光的衍射习题答案
- 格式:doc
- 大小:609.50 KB
- 文档页数:15
光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。
5.3光的衍射基础训练2021—2022学年高中物理鲁科版(2019)选择性必修第一册一、选择题(共15题)1.关于光现象的叙述,以下说法正确的是()A.太阳光照射下肥皂膜呈现的彩色属于光的干涉B.雨后天空中出现的彩虹属于光的衍射C.通过捏紧的两只铅笔间的狭缝观看工作着的日光灯管,看到的彩色条纹,属于光的色散D.阳光照射下,树影中呈现的一个个小圆形光斑,属于光的衍射现象2.利用图1所示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到如图2中甲和乙两种图样.下列关于P处放置的光学元件说法正确的是A.甲对应单缝,乙对应双缝B.甲对应双缝,乙对应单缝C.都是单缝,甲对应的缝宽较大D.都是双缝,甲对应的双缝间距较大3.如图所示,a、b两种单色光平行地射到平行板玻璃,经玻璃后射出的光线分别为a′、b′,两者间距变窄.下列说法正确的是A.光线a在玻璃中的折射率比光线b大B.光线a在玻璃中的传播速度比光线b小C.做双缝干涉实验时,用光线a产生的干涉条纹间距比b大D.光线b比a容易产生明显的衍射现象4.下列现象中属于光的衍射现象的是()A.太阳光通过透明的装满水的金鱼缸后在地面上形成彩色光带B.通过遮光板上的小孔观察远处明亮的电灯,看到电灯周围有一圈彩色光环C.油滴滴在潮湿水泥路面上形成油膜,在阳光照射下油膜上有一圈圈的彩色光环D.吹出的肥皂泡上出现彩色条纹5.关于光的现象,下列说法正确的是()A.某单色光从真空射入普通玻璃,光线传播速度将增大B.光导纤维传输信号,应用了全反射原理C.刮胡须的刀片的影子边缘模糊不清是光的干涉现象D.在镜头前加装一个偏振片可以增强入射光的强度。
6.如图所示的四种明暗相间的条纹,分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(灰黑色部分表示亮纹).则在下面四个图中从左往右排列,亮条纹的颜色依次是()A.红蓝紫黄B.红紫蓝黄C.紫黄蓝红D.黄紫红蓝7.唐代储光羲的《钓鱼湾》诗句“潭清疑水浅,荷动知鱼散”中“疑水浅”是由于发生了()A.光的反射B.光的折射C.光的干涉D.光的衍射8.下列说法正确的是()A.汽车灯光夜间照着自行车“尾灯”,就变得十分明亮,是利用了光的折射B.当波源与观察者相互远离时,波源的频率会减小C.只有狭缝宽度与波长相差不多或比波长小的情况下,才发生衍射现象D.用透明的标准样板和单色光检查工件平面的平整度,利用了光的干涉9.如图,a、b两图是由单色光分别入射到a圆孔和b圆孔形成的图像,由两图可以得出()A.a图是衍射图像,a孔直径小于b孔直径B.a图是干涉图像,a孔直径大于b孔直径C.b图是衍射图像,a孔直径小于b孔直径D.b图是干涉图像,a孔直径大于b孔直径10.下列四种情形中,不属于干涉现象的是()A.图1中激光通过双缝形成等距条纹B.图2中肥皂膜的彩色条纹C.图3中圆盘后呈现泊松亮斑D.图4中检查平面的平整程度11.下列现象中,属于光的衍射现象的是()A.雨后天空出现彩虹B.通过一个狭缝观察日光灯可看到彩色条纹C.镀膜后,望远镜的镜头透入光的亮度增强D.海市蜃楼12.关于甲、乙、丙三个光学现象,下列说法正确的是()甲:激光束通过双缝产生明暗条纹乙:单色光通过劈尖空气薄膜产生明暗条纹丙:激光束通过细丝产生明暗条纹A.三个现象中产生的明暗条纹均为干涉条纹B.甲中,双缝的间距越大,条纹间距越大C.乙中,若被检查平面上有个凹陷,此处对应条纹会向右凸出D.丙中,如果屏上条纹变宽,表明抽制的丝变细了13.下列说法正确的是()A.物体做受迫振动时,驱动力频率越高,受迫振动的物体振幅越大B.医生利用超声波探测病人血管中血液的流速应用了多普勒效应C.两列波发生干涉,振动加强区质点的位移总比振动减弱区质点的位移大D.树荫下的太阳光斑大多成圆形是因为光的衍射14.下列所示的图片、示意图或实验装置图大都来源于课本,则下列判断错误是()A.甲图是薄膜干涉的图像,照相机、望远镜的镜头镀的一层膜是薄膜干涉的应用B.乙图是小孔衍射的图样,也被称为“泊松亮斑C.丙图是在平静无风的海面上出现的“蜃景”,上方是蜃景,下方是景物D.丁图是衍射图像,其最明显的特征是条纹间距不等15.在五彩缤纷的大自然中,我们常常会见到一些彩色光现象,下列现象中,属于光的衍射现象的是()A.雨后天空出现彩虹B.肥皂泡在阳光照射下呈现彩色C.雨后公路上的油膜在阳光照射下出现彩色条纹D.通过一狭缝观察日光灯看到彩色条纹二、填空题(共4题)16.光通过单缝发生衍射时,衍射条纹是一些________的条纹,中央条纹最________、最________,离中央条纹越远,亮条纹的宽度越_________,亮度越________.17.用单色平行光照射狭缝,当缝很窄时,光没有沿直线传播,它绕过了缝的边缘,传播到了_______的地方.这就是光的衍射现象。
第5节 光的衍射一、光的衍射和发生明显衍射的条件1.在用水波槽做衍射实验时,若打击水面的振子振动频率是5Hz ,水波在水槽中的传播速度为0.05m/s ,为观察到明显的衍射现象,小孔的直径d 应为( )A .10cmB .50cmC .d>10cmD .d<1cm【答案】D 【详解】水波的波长为0.01m 1cm v f λ===要发生明显的衍射现象,障碍物或空的尺寸应与波长相差不多或比波长小,D 正确。
故选D 。
2.如图所示是通过用两个刀片组成的宽度可以调节的狭缝观察日光灯光源时所看到的四个现象,当狭缝宽度从0.8mm 逐渐变小时,所看到的四个图像的顺序是( )A .bacdB .badcC .abcdD .abdc【答案】C 【详解】当孔、缝的宽度或障碍物的尺寸与波长相近甚至比波长更小时即能发生明显的衍射。
显然0.8 mm 大于光的波长,故不能发生明显的衍射现象,根据光的直线传播的原理,此时我们看到的应该是条纹状的光斑,即图象a ,但随孔缝的宽度的减小,光斑的面积逐渐减小,在发生衍射前看到图象b;当发生衍射时,随狭缝的宽度逐渐变小时衍射条纹的间距逐渐变大,而条纹间距最小的是c,条纹间距最大的是d,所以先观察到c,再观察到d。
综上所述当狭缝宽度从0.8 mm逐渐变小时我们依次看到的四个图象的顺序是abcd。
故选C。
