集合的概念练习题(内含详细答案)
- 格式:doc
- 大小:389.50 KB
- 文档页数:8
集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
高三数学集合的概念试题答案及解析1.设集合,,若,则的值为()A.B.1C.D.0【答案】D【解析】由题意得且,则,,所以.【考点】集合的运算与集合的元素.2.对于集合,定义集合,记集合中的元素个数为.若是公差大于零的等差数列,则=____________.【答案】17【解析】不妨设,由题意,集合中最小项为,最大项为,对任意的,如果,则可取,若,可取,显然由于,有,即,所以.【考点】集合的元素.3.若x∈A,则∈A,就称A是“伙伴关系集合”,集合M=的所有非空子集中具有伙伴关系的集合的个数是________.【答案】3【解析】具有伙伴关系的元素组是-1;,2,所以具有伙伴关系的集合有3个:{-1},,4.若集合A={0,1},B={-1,a2},则“a=1”是“A∩B={1}”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】a=1A∩B={1};A∩B={1}a=±1,故为充分不必要条件.5.已知集合M={1,2,3},N={2,3,4},则M∩N=________.【答案】M∩N={2,3}【解析】M∩N={1,2,3}∩{2,3,4}={2,3}.6.已知全体实数集,集合(1)若时,求;(2)设,求实数的取值范围.【答案】(1);(2).【解析】(1)集合的运算,要先确定集合中的元素时,,,则,并集就是两集合的所有元素组成,要注意几何元素的互异性.(2)即集合A中的元素都在集合B中,所以.试题解析:(1)当时,,则故(2),,若,则【考点】1、集合的运算;2、集合见得关系;3、集合中元素的确定性.7.设集合,,则使M∩N=N成立的的值是()A.1B.0C.-1D.1或-1【答案】C【解析】由于集合中的元素互不相同,所以.又因为M∩N=N,所以.【考点】集合的特征及集合的基本运算.8.已知集合,集合.(1)求集合;(2)若,求实数的取值范围.【答案】(1);(2) .【解析】(1)求集合,要认清这个集合的代表元是什么?这个代表元具有什么性质?也即这人集合实质是什么?象本题中集合实质就是不等式的解集,故我们只要解这个不等式即可,当然分式不等式的解法是移项,把不等式的右边变为0,左边变成若干因式的积或商,再转化为整式不等式,还要注意的转化时要注意等价转化(主要是原分式不等式中分母不能为0);(2)条件,说明,不需要求出,而是利用集合的关系解决问题.试题解析:解:(1)由,得 2分所以 2分(2) 2分2分由,得 2分所以或所以的范围为 2分【考点】(1)分式不等式;(2)子集的性质.9.若集合,则满足条件有个.【答案】3【解析】集合A显然一定含有元素1,2,而元素3,4可以都没有,也可以有一个,但不能两个都含有,故这样的A有3个,实质是这里集合A的个数是集合的真子集的个数.【考点】子集.10.设非空集合满足:当时,有,给出如下三个命题:①若则;②若则;③若则.其中正确命题的是 ( )A.①B.①②C.②③D.①②③【答案】D【解析】①若则,根据“当时,有”可得即,所以正确;②若则或,根据题意可得,所以正确;③若则,所以正确.【考点】集合的概念11.设集合,.(1)当1时,求集合;(2)当时,求的取值范围.【答案】(1);(2).【解析】(1)当时,集合就是函数的定义域,解不等式就可得到集合;(2)由知,集合是不等式的解集,在解不等式时可先化为一元二次不等式,然后对相应方程的根的大小进行讨论,具体化集合,再由确定的取值范围.试题解析:(1)当1时,,由, 3分解得,所以集合; 7分(2)因为,则, 8分由,得.(ⅰ)当时,,显然不满足题意; 10分(ⅱ)当时,,由题意知解得. 13分综上所述,所求的取值范围是. 14分【考点】集合的运算、子集的含义.12.已知集合,则的所有非空真子集的个数是.【答案】【解析】,则,则,即.故中共有9个元素,因此的所有非空真子集的个数是个.【考点】1.集合中元素的确定;2.集合的子集个数.13.若集合则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,,∵,∴,∴,∴是的充分不必要条件.【考点】1.一元二次不等式的解法;2.绝对值不等式的解法;3.集合间的关系;4.充分必要条件. 14.设集合,,,则M中元素的个数为()A.3B.4C.5D.6【答案】B【解析】由题意知,,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B.【考点】集合的概念15.对于E={a1,a2,….a100}的子集X={,,…, },定义X的“特征数列”为x1,x2…,x100,其中==…==1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,0,0,…,0 子集{a1,a3,a5}的“特征数列”的前三项和等于________________;若E的子集P的“特征数列”P1,P2,…,P100满足P1+Pi+1="1," 1≤i≤99;E 的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q1+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为___________.