2)试判断直线x+y -1=0与圆C 的位置关系;若相交,求出两交点间的距离.(6分) 31. 已知α、β为第二象限角,且满足3

32sin =α,53sin =β,求