二、光的各种衍射3.如图所示,甲、乙、丙、丁四个图是单色光形成的干涉或衍射图样,根据各图样的特点可知()A.甲图是光的衍射图样B.乙图是光的干涉图样C.丙图是光射到圆孔后的干涉图样D.丁图是光射到圆板后的衍射图样【答案】D【详解】A.甲图中条纹间距相等,是光的双缝干涉图样,故A错误;B.乙图中中间亮条纹最宽,向外条纹变窄,间距变小,是光的单缝衍射图样,故B错误;C.丙图为圆孔衍射图样,故C错误;D.丁图是光射到圆板后的衍射图样(光照射在小圆盘上却出现中间亮斑),故D正确。
思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。
对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。
2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。
由此可知,这时人眼看到的是夫琅和费衍射图样。
3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。
答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。
离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。
(B)光强之和。
(C)振动振幅之和的平方。
(D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。
选(D)。
5波长为?的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o,则缝宽的大小( )(A) a =?。
(B) a =?。
(C)a =2?。
(D)a =3?。
答:[ C ]6波长为?的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30?,则缝宽a 等于( )(A) a =? 。
(B) a =2?。
(C) a =23?。
(D) a =3?。
答:[ D ]7在单缝夫琅和费衍射实验中波长为?的单色光垂直入射到单缝上,对应于衍射角为30?的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) ? 。
(B) ?。
(C) 2?。
(D) 3?。
答:[ D ]8在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度a=4?的单缝上,对应于衍射角为30?的方向,单缝处波面可分成的半波带数目为( ) (A)2个。
光的干涉衍射试题(含答案)一、光的干涉衍射选择题1.增透膜的应用)关于光学镜头增透膜,以卞说法中正确的是()A. 增透膜是为了减少光的反射损失,增加透射光的强度B增透膜的厚度等于入射光在真空中波长町c.增透膜的厚度等于入射光在薄膜中波长的;4D. 因为增透膜的厚度一般适合绿光反射时相互抵消,红光、紫光的反射不能完全抵消,所以涂有增透膜的镜头呈淡紫色E. 涂有增透膜的镜头,进入的光线全部相互抵消,因此这种镜头的成像效果较好2.关于下列光学现象,正确的说法是()A. 水中蓝光的传播速度比红光快B. 光从空气射入玻璃时可能发生全反射C. 在卅边观察前方水中的一条鱼,鱼的实际深度比看到的要深D. 分别用蓝光和红光在同一装置上做双缝干涉实验,用红光时得到的条纹间距较窄。
3.在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),已知红光与绿光的频率、波长均不相等,这时().A. 只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失B. 红色和绿色的双缝干涉条纹消失,其他颜色的双缝干涉条纹仍然存在C. 任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D. 屏上无任何光亮4."牛顿坏"又称“牛顿圈”,如图甲所示。
牛顿坏的上表面是半径很大的玻璃球冠的平面,下表面是球冠的凸面,其工作原理为"薄膜干涉"。
可以用来判断透镜表面曲率半径和液体折射率等。
把牛顿坏与玻璃面接触,在口光下或用白光照射时,可以看到明暗相间的彩色圆环;若用单色光照射,则会出现一些明暗相间的单色圆环,如图乙所示。
它们是由球面和被检测面上反射的光相互干涉而形成的条纹,这些圆环的分布情况与球冠半径及被测物品的表面情况有关。
以下分析正确的是甲乙A. 圆坏的间距大小与球冠半径大小无关B. 球冠的半径越人,圆环的间距越小C. 若观察到的是规则圆环,则被检测的面是均匀、对称的D. 被检测的面必须是平的5. 下列说法中正确的是oA. 光从一种介质进入另一种介质时,其频率不变B. 对同一种光学材料,不同颜色的光在该材料中的传播速度相同C. 雨后路面上的油膜呈现彩色,是光的干涉现彖D. 光学镜头上的增透膜是利用光的衍射现象E. 光纤通信及医用纤维式内窥镜都是利用了光的全反射原理6. 把一个曲率半径很人的凸透镜的弯曲表面压在另一个玻璃平画上,让单色光从上方射入如图(甲),这时可以看到亮暗相间的同心圆如图(乙).这个现象是牛顿首先发现的,这些同心圆叫做牛顿坏,为了使同一级圆环的半径变大(例如从中心数起的第二道圆坏),则应()人射光MHIH(甲)(乙、A. 将凸透镜的曲率半径变人B. 将凸透镜的曲率半径变小C. 改用波长更长的单色光照射D. 改用波长更短的单色光照射7. 图甲是用光的干涉法来检查物体平面平整程度的装置,其中A为标准平板,B为被检查其平面的物体,C为入射光,图乙和图丙分别为两次观察到的干涉条纹,卞列说法正确的是一。
光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。