【答案】2;17【解析】(1)子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0…,0,故前3项和为2;(2)依题意,E的子集P的“特征数列”为1,0,1,0,1,0…,1;E 的子集Q的“特征数列”为1,0,0,1,0,0,1,0,0…,1,0;将目标转化为求数列与数列在时有几个公共元素,可知有17个.16.集合的元素个数是 ( )A.1B.2C.3D.4【答案】C【解析】={0,1,2},所以,集合的元素个数是3个,故选C。
集合练习题带答案集合是数学中的基本概念,它描述了一组对象的全体。
以下是一些集合的练习题以及相应的答案,供学生练习和参考。
练习题1:判断下列集合是否正确,并给出理由。
- A = {1, 2, 3, 4}- B = {x | x是偶数}- C = {x | x是小于10的质数}答案1:- A集合正确,因为它包含了四个元素:1, 2, 3, 4。
- B集合正确,它表示所有偶数的集合,满足集合的定义。
- C集合正确,它包含了小于10的所有质数:2, 3, 5, 7。
练习题2:给定集合 A = {1, 2, 3, 4, 5},求以下集合运算的结果。
- A ∩ {2, 4, 6, 8} (A与{2, 4, 6, 8}的交集)- A ∪ {2, 4, 6, 8} (A与{2, 4, 6, 8}的并集)- A - {3, 5} (A与{3, 5}的差集)答案2:- A ∩ {2, 4, 6, 8} = {2, 4},交集包含了A和{2, 4, 6, 8}共有的元素。
- A ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 8},并没有重复元素。
- A - {3, 5} = {1, 2, 4},差集包含了A中除去{3, 5}后剩余的元素。
练习题3:给定集合P = {x | x是大于10的整数},Q = {x | x是小于20的整数},求P ∩ Q。
答案3:P ∩ Q = {x | 10 < x < 20},交集包含了P和Q共有的元素,即大于10且小于20的所有整数。
练习题4:给定集合R = {x | x是偶数},S = {x | x是大于5的整数},求R ∩ S。
答案4:R ∩ S = {6, 8, 10, 12, ..., 18},交集包含了R和S共有的元素,即大于5的所有偶数。
练习题5:给定集合T = {x | x是小于100的质数},求T的元素个数。
答案5:T的元素个数是25,因为小于100的质数有:2, 3, 5, 7, 11,13, ..., 97。
集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。
下面是一些集合的简单练习题以及它们的答案。
练习题1:判断下列集合是否相等。
A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。
集合C和A不相等,因为集合中的元素不允许重复。
练习题2:求集合A和集合B的并集。
A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。
练习题3:求集合A和集合B的交集。
A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。
练习题4:求集合A和集合B的差集。
A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。
练习题5:判断下列集合是否为子集。
A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。
练习题6:求集合A和集合B的补集。
A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。
练习题7:判断下列集合是否为幂集。
A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。
集合B的幂集是{∅, {1}, {2}, {1, 2}}。
集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。
练习题8:求集合A和集合B的笛卡尔积。
A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。
练习题9:求集合A的对称差集与集合B。
集合的练习题及答案集合是数学中的基本概念,它描述了一组具有某种共同属性的元素的全体。
以下是一些集合的练习题及答案,供同学们练习和参考。
练习题1:确定以下集合的元素。
- A = {x | x 是小于10的正整数}- B = {y | y 是大于0且小于5的有理数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9}- B = {所有大于0且小于5的分数和整数,例如1/2, 3/4, 1, 2, 3, 4}练习题2:判断以下两个集合是否相等。
