圆锥曲线综合题的解答方法
- 格式:doc
- 大小:63.00 KB
- 文档页数:6
第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。
(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。
(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。
圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。
2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。
a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。
过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。
(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。
2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。
sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。
(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。
浅谈解决圆锥曲线问题的几种方法
圆锥曲线问题是数学中一个非常重要的问题,它涉及到了很多领域的研究。
圆锥曲线指的是一个平面上由一个固定点F(焦点)和一条固定直线l(准线)所确定的点P的轨迹。
其中,圆锥曲线包括了椭圆、双曲线和抛物线等几何图形。
在解决这类问题时,通常会采用几种方法,下面我们将对这些方法进行简单的介绍和讨论。
方法一:几何法
几何法是最常见的解决圆锥曲线问题的方法,它主要是利用几何图形的性质和定理来解决问题。
例如,求解椭圆的焦点坐标时,可以先画出椭圆的两条主轴和中心点,并且由椭圆的定义得知,利用焦距定理可以得到焦点的坐标。
同样的,求解双曲线的渐近线时,可以先求出双曲线的对称轴和焦点,然后利用双曲线的定义和对称性质可以得到渐近线的方程。
这种方法主要利用了几何图形的特定性质和定理,其优点是易于理解和操作,缺点是一些问题不容易用纯几何方法解决。
方法二:向量法
方法三:解析法
综上所述,解决圆锥曲线问题的方法有很多种,每种方法都有其优点和缺点。
在实际应用中,我们可以根据具体问题的特点和难度选择合适的方法,以达到最佳的解决效果。
圆锥曲线专题一、求面积问题方法:利用焦点三角形及定义1、已知椭圆14922=+y x 的左右焦点为F 1、F 2,P 为椭圆上一点, (1)若∠F 1PF 2=900,求△F 1PF 2的面积(2)若∠F 1PF 2=600,求△F 1PF 2的面积2、已知双曲线14522=-y x 的左右焦点为F 1、F 2,P 为双曲线上一点, (1)若∠F 1PF 2=900,求△F 1PF 2的面积(2)若∠F 1PF 2=600,求△F 1PF 2的面积二、求轨迹方程(一)与两个定圆相切的圆心轨迹方程(用圆心距解题)1.一动圆与两圆:012812222=+-+=+x y x y x 和都外切,则动圆的圆心 的轨迹方程是什么?2. 一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。
(二)用代入法求轨迹1.已知圆922=+y x ,从圆上任意一点P 向x 轴作垂线段/PP ,点M 在/PP 上,并且/2MP =,求点M 的轨迹。
2.双曲线2219x y -=有动点P ,12,F F 是曲线的两个焦点,求12PF F ∆的重心M 的轨迹方程。
三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)常用方法:方程的根与系数关系;弦长公式;对焦点弦要懂得用焦半径公式(连结圆锥曲线(包括椭圆,双曲线,抛物线)上一点与对应焦点的线段的长度,叫做圆锥曲线焦半径。
点差法; (一)求相交弦长1.已知椭圆:1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长.2.求直线1y x =+被双曲线2214y x -=截得的弦长;变式:双曲线X 2-22y =1,截得直线Y=x+M 所得的弦长为求M 的(二)中点问题1.已知中点坐标:以定点为中点的弦所在直线的方程(1)过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
圆锥曲线的解题技巧」、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法) :设曲线上两点为(x^yj,(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
2 2如:(1)笃每1(a b 0)与直线相交于A、B,设弦AB中点为M(x o,y o),则有a bX o~~2 a匹kb2k2x(2) 2a2与1(a 0,b 0)与直线I相交于A B,设弦AB中点为M(x o,y o)则有bxoa(3)y2=2px( p>0)与直线l相交于A、B设弦AB中点为M(x o,y o),则有2y o k=2p,即y o k=p.典型例题2给定双曲线X2七1。