光的衍射答案 The document was prepared on January 2, 2021第7章 光的衍射一、选择题1(D),2(B),3(D),4(B),5(D),6(B),7(D),8(B),9(D),10(B)二、填空题(1). 1.2mm ,3.6mm(2). 2, 4(3). N 2, N(4). 0,±1,±3,.........(5). 5(6). 更窄更亮(7).(8). 照射光波长,圆孔的直径(9). ×10-4(10).三、计算题1. 在某个单缝衍射实验中,光源发出的光含有两种波长1和2,垂直入射于单缝上.假如1的第一级衍射极小与2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合解:(1) 由单缝衍射暗纹公式得由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ=(2) 211112sin λλθk k a == (k 1 = 1, 2, ……)222sin λθk a = (k 2 = 1, 2, ……)若k 2 = 2k 1,则1 = 2,即1的任一k 1级极小都有2的2k 1级极小与之重合.2. 波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a = mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f = m ,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度 x 0;(2) 第二级暗纹离透镜焦点的距离x 2解:(1) 对于第一级暗纹,有a sin 1≈因 1很小,故 tg 1≈sin 1 = / a故中央明纹宽度 x 0 = 2f tg 1=2f / a = cm(2) 对于第二级暗纹,有 a sin 2≈2x 2 = f tg 2≈f sin 2 =2f / a = cm3. 如图所示,设波长为的平面波沿与单缝平面法线成角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角.解:1、2两光线的光程差,在如图情况下为由单缝衍射极小值条件a (sin -sin ) = k k = 1,2,……得 = sin —1( k / a+sin ) k = 1,2,……(k 0)4. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,1=400 nm ,=760 nm (1 nm=10-9 m).已知单缝宽度a =×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知 ()111231221sin λλϕ=+=k a (取k =1 ) f x /tg 11=ϕ , f x /tg 22=ϕ由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ=,a f x /2322λ= 则两个第一级明纹之间距为 a f x x x /2312λ∆=-=∆= cm (2) 由光栅衍射主极大的公式且有 f x /tg sin =≈ϕϕ所以 d f x x x /12λ∆=-=∆= cm5.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1 m 的凸透镜,现以=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求:(1) 透光缝a 的单缝衍射中央明条纹宽度为多少(2) 在该宽度内,有几个光栅衍射主极大解:(1) a sin = k tg = x / f当 x << f 时,ϕϕϕ≈≈sin tg , a x / f = k ,取k = 1有x = f l / a = 0.03 m∴中央明纹宽度为 x = 2x = 0.06 m(2) ( a + b ) sin λk '=='k ( a +b ) x / (f )=取k = 2,共有k = 0,±1,±2 等5个主极大.6. 用一束具有两种波长的平行光垂直入射在光栅上,1=600 nm ,2=400 nm (1nm=10﹣9m),发现距中央明纹5 cm 处1光的第k 级主极大和2光的第(k +1)级主极大相重合,放置在光栅与屏之间的透镜的焦距f =50 cm ,试问:(1) 上述k =(2) 光栅常数d =解:(1) 由题意,1的k 级与2的(k +1)级谱线相重合所以d sin 1=k 1,d sin 1= (k+1) 2 , 或 k 1 = (k +1) 2(2) 因x / f 很小, tg 1≈sin 1≈x / f 2分∴ d = k 1 f / x= ×10-3 cm7. 氦放电管发出的光垂直照射到某光栅上,测得波长= m 的谱线的衍射角为=20°。
光衍射习题、答案与解法一、填空题1.根据惠更斯—菲涅耳原理,若已知光在某时间的波阵面为S ,则S 的前方某点P 的光强取决于波阵面S 上所有面积元发出的子波各自传到P 点( D )(A )振动振幅之和 (B )光强之和 (C )振动振幅之和的平方 (D )振动的相干叠加 2.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变大时,除中央明纹的中心位置不变外,各级衍射条纹 ( A ) (A )对应的衍射角变小 (B )对应的衍射角变大(C )对应的衍射角也不变 (D )光强也不变 参考答案:λϕk a =sin ⎪⎭⎫⎝⎛=-a k λϕ1sin 3.在单缝夫琅禾费单缝衍射实验中,波长λ为的单色光垂直入射到单缝上,对应于衍射角为030的方向上,若单缝处波面可分为6个半波带,则缝宽度a 等于( B )(A )λ (B )λ6 (C )λ2 (D )λ4 参考答案:2sin λϕka = λλλϕλ6212630sin 26sin 20=⨯=⨯==ka4.一束波长为λ的平行单色光垂直入射到一单色AB 上,装置如图1所示,在屏幕P 上形成衍射图样,如果Q 是中央PQCλfALB亮纹一侧第二个暗纹的中心所在位置,则BC 得长度为 ( D )(A )2/λ (B )λ (C )2/3λ (D )λ2 参考答案:λϕk a =sin λλϕ2sin ==k a5. 波长为nm 600=λ)m 10nm 1(9-=的单色光垂直照射到宽mm 3.0=a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕中央明条纹一侧第一个暗条纹和另一侧第一个暗条纹之间的距离为mm 4=∆x ,则凸透镜的焦距f 为 ( C )(A )m 2 (B ) m 1.0 (C )m 1 (D )m 5.0参考答案:⎪⎪⎩⎪⎪⎨⎧==-=∆=-12k x x x x k a f x k k k k λ ()m 1106002103.01042933=⨯⨯⨯⨯⨯=∆=---a x f λ6.一束平行单色光垂直入射在光栅上,当光栅常数()b a +,为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9等级次的明纹均不出现 ( B )(A )a b a 2=+ (B )a b a 3=+(C )a b a 4=+(D )a b a 6=+参考答案:()⎪⎪⎪⎩⎪⎪⎪⎨⎧==='==+963sin sin k k k k a k b a λϕλϕ ===='=+392613k k a b a 7.