- A = {x | x 是偶数}- B = {2n | n 是自然数}答案2:- A 和 B 是相等的,因为每一个偶数都可以表示为2n(n为自然数)的形式。
练习题3:求集合A和B的并集、交集和差集。
- A = {1, 2, 3, 4, 5}- B = {4, 5, 6, 7, 8}答案3:- 并集A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}- 交集A ∩ B = {4, 5}- 差集 A - B = {1, 2, 3}练习题4:集合C包含所有A和B的元素,但不包含A和B的交集元素,求集合C。
- A = {1, 3, 5, 7}- B = {2, 4, 6, 8}答案4:- C = A ∪ B - (A ∩ B) = {1, 2, 3, 4, 5, 6, 7, 8}练习题5:如果集合D是A和B的子集,且D包含A和B的交集元素,求D的可能形式。
- A = {1, 2, 3}- B = {2, 3, 4}答案5:- D 可以是任何包含2和3的子集,例如:D = {2, 3} 或 D = {2}或 D = {3}练习题6:用描述法表示集合E,它包含所有A和B的元素,但不包含A和B的交集元素。
- A = {x | x 是小于10的正整数}- B = {y | y 是大于5的正整数}答案6:- E = {x | x ∈ A ∪ B 且 x ∉ (A ∩ B)} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}练习题7:如果集合F是A的幂集,求F的元素个数。
数学集合练习题答案一、选择题1. 答案:C解析:集合的定义是由若干个确定的元素组成,可以用大写字母表示。
2. 答案:B解析:空集是不包含任何元素的集合。
3. 答案:A解析:一个集合除了包含自身的元素外,也可以包含其他集合。
4. 答案:D解析:一个集合的子集是指该集合中的元素组成的一个集合。
5. 答案:B解析:并集是指两个集合中所有的元素的集合。
二、填空题1. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有的元素即可。
2. 答案:{1, 2, 3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。
3. 答案:{1, 2, 3}解析:按照集合的定义,列举出所有满足条件的元素即可。
4. 答案:{3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。
5. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有满足条件的元素即可。
三、解答题1. 答案:集合A的元素个数为7个。
解析:集合A中的元素有1, 2, 3, 4, 5, 6, 7,共7个元素。
2. 答案:集合B的元素个数为8个。
解析:集合B中的元素有1, 2, 3, 4, 5, 6, 7, 8,共8个元素。
3. 答案:集合A与集合B的交集为{2, 4, 6}。
解析:集合A与集合B的交集为两个集合中共有的元素组成的集合。
4. 答案:集合A与集合B的并集为{1, 2, 3, 4, 5, 6, 7, 8}。
解析:集合A与集合B的并集是指两个集合中所有的元素的集合。
5. 答案:集合A与集合B的差集为{1, 3, 5, 7}。
解析:集合A与集合B的差集是指在集合A中但不在集合B中的元素组成的集合。
总结:通过本次数学集合练习题,我们复习了集合的基本概念和运算。
集合是由若干个确定的元素组成,可以用大写字母表示。
空集是不包含任何元素的集合。
一个集合的子集是指该集合中的元素组成的一个集合。
并集是指两个集合中所有的元素的集合。
集合测试题及答案一、选择题1. 以下哪个选项不是集合的基本概念?A. 元素B. 子集C. 并集D. 函数2. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 如果集合A={1, 2, 3},那么A的幂集有多少个元素?A. 3B. 4C. 7D. 84. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}5. 对于任意集合A,以下哪个命题是正确的?A. A是A的子集。
B. A是A的真子集。
C. A是A的交集。
D. A是A的并集。
二、填空题6. 集合的三要素包括:________、________、________。
7. 如果集合A={x | x > 0},那么A的补集在实数集R中表示为________。
8. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是________。
三、简答题9. 请解释什么是集合的笛卡尔积,并给出两个集合A={1, 2}和B={a, b}的笛卡尔积。
10. 请描述如何确定一个元素是否属于一个集合。
四、计算题11. 给定集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},请计算A∪B∩C。