过A(2,“的直线与双曲线交于两点p1及p2,求线段P1 P2的中点P的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
2 2典型例题设P(x,y)为椭圆x y2 21上任一点,只(c,o),F2(c,o)为焦点,PF1F2 PF2F1(2)求|PF 『 PF 2I 3的最值。
(3) 直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想, 通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程y 2 p(x 1) (p 0),直线x y t 与x 轴的交点在抛物线准线的右边。
(1) 求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为 A 、B ,且0A 丄0B,求p 关于t 的函数f(t)的表达式。
(4) 圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
圆锥曲线的综合问题直线和圆锥曲线问题解法的一般规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.【一】.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断. 1。
设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由Ax+0(,)0{By c f x y +==,消元。
如消去y 后得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. ②若a ≠0,设Δ=b 2-4ac 。
a .Δ > 0时,直线和圆锥曲线相交于不同两点;b .Δ = 0时,直线和圆锥曲线相切于一点;c .Δ < 0时,直线和圆锥曲线没有公共点.2。
“点差法”的常见题型求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ〉0是否成立.3.直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2| = 或|P 1P 2|= .(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).1+k 2|x 1-x 2|1+1k 2|y 1-y 2|4.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆错误!+错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k=-错误!;在双曲线错误!-错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k =错误!;在抛物线y2=2px (p〉0)中,以P(x0,y0)为中点的弦所在直线的斜率k=错误!.题型一圆锥曲线中的范围、最值问题【例1】已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P、Q两点,设错误!=λ错误!.(1)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;(2)若λ∈错误!,求|PQ|的最大值.[思维启迪](1)可利用向量共线证明直线MQ过F;(2)建立|PQ|和λ的关系,然后求最值.解析:(1)证明设P(x1,y1),Q(x2,y2),M(x1,-y1).∵错误!=λ错误!,∴x1+1=λ(x2+1),y1=λy2,∴y错误!=λ2y错误!,y错误!=4x1,y错误!=4x2,x1=λ2x2,∴λ2x2+1=λ(x2+1),λx2(λ-1)=λ-1,∵λ≠1,∴x2=错误!,x1=λ,又F(1,0),∴错误!=(1-x1,y1)=(1-λ,λy2)=λ错误!=λ错误!,∴直线MQ经过抛物线C的焦点F。
圆锥曲线综合题解题思路“圆锥曲线难学,难于上青天”,“圆锥曲线如鸡肋”等,不仅是学生对圆锥曲线的抱怨,甚至有不少教师对圆锥曲线也颇有微词.圆锥曲线的确有两大令人“生恨”的地方,一是圆锥曲线问题几何关系错综复杂,各种图形交织在一起,“你中有我,我中有你”,大有不把人弄得“眼花缭乱”不罢休的架势;二是运算烦琐,即使参数设好,式子列对,最后的化解过程也让人望而生畏.抱怨归抱怨,鉴于圆锥曲线在高考中的重要地位,我们还是要思考圆锥曲线的解题策略问题.有没有好的方法或者操作程序,能够让圆锥曲线问题变得有章可循,能够让学生对圆锥曲线多一点信心.笔者经过多年的圆锥曲线教学,总结提炼出了“四化”解题策略.下面笔者就结合一道高考题中的圆锥曲线问题,谈谈“四化”策略的操作规则.第一类:向量共线式整体代入法。