一束白光垂直照射在一光栅上,在形成的同一级光栅谱中,离中央明纹最近的是 ( A )(A )紫光 (B )绿光 (C )黄光 (D )红光参考答案:()λϕk b a =+sin⎪⎭⎫ ⎝⎛+=-b a k λϕ1sin 红λλ〈3 8.若用衍射光栅准确测定一单色光可见光的波长,在下列各种光栅中选用那一种最为合适?( D )(A )mm 5.0(B ) mm 1(C )mm 01.0(D )mm 100.13-⨯参考答案:()⎪⎪⎩⎪⎪⎨⎧===+21sin πϕλϕk k b a()()mm 107nm 7001107001sin 49--⨯==⨯⨯==+ϕλk b a9.波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上,取⋅⋅⋅⋅±±=2,1,0k ,则决定出现明纹的衍射角θ的公式可写成( C )(A )λθk Na =sin (B )λθk a =sin (C )λθk d =sin (D )λθk Nd =sin 参考答案:()λϕk b a =+sin λϕk d =sin10.提高光仪器分辨率本领的方法是:( B ) ( A )增大透光孔径,增大入射光的波长 ( B )增大透光孔径,减小入射光的波长 ( C ) 减小透光孔径,增大入射光的波长 ( D ) 减小透光孔径,减小入射光的波长 参考答案:λ22.1D R = Dλθ22.1= 二、填空题1.在单缝夫琅禾费衍射实验中,波长nm 400=λ的平行光垂直入射单缝,所用凸透镜焦距m 5.1=f ,第三级暗纹离中央明纹中心m 100.33-⨯,另一波长为0λ的光的第二级暗纹在屏的同一位置上,则单缝的缝宽m 103.5-4⨯=a ,波长nm 0060=λ。
光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。
习题7.1 已知单缝宽度0.6b mm =,使用的凸透镜焦距400f mm '=,在透镜的焦平面上用一块观察屏观察衍射图样.用一束单色平行光垂直照射单缝,测得屏上第4级明纹到中央明纹中心的距离为1.4mm .求:⑴该入射光的波长;⑵对应此明纹的半波带数?解:(1) 单缝衍射的明纹: ()s i n 212b k λθ=+单缝衍射图样的第4级明纹对应的衍射角为: ()()449sin 21241222k bbbλλλθθ≈=+=⨯+=单缝衍射图样的第4级明纹中心的位置为 4449tan 2y f f f bλθθ'''=≈=⨯ ⇒ 429by f λ='20.6 1.49400⨯⨯=⨯84.6710mm -=⨯467nm = (2)对于第4级明纹对应衍射角方向,缝两边光线的光程差为 499sin 22b b b λλθ∆==⨯=对应的半波带数 92922N λλλ∆===7.2 在单缝实验中,已知照射光波长632.8nm λ=,缝宽0.10b mm =,透镜的焦距50f cm '=.求:⑴中央明纹的宽度;⑵两旁各级明纹的宽度;⑶中央明纹中心到第3级暗纹中心的距离?解:(1)所以中央亮纹角宽度为02/b θλ∆=,宽度则为 6002632.810'500 6.3280.1l f mm θ-⨯⨯=∆=⨯= (2)各级亮纹 6632.810'5003.1640.1k l f m m b λ-⨯==⨯= (3)中央明纹中心到第三暗纹中心的距离为 33'9.492y f m m bλ== 7.3 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯=7.4 用590nm λ=的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:根据光栅方程sin ,d k θλ=当90θ=︒时可以得到最多明条纹,所以60.002590103j j -=⨯⨯⇒=所以可见7条明条纹。
Y» = asin&ua— = 0.2 x 10~3 f ? X |-------- =10"6 m=l 000nm=2/i0.4即"2x2牛吟因此,一、选择题1.在单缝衍射实验小,缝宽d = 0.2mm,透镜焦距/=0.4m,入射光波长/l = 500nm,则在距离中央亮纹中心位置2mm处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为儿个半波带?[ ](A)亮纹,3个半波带;(B)亮纹,4个半波带;(C)暗纹,3个半波带;(D)暗纹,4个半波带。
答案:D解:沿衍射方向&,最人光程羌为根据单缝衍射亮、暗纹条件,可判断出该处是暗纹,从该方向上可分为4个半波带。
2.波长为632.8nm的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm,缝与观察屏Z间的距离为D =2.3mo则屏上两侧的两个第8级极小之间的距离/匕为[ ](A) 1.70cm;(B) 1.94cm;(C) 2.18cm;(D) 0.97cm。
答案:B解:第k级暗纹条件为asin^ = Uo据题意有j 2注:总::Ax = 2D tan 0 « 2£>sin 0 = 2D —a代入数据得A c oa 8x632.8x10—9 2Ax = 2x2.3x --------------- -—— =1.94x10 m=1.94cm1.2x10』3.波长为600nm的单色光垂直入射到光栅常数为2.5xl()-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为[ ](A) 0、±1、±2、±3、±4;(B) 0、±1、±3:(C) ±1、±3;(D) 0、±2、±4o答案:B解:光栅公式dsing",最高级次为k祁=色=2.5"():“ (取整数)。