12. 如果集合D={x | x^2 - 5x + 6 = 0},请找出D的所有元素。
答案:一、选择题1. D2. B3. D4. A5. A二、填空题6. 确定性、无序性、互异性7. R - A = {x | x ≤ 0 或 x > 0 且x ≠ 1, 2, 3}8. {1, 2, 3, 4}三、简答题9. 集合的笛卡尔积是指两个集合中元素的有序对的集合。
对于A和B,笛卡尔积是A×B = {(1, a), (1, b), (2, a), (2, b)}。
1.集合与元素 一般地,把研究对象称为元素,通常用小写拉丁字母a,b,c,...表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,...表示。
2.集合的特征(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),a∈A ;不属于(),a∈A .(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:自然语言表示法、字母表示法、列举法、描述法、Venn 图图示法.3.集合的基本关系集合与集合:包含关系(子集),或B A ⊆(A 包含于A B ⊇B ,B 含于A ,A>B )(2)子集个数结论:∈含有n 个元素的集合有2n 个子集;∈含有n 个元素的集合有2n -1个真子集;∈含有n 个元素的集合有2n -2个非空真子集.例1:用适当的方法表示下列集合.(1)“BRICS”中所有字母组成的集合;(2)绝对值等于6的数组成的集合;(3)所有三角形组成的集合;(4)直线y =x 上去掉原点的点组成的集合;(5)大于2且小于5的有理数组成的集合;(6)24的所有正因数组成的集合;1.1集合的概念知识讲解典型例题(7)平面直角坐标系内与坐标轴距离相等的点的集合.解:(1)用列举法表示为{B ,R ,I ,C ,S}.(2)因为绝对值等于6的数是±6,所以用列举法表示为{-6,6}.(3)用描述法表示为{x |x 是三角形}或{三角形}.(4)用描述法表示为{(x ,y )|y =x ,x ≠0}.(5)用描述法表示为{x |2<x <5,且x ∈Q }.(6)用列举法表示为{1,2,3,4,6,8,12,24}.(7)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |到y 轴的距离为|x |所以该集合用描述法表示为{(x ,y )||y |=|x |}.例2:下列各组集合中表示同一集合的是( )A .,B .,C .,D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合;对于B ,,,根据集合的无序性,集合表示同一集合;对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,,集合的元素是点,集合不表示同一集合.一、选择题1.下列各组对象中能构成集合的是( C )AB .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品2. 下列命题中正确的是( C ){(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 同步练习∈0与{0}表示同一个集合;∈由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};∈集合{x |4<x <5}可以用列举法表示.A .∈和∈B .∈和∈C .∈D .∈和∈解析:选C ∈中的0不是集合,故∈错;由集合中元素的无序性知∈正确;由集合中元素的互异性知∈错;因为集合{x |4<x <5}表示无限集,它不可以用列举法表示,故∈错.3.下列各组中的M 、P 表示同一集合的是( C )∈M ={3,-1},P ={(3,-1)} ∈M ={(3,1)},P ={(1,3)} ∈M ={y |y =x 2-1},P ={t |t =x 2-1}∈M ={y |y =x 2-1},P ={(x ,y )|y =x 2-1}A .∈B .∈C .∈D .∈解析:选C 在∈中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故∈错误;在∈中,M ={(3,1)},P ={(1,3)}表示的不是同一个点,故∈错误;在∈中,M ={y |y =x 2-1}=[-1,+∞),P ={t |t =x 2-1}=[-1,+∞),二者表示同一集合,故∈正确;在∈中,M ={y |y =x 2-1}表示数集,P ={(x ,y )|y =x 2-1}表示一条抛物线上的点的集合,故∈错误,故选C.4.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +12n ,n ∈N * B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +3n ,n ∈N *C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n -1n ,n ∈N *D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N * 解析:选D 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N *. 