例题:已知椭圆E:)0(12222>>=+b a by a x 的离心率为21,21F F ,为椭圆的左右焦点,A为椭圆的上顶点,且△21F AF 为等边三角形(1)求椭圆的标准方程(2)过)(1,1F 的直线交椭圆于N M ,两点,在N M ,直线上任取一点Q ,满足:)且1||0(,,≠≠=-=λλλλQN MQ FN MF 求证:点Q 在134=+yx 上解析:(1)由题可知;21==a c e 由于△21F AF 为等边三角形23=∴a b 3:2222=+=b c b a 得由3,2==∴c a 13422=+∴y x 椭圆方程为:(2)设:M (11,y x )N ),(22y x F )1,1(),(y x Q λ-=MF FN ;QNMQ λ=),1();,-1(2211y x FN y x MF -==)1(121--=-x x λ化简得:112-=-λλx x ①)1(-121--=y y λ化简得:112-=-λλy y ②),),(2211y y x x QN y y x x MQ --=--=(;)(21x x x x -=-λ化简得:)1(12+=+λλx x x ③)(21y y y y -=-λ化简得:)1(12+=+λλy y y ④①⨯③41⨯得:)1(414141221222-=-λλx x x ②⨯④31⨯得:)1(313131221222-=-λλy y y 两式相加得:22241x λ+22231y λ-)3141(2121y x +=)1(412-λx +)1(312-λy 因为A,B 点在椭圆上所以原等式化简得:1-2λ=)31411-2y x +)((λ134=+∴yx Q 的轨迹方程:变试题:(2013年苏州期末考试试题)如图,在平面直角坐标系xOy 中,已知点F 是椭圆2222:1(0)x y E a b a b +=>>的左焦点,A ,B ,C 分别为椭圆E 的右、下、上顶点,满足5FC BA = ,椭圆的离心率为12.(1)求椭圆的方程;(2)若P 为线段FC (包括端点)上任意一点,当PA PB取得最小值时,求点P 的坐标;(3)设点M 为线段BC (包括端点)上的一个动点,射线MF 交椭圆于点N ,若NF FM λ=,求实数λ的取值范围.题型特点与方法归纳:整体代入法法主要针对向量共线式NF FM λ=类型。
圆锥曲线大题解题技巧圆锥曲线是数学中一个重要的几何分支,它包括椭圆、双曲线和抛物线等曲线。
在解决圆锥曲线相关的大题时,掌握一些解题技巧是非常有帮助的。
以下是一些常见的解题技巧:1. 熟悉基本定义和性质:-掌握圆锥曲线的标准方程形式,了解它们的焦点、准线、偏心率等基本性质。
-理解直线与圆锥曲线的位置关系,包括相切、相交和相离。
2. 利用坐标法:-将圆锥曲线问题转化为代数问题,通过建立坐标系,将曲线方程转化为标准形式。
-利用坐标法求解直线与圆锥曲线的交点、弦长、面积等。
3.应用韦达定理:-韦达定理在解决圆锥曲线问题时非常有用,特别是在求解直线与圆锥曲线的交点问题时。
-利用韦达定理可以快速找到交点的坐标。
4. 利用参数方程:-对于某些复杂的圆锥曲线问题,可以尝试使用参数方程来简化问题。
-参数方程可以帮助我们更好地理解曲线的形状和性质。
5. 利用极坐标:-在处理与极点和极线相关的问题时,极坐标方法可以提供简洁的解决方案。
-极坐标方法特别适用于求解与焦点、准线相关的问题。
6. 利用图形工具:-利用几何画板等图形工具可以帮助我们直观地理解圆锥曲线的性质和问题。
-图形工具可以帮助我们验证答案的正确性。
7. 注意特殊情况:-在解决圆锥曲线问题时,要注意特殊点的存在,如顶点、焦点、准线等。
-特殊点的性质往往在解题中起到关键作用。
8. 练习和总结:-定期练习圆锥曲线相关的题目,总结解题方法和技巧。
-学习并掌握常见的解题模式和思路。
通过以上技巧的运用,可以大大提高解决圆锥曲线大题的效率和准确性。
重要的是要理解每个技巧背后的数学原理,这样才能在遇到不同问题时灵活运用。
1
圆锥曲线综合题的解答方法
一.定值(点)问题:将变动元素置于特殊位置求出其定值,然后给与一般证明。
例1、椭圆C:22221xyab(0ab)的右焦点为F(1,0),且点2(1,)2在椭圆C上。
(1)求椭圆C的方程;
(2)已知动直线过点F且与椭圆C交与A、B两点,试问在x轴上是否存在定点Q,
使得716QAQB恒成立?若存在,求出点Q的坐标;若不存在,请说明理由。
2
例2.已知椭圆C:22221xyab(0ab)的焦距为2,且与直线3yx相切。
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A、B,过点(3,0)P的直线与椭圆C交于两点M、
N(M在N的右侧),直线AM、BN相交于点Q,求证:点Q在一条定直线上。
3
4
二.最值(取值范围)问题:先建立目标函数,再求其最值(或值域)。
例3、已知抛物线24yx的焦点为F,过点F的直线交抛物线于A、B两点,
(1)若2AFFB,求直线AB的斜率;
(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面
积的最小值。
5
6
三.存在性问题:假设结论成立,然后再此前提下进行逻辑推理,若推出矛盾,则否定假设;
否则肯定结论。
例4、已知椭圆C:22221xyab(0ab)的离心率63e,椭圆与x轴正半轴交于
点A,直线l过椭圆中心O,且与椭圆交于B、C两点,B(1,1)。
(1)求椭圆C的方程;
(2)如果椭圆上有两点P、Q使PBQ的角平分线垂直于AO,试问是否存在实数
(0)使得PQAC成立?