人教版高中物理选修一第4章第5节光的衍射基础一、单项选择题(共6小题;共24分)1. 如图所示的四个图形中,著名的泊松亮斑的衍射图样是A. B.C. D.2. 观察单缝衍射现象时,把缝宽由0.2mm逐渐增大到0.8mm,看到的现象是A. 衍射条纹的间距逐渐变小,衍射现象逐渐不明显B. 衍射条纹的间距逐渐变大,衍射现象越来越明显C. 衍射条纹的间距不变,只是亮度增强D. 以上现象都不会发生3. 一束红光射向一块有双缝的不透光的薄板,在薄板后的光屏上呈现明、暗相间的干涉条纹,现将其中一条窄缝挡住,让这束红光只通过一条窄缝,则在光屏上可以看到A. 与原来相同的明暗相间的条纹,只是明条纹比原来暗些B. 与原来不相同的明暗相间的条纹,而中央明条纹变宽些C. 只有一条与缝宽对应的明条纹D. 无条纹,只存在一片红光4. 关于光的干涉和衍射现象,下述说法正确的是A. 光的干涉现象遵循波的叠加原理,衍射现象不遵循波的叠加原理B. 光的干涉条纹是彩色的,衍射条纹是黑白相间的C. 光的干涉现象说明光具有波动性,光的衍射现象说明光具有粒子性D. 光的干涉和衍射现象都是光波叠加的结果5. 用卡尺观察单缝衍射现象,当缝宽由0.1mm逐渐增大到0.5mm的过程中A. 衍射条纹间距变窄,衍射现象逐渐消失B. 衍射条纹间距变宽,衍射现象越加显著C. 衍射条纹间距不变,亮度增加D. 衍射条纹间距不变,亮度减小6. 如图所示,甲、乙、丙、丁四个图是不同的单色光形成的双缝干涉或单缝衍射图样,分析各图样的特点可以得出的正确结论是A. 甲、乙是光的干涉图样B. 丙、丁是光的干涉图样C. 形成甲图样的光的波长比形成乙图样的光的波长短D. 形成丙图样的光的波长比形成丁图样的光的波长短二、双项选择题(共2小题;共8分)7. 下列关于光的干涉和衍射的叙述中正确的是A. 光的干涉和衍射都遵循光波的叠加原理B. 光的干涉说明光的波动性,光的衍射说明光不是沿直线传播C. 光的干涉呈黑白间隔条纹,光的衍射呈彩色条纹D. 光的干涉遵循光波叠加原理,光的衍射不遵循这一原理8. 关于光的衍射现象,下面说法正确的是A. 红光的单缝衍射图样是红暗相间的直条纹B. 白光的单缝衍射图样是红暗相间的直条纹C. 光照到不透光小圆盘上出现泊松亮斑,说明发生了衍射D. 光照到较大圆孔上出现大光斑,说明光沿直线传播,不存在光的衍射三、多项选择题(共1小题;共4分)9. 关于衍射的下列说法中,正确的是A. 衍射现象中衍射花样的明暗条纹的出现是光干涉的结果B. 双缝干涉中也存在着光衍射现象C. 一切波都可以产生衍射D. 影的存在是一个与衍射现象相矛盾的客观事实答案第一部分1. B【解析】泊松亮斑的图样特点为中心是一个亮点,亮点周围有一个大的阴影区,然后才是明暗相间的条纹。
光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。
光得衍射(附答案)一.填空题1.波长λ= 500nm(1 nm = 10−9 m)得单色光垂直照射到宽度a =0、25 mm得单缝上,单缝后面放置一凸透镜,在凸透镜得焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间得距离为d= 12 mm,则凸透镜得焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹得衍射角很小,若钠黄光(λ1≈589 nm)中央明纹宽度为4、0mm,则λ2 ≈442nm(1 nm= 10−9m)得蓝紫色光得中央明纹宽度为3、0 mm.3.平行单色光垂直入射在缝宽为a= 0、15 mm得单缝上,缝后有焦距为f =400 mm得凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧得两个第三级暗纹之间得距离为8 mm,则入射光得波长为500nm(或5×10−4mm).4.当一衍射光栅得不透光部分得宽度b与透光缝宽度a满足关系 b = 3a 时,衍射光谱中第±4, ±8,…级谱线缺级.5.一毫米内有500条刻痕得平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能瞧到第5级光谱.6.用波长为λ得单色平行红光垂直照射在光栅常数d = 2 μm(1 μm =10−6m)得光栅上,用焦距f=0、500m得透镜将光聚在屏上,测得第一级谱线与透镜主焦点得距离l= 0、1667 m,则可知该入射得红光波长λ=632、6或633nm.7.一会聚透镜,直径为3cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处得点状物体对透镜中心得张角必须不小于2、24×10−5rad.这时在透镜焦平面上两个衍射图样中心间得距离不小于4、47μm.8.钠黄光双线得两个波长分别就是589、00 nm与589、59 nm(1 nm =10−9m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅得缝数至少就是500.9.用平行得白光垂直入射在平面透射光栅上,波长为λ1= 440nm得第3级光谱线将与波长为λ2 =660nm得第2级光谱线重叠(1nm= 10−9 m).10.X射线入射到晶格常数为d得晶体中,可能发生布拉格衍射得最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出得光含有两种波长λ1与λ2,垂直入射于单缝上.假如λ1得第一级衍射极小与λ2得第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长得光所形成得衍射图样中,就是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1asinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1=sinθ2代入上式可得λ1= 2 λ2(2)asinθ1= k1λ1=2 k1λ2(k1=1, 2,…)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2,…)sinθ2= 2 k2λ2/a若k2= 2 k1,则θ1= θ2,即λ1得任一k1级极小都有λ2得2 k1级极小与之重合.12.在单缝得夫琅禾费衍射中,缝宽a= 0、100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜得焦距f= 1、00m.求中央亮纹旁得第一个亮纹得宽度Δx.解:单缝衍射第1个暗纹条件与位置坐标x1为a sinθ1=λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件与位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小) 单缝衍射中央亮纹旁第一个亮纹得宽度Δx1= x2− x1≈f(2 λ/ a−λ/ a)= f λ/ a=1、00×5、00×10−7/(1、00×10−4) m=5、00mm.13.在单缝夫琅禾费衍射中,垂直入射得光有两种波长,λ1 = 400 nm,λ2= 760 nm(1 nm =10−9m).已知单缝宽度a=1、0×10−2cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间得距离.(2)若用光栅常数a=1、0×10-3cm得光栅替换单缝,其它条件与上一问相同,求两种光第一级主极大之间得距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=错误!(2k + 1)λ1= 错误!λ1(取k= 1)a sinφ2=12(2 k+ 1)λ2=\f(3,2)错误!未定义书签。