5.集合{x |x 2-6x +9=0}中的所有元素之和为( )A .0B .3C .6D .9解析:选B ∈{x |x 2-6x +9=0}={3},故元素之和为3.6.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( B )A .1或-1B .1或3C .-1或3D .1,-1或37.已知M ={(x ,y )|2x +3y =10,x ,y ∈N },N ={(x ,y )|4x -3y =1,x ,y ∈R },则( B )A .M 是有限集,N 是有限集B .M 是有限集,N 是无限集C .M 是无限集,N 是无限集D .M 是无限集,N 是有限集解析:选B 因为M ={(x ,y )|2x +3y =10,x ,y ∈N }={(2,2),(5,0)},所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.8.下列集合中,是空集的是( B )A .B .C .D . {}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y y x x y =-∈R【答案】B 【解析】对于A 选项,,不是空集,对于B 选项,没有实数根,故为空集,对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集.9.集合中的不能取的值的个数是( )A .B .C .D . 【答案】B 【解析】由题意可知,且且,故集合中的不能取的值的个数是个.二、填空题1.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________.【答案】{4,9,16} [由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}.]2. 以下五个写法中:∈{0}∈{0,1,2};∈∈∈{1,2};∈{0,1,2}={2,0,1};∈0∈∈;∈A∩∈=A ,正确的个数有 2 个。
集合练习题及答案在数学中,集合是由一组不同对象组成的。
集合有着重要的概念和性质,它们在各种数学领域和应用中都起着关键作用。
本文将提供一些集合练习题及其答案,以帮助读者巩固和加深对集合的理解。
练习题1:给定两个集合A={1, 2, 3}和B={3, 4, 5},求它们的并集和交集。
答案1:并集:A∪B = {1, 2, 3, 4, 5}交集:A∩B = {3}解析:并集是指包含两个或多个集合中的所有元素的集合。
交集是指两个或多个集合中共有的元素的集合。
根据给定的集合A和B,我们可以看到它们的并集是包含了所有出现在A和B中的元素,交集则是它们共有的元素。
练习题2:设全集为U={1, 2, 3, 4, 5, 6, 7, 8, 9, 10},集合A={1, 3, 5, 7, 9},集合B={2, 4, 6, 8, 10},求A的补集和B的补集。
答案2:A的补集:A' = {2, 4, 6, 8, 10}B的补集:B' = {1, 3, 5, 7, 9}解析:补集是指与给定集合中的所有元素互不相干的元素的集合。
对于集合A的补集,它包含了全集U中不属于集合A的所有元素;对于集合B的补集,它包含了全集U中不属于集合B的所有元素。
练习题3:给定集合C={a, b, c, d, e}和集合D={c, d, e, f, g},求它们的差集和对称差。
答案3:差集:C\D = {a, b}对称差:C△D = {a, b, f, g}解析:差集是指从一个集合中去除另一个集合中相同的元素,得到剩余元素的集合。
对称差是指两个集合的并集减去它们的交集。
根据给定的集合C和D,我们可以看到C\D是由C中不属于D的元素组成的集合,而C△D则是包含了C和D中互不相同的元素。
练习题4:已知集合E={1, 2, 3, 4, 5},集合F={2, 4, 6},集合G={4, 5, 6, 7},求三个集合的并集和交集。
答案4:并集:E∪F∪G = {1, 2, 3, 4, 5, 6, 7}交集:E∩F∩G = {4}解析:对于多个集合的并集,它包含了所有出现在这些集合中的元素;对于交集,它包含了同时出现在所有集合中的元素。
集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∪B。
A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}2. 若集合A={x|x<5},B={x|x>3},则A∩B表示的集合是:A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}3. 集合A={1,2,3},B={4,5,6},A∩B等于:A. {1,2,3}B. {4,5,6}C. 空集D. {1,2,3,4,5,6}4. 集合A={x|x^2-5x+6=0},求A的元素。
A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}5. 若集合A={x|-3≤x≤3},B={x|x>-2},求A-B。
A. {x|-3≤x≤-2}B. {x|-2<x≤3}C. {x|-3<x<-2}D. 空集二、填空题6. 集合{1,2,3}的补集(相对于全集U={1,2,3,4,5})是_________。
7. 若A={x|0<x<10},B={x|-5<x<5},则A∩B=_________。
8. 集合{a,b,c}的幂集含有的元素个数是_________。
9. 集合{1,2}的笛卡尔积{1,2}×{1,2}包含的元素个数是_________。
10. 若A={x|0<x<10},B={x|-5<x<5},且A⊆B,则A的元素个数最多是_________。
三、解答题11. 已知集合A={1,2,3},B={2,3,4},求A∩B,并说明交集的定义。
12. 集合C={x|x^2-4=0},求C,并解释补集的概念。
13. 给定集合D={x|-1<x<2},E={x|x>1},求D∪E,并解释并集的定义。
14. 若F={x|x^2+4x+3=0},求F,并求F相对于全集U={1,2,3,4,5,6}的补集。
集合的概念练习题
学校:___________姓名:___________班级:___________考号:___________
评卷人得分
一、单选题
1.下列选项中,表示同一集合的是()
A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}
C.A={x|–1<x≤1,x∈N},B={1}D.A=∅,
2.下列各项中,不能组成集合的是()
A.所有的正数B.所有的老人
C.不等于0的数D.我国古代四大发明
3.下列对象能构成集合的是( )
①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.
A.①②④B.②⑤
C.③④⑤D.②③④
4.下列说法正确的是()
A.我校爱好足球的同学组成一个集合
B.是不大于3的自然数组成的集合
C.集合和表示同一集合
D.数1,0,5,,,,组成的集合有7个元素
5.下列关于集合的命题正确的有()
①很小的整数可以构成集合
②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;
③1,2,|-|,0.5,这些数组成的集合有5个元素
④空集是任何集合的子集
A.0个B.1个C.2个D.3个
x+=的实数解”中,能够表6.在“①个子较高的人;②所有的正方形;③方程260
示成集合的是( )
A .②
B .③
C .①②③
D .②③
评卷人
得分 二、填空题
7.已知集合A ={x ,,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______.
8.定义集合A -B ={x|x∈A,且x ∉B},若集合A ={x|2x +1>0},集合B ={x|<0},
则集合A -B =____________.
9.在数集{}0,1,2x -中,实数x 不能取的值是______. 10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为
___________________________________.
评卷人
得分 三、解答题
11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.
答案
1.下列选项中,表示同一集合的是
A .A={0,1},B={(0,1)}
B .A={2,3},B={3,2}
C .A={x|–1<x≤1,x∈N},B={1}
D .A=∅,
【答案】B
【解析】
【分析】
利用集合相等的定义直接求解.
【详解】
在A中,A={0,1}是数集,B={(0,1)}是点集,二者不表示同一集合,故A错误;在B中,A={2,3},B={3,2},集合中的元素具有无序性,所以两个集合相等,表示同一集合,故B正确;在C中,A={x|–1<x≤1,x∈N}={0,1},B={1},二者不相等,不表示同一集合,故C错误;在D中,A=∅,={0},二者不相等,不表示同一集合,故D错误.故选B.
【点睛】
本题考查集合相等的判断,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
2.下列各项中,不能组成集合的是
A.所有的正数B.所有的老人
C.不等于0的数D.我国古代四大发明
【答案】B
【解析】
【分析】
根据集合的三要素:确定性、互异性、无序性得到选项.
【详解】
集合中的元素具有确定性,老人的标准不确定,元素不能确定,故所有的老人不能构成集合,故选B.
【点睛】
本题考查集合中元素满足的三要素:确定性、互异性、无序性.
3.下列对象能构成集合的是( )
①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.
A.①②④B.②⑤
C.③④⑤D.②③④
【答案】D
【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.