光的衍射参考解答一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ] [参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度af f f x λϕϕ2sin 2tan 211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。
2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ] [参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。
3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ] [参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多;(D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。
[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。
1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。
根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。
2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。
- 主极大强度会变弱,即主极大上的亮度会减弱。
- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。
请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。
光的衍射一、光的衍射的基础知识1、发生明显衍射的条件只有当障碍物的尺寸跟光的波长相差不多,甚至比光的波长小的时候,衍射现象才会明显.2、衍射图样①单缝衍射a.单色光:明暗相间的不等距(等距、不等距)条纹,中央亮纹最宽最亮,两侧条纹具有对称性.b.白光:中间为宽且亮的白色条纹,两侧是窄且暗的彩色条纹,最靠近中央的是紫光,远离中央的是红光.②圆孔衍射:明暗相间的不等距(等距、不等距)圆环,圆环面积远远超过孔的直线照明的面积.③圆盘衍射:明暗相间的不等距(等距、不等距)圆环,中心有一亮斑称为泊松亮斑.二、衍射与干涉的比较三、习题1、对于光的衍射的定性分析,下列说法中不正确的是()A.只有障碍物或孔的尺寸可以跟光波波长相比甚至比光的波长还要小的时候,才能明显地产生光的衍射现象B.光的衍射现象是光波相互叠加的结果C.光的衍射现象否定了光的直线传播的结论D.光的衍射现象说明了光具有波动性答案 C解析光的干涉和衍射现象说明了光具有波动性,而小孔成像说明了光沿直线传播,而要出现小孔成像现象,孔不能太小,可见光的直线传播规律只是近似的,只有在光波波长比障碍物小得多的情况下,光才可以看做是直线传播的,所以光的衍射现象和直线传播并不矛盾,它们是在不同条件下出现的两种光现象,单缝衍射实验中单缝光源可以看成是无限多个光源排列而成,因此光的衍射现象也是光波相互叠加的结果.2、如图所示的4种明暗相间的条纹,分别是红光、蓝光通过同一个双缝干涉仪形成的干涉图样和黄光、紫光通过同一个单缝形成的衍射图样(黑色部分代表亮纹),那么1、2、3、4四个图中亮条纹的颜色依次是()123 4A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫解析由于双缝干涉条纹是等间距的,而单缝衍射条纹除中央亮条纹最宽最亮之外,两侧条纹亮度、宽度都逐渐减小,因此1、3为双缝干涉条纹,2、4为单缝衍射条纹.又双缝干涉条纹的间距Δx=ldλ,在l、d都不变的情况下,干涉条纹间距Δx与波长λ成正比,红光波长比蓝光波长长,则红光干涉条纹间距比蓝光干涉条纹间距大,即1、3分别对应红光和蓝光.而在单缝衍射中,当单缝宽度一定时,波长越长,衍射越明显,即中央条纹越宽越亮,黄光波长比紫光波长长,则黄光的中央条纹较宽较亮,故2、4分别对应紫光和黄光.综上所述,1、2、3、4四个图中亮条纹的颜色依次是红、紫、蓝、黄,选项B正确.答案 B3、在单缝衍射实验中,下列说法正确的是()A.其他条件不变,将入射光由黄色换成绿色,衍射条纹间距变窄B.其他条件不变,使单缝宽度变小,衍射条纹间距变窄C.其他条件不变,换用波长较长的光照射,衍射条纹间距变宽D.其他条件不变,增大单缝到屏的距离,衍射条纹间距变宽答案ACD解析当单缝宽度一定时,波长越长,衍射现象越明显,条纹间距也越大,黄光波长大于绿光波长,所以条纹间距变窄,A、C正确;当光的波长一定时,单缝宽度越小,衍射现象越明显,衍射条纹间距越宽,B错误;当光的波长一定,单缝宽度也一定时,增大单缝到屏的距离,衍射条纹间距也会变宽,D正确.4、(2011·浙江·18)关于波动,下列说法正确的是()A.各种波均会发生偏振现象B.用白光做单缝衍射与双缝干涉实验,均可看到彩色条纹C.声波传播过程中,介质中质点的运动速度等于声波的传播速度D.已知地震波的纵波波速大于横波波速,此性质可用于横波的预警答案BD解析偏振现象是横波特有的现象,纵波不会发生偏振现象,故选项A错误.用白光做单缝衍射实验和双缝干涉实验看到的都是彩色条纹,故选项B正确.声波在传播过程中,质点在平衡位置附近振动,其振动速度周期性变化,而声波的传播速度是单位时间内声波传播的距离,故选项C错误.地震波的纵波传播速度比横波传播速度大,纵波可早到达地面,能起到预警作用,故选项D正确.5、在光的单缝衍射实验中可观察到清晰的明暗相间的图样,图4的四幅图片中属于光的单缝衍射图样的是()图4A.a、c B.b、c C.a、d D.b、d答案 D6、用单色光通过小圆盘和小圆孔分别做衍射实验,在光屏上得到衍射图形,则()A.用小圆盘时,图形中央是暗的,用小圆孔时,图形中央是亮的B.用小圆盘时,图形中央是亮的,用小圆孔时,图形中央是暗的C.两个图形中央均为亮点的同心圆形条纹D.