选D
4.下列说法正确的是()
A.我校爱好足球的同学组成一个集合
B.是不大于3的自然数组成的集合
C.集合和表示同一集合
D.数1,0,5,,,,组成的集合有7个元素
【答案】C
【解析】
【分析】
根据集合的含义逐一分析判断即可得到答案
【详解】
选项A,不满足确定性,故错误
选项B,不大于3的自然数组成的集合是,故错误
选项C,满足集合的互异性,无序性和确定性,故正确
选项D,数1,0,5,,,,组成的集合有5个元素,故错误
故选C
【点睛】
本题考查了集合的含义,利用其确定性、无序性、互异性进行判断,属于基础题。
5.下列关于集合的命题正确的有()
①很小的整数可以构成集合
②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;
③1,2,|-|,0.5,这些数组成的集合有5个元素
④空集是任何集合的子集
A.0个B.1个C.2个D.3个
【答案】B
【解析】
【分析】
运用集合元素的性质和空集的知识来判断命题
【详解】
①很小的整数可以构成集合是错误的,不满足元素确定性,故错误
②集合为,需要求出函数的值域,而
表示的集合为函数图象上的点,所以不是同一集合,故错误
③l,2,,0.5,这些数组成的集合有3个元素,而不是5个元素,故错误
④空集是任何集合的子集正确
综上只有1个命题正确,故选
【点睛】
本题考查了集合元素的性质、集合相等和空集等知识,较为基础
x+=的实数解”中,能够6.在“①个子较高的人;②所有的正方形;③方程260
表示成集合的是()
A.②B.③C.①②③D.②③
【答案】D
【解析】①个子较高的同学,不满足集合中元素的确定性,不能构成集合;②所有的
x的实数解,正方形满足集合元素的确定性,互异性,可以构成集合;③方程2+6=0
能构成集合,故选D.
评卷人得分
二、填空题
7.已知集合A={x,,1},B={x2,x+y,0},若A=B,则x2017+y2018=______.
【答案】-1
【解析】
【分析】
利用集合相等的定义列出方程组,求出x,y,由此能求出结果.
【详解】
∵集合A={x,,1},B={x2,x+y,0},A=B,
∴,解得x=-1,y=0,
则x 2017+y 2018=(-1)2017+02018=-1.
故答案为:-1.
【点睛】
本题考查代数式求和,考查集合相等的性质等基础知识,考查运算求解能力,属于中档题.
8.定义集合A -B ={x|x∈A,且x ∉B},若集合A ={x|2x +1>0},集合B ={x|<0},
则集合A -B =____________.
【答案】{x|x≥2}
【解析】
【分析】
分别求出集合A,B 后,再根据所给的定义求解可得所求的集合.
【详解】 由题意得,, 所以. 故答案为
.
【点睛】 本题考查集合中的新运算问题,考查阅读理解和运算能力,解题的关键是读懂题意,然后再结合新运算进行解题,必要时要结合数轴进行求解.
9.在数集{}0,1,2x -中,实数x 不能取的值是______.
【答案】2,3
【解析】由集合的互异性知: {}0,1,2x -中, 201x -≠,
. 实数x 不能取的值是2,3.
10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为
___________________________________.
【答案】3
x ,因此方程x2=2的正实根能构成集合;【解析】对于①,方程x2=2的正实根为2
对于②,我校高一年级聪明的同学具有不确定性,故不能构成集合;
对于③,大于3小于12的所有整数为4,5,6,7,8,9,10,11,具有确定性,故可构成集合;对于④,函数y=2x的图像上的点具有确定性,故可构成集合。
综上对象①③④能构成集合。
答案:3
评卷人得分
三、解答题
11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.【答案】
【解析】
【分析】
若集合A有且仅有两个子集,则A有且仅有一个元素,即方程
只有一个根,进而可得答案
【详解】
存在满足条件.理由如下:
若集合A有且仅有两个子集,则A有且仅有一个元素,
即方程只有一个根,
①当,即时,
由,解得,满足题意.
②当,由A有且仅有一个元素得
,解得.
综上可得或,
∴所有的的值组成的集合.
【点睛】
本题考查集合元素个数的问题,考查分析问题的能力,解题的关键是由题意得到方程根的个数,然后通过对方程类型的分类讨论得到所求的参数.。