两个图形中央均为暗点的同心圆形条纹答案 C7、(1)肥皂泡在太阳光照射下呈现的彩色是______现象;露珠在太阳光照射下呈现的彩色是________现象;通过狭缝看太阳光时呈现的彩色是________现象.(2)凡是波都具有衍射现象,而把光看作直线传播的条件是_____________.要使光产生明显的衍射,条件是______________________________________.(3)当狭缝的宽度很小并保持一定时,分别用红光和紫光照射狭缝,看到的衍射条纹的主要区别是____________________________________________________________.(4)如图6所示,让太阳光或白炽灯光通过偏振片P和Q,以光的传播方向为轴旋转偏振片P或Q,可以看到透射光的强度会发生变化,这是光的偏振现象,这个实验表明________________________________________________________________________________________________________________________________________________.图6答案见解析解析(1)肥皂泡呈现的彩色是光的干涉现象,露珠呈现的彩色是光的色散,通过狭缝看太阳光呈现的彩色是光的衍射现象.(2)障碍物或孔的尺寸比波长大得多时,可把光看作沿直线传播;障碍物或孔的尺寸跟波长相差不多或比波长更小时,可产生明显的衍射现象.(3)红光的中央亮纹宽,红光的中央两侧的亮纹离中央亮纹远.(4)这个实验说明了光是一种横波.。
第六章 光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。
解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I6-2 由氩离子激光器发出波长488=λ×0.25mm 。
在位于矩形孔附近正透镜〔5.2=f m 〕焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。
解:中央亮斑边缘的坐标为:63.175.010********±=⨯⨯±=±=-a f x λmm 26.32=x mm 88.425.010********±=⨯⨯±=±=-b f y λmm 76.92=y mm ∴×6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。
为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---⨯=⨯⨯⨯==D λθrad 人眼的最小分辨角为: 4361005.3102105.022.122.1---⨯=⨯⨯⨯==d e λθrad ∴望远镜的放大率应为:50===dDM e θθ 6-4 一个使用汞绿光〔546=λnm 〕的微缩制版照相物镜的相对孔径〔f D /〕为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适?解:照相物镜的最大分辨本领为: 375411054622.1122.116=⨯⨯⨯==-f D N λ/mm ∵380>375∴可以选用每毫米380条线的底片。
6-5 假设要使照相机感光胶片能分辨2 μm 的线距,问 (1) 光胶片的分辨本领至少是每毫米多少线? 〔2〕 照相机镜头的相对孔径D /f 至少有多大? 解:〔1〕由于相机感光胶片能分辨2 μm 的线距,则分辨本领至少为: 500002.01==N 线/毫米 〔2〕可见光一般取中心波长550=λnm 计算,则相机的相对孔径至少为:98.2:150********.122.16=⨯⨯⨯==-N fDλ6-6 借助于直径为2m 的反射式望远镜,将地球上的一束激光〔600=λnm 〕聚焦在月球上某处。
如果月球距地球4×105km 。
忽略地球大气层的影响,试计算激光在月球上的光斑直径。
解:由于衍射效应,反射式望远镜对激光成像的爱里斑角半径为:7901066.321060022.122.1--⨯=⨯⨯==D λθrad 由于角度很小,因此00tan θθ≈∴激光在月球上的光斑直径为:4.1461066.3104780=⨯⨯⨯=='-θl D m6-7 直径为2mm 的激光束〔nm 8.632=λ〕射向1km 远的接收器时,它的光斑直径有多大?如果离激光器150km 远有一长100m 的火箭,激光束能否把它全长照亮? 解:激光束的衍射角为:3610386.02108.63222.122.1--⨯=⨯⨯==D λθrad ∴离激光束1km 远处的光斑直径为: 772.010386.0100022311=⨯⨯⨯==-θl D m离激光束150km 远处的光斑直径为: 8.11510386.010150223322=⨯⨯⨯⨯==-θl D m2D 大于火箭的长度,因此激光束能把它全长照亮。
6-8 一透镜的直径D =2cm ,焦距f =50cm ,受波长500=λnm 的平行光照射,试计算在该透镜焦平面上衍射图象的爱里斑大小。
解:爱里斑直径为:371005.32105005022.1222.12--⨯=⨯⨯⨯⨯=⨯='D f D λcm6-9 波长为550nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为60cm 的会聚透镜将衍射光聚焦于焦平面上进行观察。
求单缝衍射中央亮纹的半宽度。
解:单缝衍射中心亮纹的角半宽度为:rad a 022.0025.0105506=⨯==-λθ∴条纹的半宽度为:32.160022.0=⨯==f e θcm6-10 用波长630=λnm 的激光粗测一单缝缝宽。
假设观察屏上衍射条纹左右两个五级极小的距离是6.3cm ,屏和缝的距离是5m ,求缝宽。
解:衍射条纹第五个极小对应于:πθ5sin 2±=ka∴aa a 361015.3106305arcsin 5arcsin --⨯±≈⨯⨯±=±=λθrad 则左右两个五级极小的距离为:mm mm ad l 6350001015.3223=⨯⨯⨯==-θ ∴缝宽为:5.063515.32=⨯⨯=a mm6-11 波长500=λnm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求:〔1〕衍射图样中央亮纹的半宽度;〔2〕第一亮纹和第二亮纹到中央亮纹的距离;〔3〕第一亮纹和第二亮纹相对于中央亮纹的强度。
解:〔1〕中央亮纹的半角宽度为:02.0025.01050060=⨯==-a λθrad ∴中央亮纹的半宽度为:102.0500=⨯==θf e cm〔2〕第一亮纹的位置对应于πα43.1±=,即:πθ43.1sin 21±=ka∴0286.00286.0arcsin 025.01050043.1arcsin 43.1arcsin 61±≈±=⨯⨯±=±=-a λθrad∴第一亮纹到中央亮纹的距离为: 43.010286.05011=-⨯=-=e fq θcm第二亮纹对应于πα46.2±=∴0492.00492.0arcsin 025.01050046.2arcsin 46.2arcsin 62±≈±=⨯⨯±=±=-a λθrad ∴第二亮纹到中央亮纹的距离为: 46.110492.05022=-⨯=-=e fq θcm〔3〕设中央亮纹的光强为0I ,则第一亮纹的强度为: 020201047.0)43.143.1sin ()sin (I I I I ===ππαα第二亮纹的强度为: 020202016.0)46.246.2sin ()sin (I I I I ===ππαα6-12 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为300mm ,光波波长为632.8nm ,问细丝直径为多少? 解:设细丝的直径为D ,则由题意:DD f 6108.6323005.1-⨯⨯==λ∴127.05.1108.6323006=⨯⨯=-D mm6-13 在双缝的夫琅和费衍射实验中所用的光波的波长500=λnm ,透镜焦距100=f cm ,观察到两相邻亮条纹之间的距离5.2=e mm ,并且第四级亮纹缺级,试求双缝的缝距和缝宽。
解:双缝衍射两相邻亮条纹的距离为: dfe λ=∴缝距为:2.05.21050010006=⨯⨯==-e f d λmm ∵第四级缺级 ∴缝宽为:05.042.04===d a mm 6-14 考察缝宽3108.8-⨯=a cm ,双缝间隔2100.7-⨯=d μm 时的双缝衍射,在中央极大值两侧的衍射极小值间,将出现多少个干预极小值?假设屏离开双缝457.2cm ,计算条纹宽度。
解:中央极大值两侧的衍射极小值满足: λθ±=sin a∴在中央极大值两侧的衍射极小值间的衍射角将满足:aλθ±≤sin干预极小满足:λθ)21(sin +=m d =m 0,±1,±2 …… ∴在中央极大值两侧的衍射极小值间,干预极小满足:λλa dm ≤+)21(∵95.7108.8100.732≡⨯⨯=--a d ∴m 的取值可为0,±1,±2……±7,-8 ∴出现的干预极小值个数为16个条纹宽度为:13.47.0106328.045723=⨯⨯==-d D e λmm6-15 计算缝距是缝宽3倍的双缝的夫琅和费衍射第1,2,3,4级亮纹的相对强度。
解:由题意,3≡ad,因此第三级缺级 ∴第三级亮纹的相对强度为0第1,2,4级亮纹分别对应于:λθ±=sin d ,λ2±,λ4± 既是:πθλπδ2sin 2±==d ,π4±,π8±此时,3sin λθ±=a ,λ32±,λ34±∴3sin πλθπα±==a ,32π±,34π± ∴第1,2,4级亮纹的相对强度分别为:%4.6833sin 2cos sin 422201=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ππδααI I %173232sin 4202=⎪⎪⎪⎪⎭⎫⎝⎛=ππI I %3.43434sin 4204=⎪⎪⎪⎪⎭⎫⎝⎛=ππI I6-16 波长为500nm 的平行光垂直入射到一块衍射光栅上,有两个相邻的主极大分别出现在2.0sin =θ和3.0sin =θ的方向上,且第四级缺级,试求光栅的栅距和缝宽。
解:两个相邻的主极大分别出现在2.0sin =θ和3.0sin =θ的方向上,则: λm d =2.0 λ)1(3.0+=m d两式相减得:51.0==λd μm∵第四级缺级 ∴缝宽为:25.14==da μm6-17 用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽012.0=a mm ,不透明部分宽度029.0=b mm ,缝数N =1000条,试求:〔1〕中央极大值两侧的衍射极小值间,将出现多少个干预主极大;〔2〕谱线的半角宽度。
解:〔1〕中央峰两侧的衍射极小值满足:λθ±=sin a∴中央峰内的衍射角满足aλθ±≤sin干预主极大满足:λθm d =sin =m 0,±1,±2 …… ∴在中央峰内的干预主极大满足: λλadm ≤ ∵42.3012.0041.0≡=a d ∴m 的取值可为0,±1,±2,±3 ∴出现的干预极小值个数为7个 〔2〕谱线的角宽度为:561052.1)029.0012.0(10001062422--⨯=+⨯⨯⨯==∆Nd λθrad6-18 一块光栅的宽度为10cm ,每毫米内有500条缝,光栅后面放置的透镜焦距为500mm ,问:〔1〕它产生的波长8.632=λnm 的单色光一级和二级谱线的半宽度是多少?〔2〕假设入射光是波长为632.8nm 和波长与之相差0.5nm 的两种单色光,它们的一级和二级谱线之间的距离是多少? 解:〔1〕一级谱线和二级谱线的位置分别为:︒=⨯==-46.185001108.632arcsinarcsin 61dλθ ︒=⨯⨯==-26.395001108.6322arcsin 2arcsin 62dλθ∴一级谱线和二级谱线的半宽度为:36111034.346.18cos 100108.632500cos --⨯=︒⨯⨯⨯==θλNd f e mm362210086.426.39cos 100108.632500cos --⨯=︒⨯⨯⨯==θλNd f e mm〔2〕一级谱线和二级谱线的线色散分别为: nm mm nm mm d mf d dl /26.046.18cos 1050015001cos 611=︒⨯⨯⨯==⎪⎭⎫⎝⎛θλ nm m m nm m m d m f d dl /64.026.39cos 1050015002cos 622=︒⨯⨯⨯==⎪⎭⎫⎝⎛θλ ∴波长差nm 5.0=∆λ的两种单色光的一级谱线之间和二级谱线之间的距离分别为: 13.05.026.011=⨯=∆⎪⎭⎫⎝⎛=∆λλd dl l mm 32.05.064.022=⨯=∆⎪⎭⎫⎝⎛=∆λλd dl l mm6-19 钠黄光垂直照射一光栅,它的第一级光谱恰好分辨开钠双线〔5891=λnm ,6.5892=λnm 〕,并测得589nm 的第一级光谱线所对应的衍射角为2°,第四级缺级,试求光栅的总缝数,光栅常数和缝宽。