高等数学(上)期末考试题
- 格式:doc
- 大小:238.62 KB
- 文档页数:2
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是().(A)(B) 和(C)和(D)和12.函数在处连续,则().(A)0 (B)(C)1 (D)23.曲线的平行于直线的切线方程为( )。
(A) (B)(C)(D)4.设函数,则函数在点处()。
(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点是函数的( ).(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线的渐近线情况是( ).(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.的结果是( ).(A) (B)(C)(D)8.的结果是( ).(A)(B)(C)(D)9.下列定积分为零的是().(A) (B)(C)(D)10.设为连续函数,则等于()。
(A)(B)(C)(D)二.填空题(每题4分,共20分)1.设函数在处连续,则。
2.已知曲线在处的切线的倾斜角为,则.3.的垂直渐近线有条。
4..5.。
三.计算(每小题5分,共30分)1.求极限①②2.求曲线所确定的隐函数的导数。
3.求不定积分①②③四.应用题(每题10分,共20分)一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2.3.24.5.2三.计算题1①② 2.3。
①②③四.应用题1.略2.。
《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。
高等数学期末考试试题答案及解析 题目:一、选择题(每题5分,共30分) 1. 设函数f(x) = x^3 3x,求f'(1)的值。 答案:A. 2 解析:f'(x) = 3x^2 3,代入x = 1,得f'(1) = 3 3 = 2。
2. 设函数y = e^x,求y''(x)的值。 答案:B. e^x 解析:y' = e^x,y'' = (e^x)' = e^x。 3. 若函数y = f(x)在x = 0处可导,且f'(0) = 2,则f(x)在x = 0处的切线方程是:
答案:C. y = 2x 解析:切线方程为y f(0) = f'(0)(x 0),代入f'(0) = 2,得y = 2x。
4. 定积分∫_0^1 (x^2 + 1)dx的值为: 答案:D. 2 解析:∫_0^1 (x^2 + 1)dx = ∫_0^1 x^2dx + ∫_0^1 1dx = (1/3)x^3 + x |_0^1 = 1/3 + 1 = 4/3。
5. 函数f(x) = sin(x)在区间[0, π]上的最大值为: 答案:A. 1 解析:f(x) = sin(x)在[0, π]上单调递增,最大值出现在x = π/2处,此时f(π/2) = 1。
6. 设函数y = 2x^3 3x^2 + 4,求y'的零点。 答案:B. x = 1 解析:y' = 6x^2 6x,令y' = 0,得6x^2 6x = 0,解得x = 0 或 x = 1。因为x = 0不是极值点,所以x = 1是y'的零点。
二、填空题(每题5分,共30分) 1. 函数f(x) = x^3 3x^2 + 2x在x = 1处的极大值为______。
答案:3 解析:f'(x) = 3x^2 6x + 2,f''(x) = 6x 6。令f'(x) = 0,得x = 1 或 x = 2/3。代入f''(x),得f''(1) = 0,f''(2/3) = 2 < 0,所以x = 1是极大值点,极大值为f(1) = 3。
一、 选择题1. 函数112-=x y 的定义域是( ) A .(-1,1)B .[-1,1]C .(,1][1,)-∞-⋃+∞D .(,1)(1,)-∞-⋃+∞ 2. 函数1()ln(2)f x x =-的定义域是( ) A.(2,)+∞ B.(3,)+∞ C.(2,3)(3,)+∞ D.(,2)(2,)-∞+∞3.函数13lg(2)y x x =+++的定义域是( ) A.(3,2)(1,)--⋃-+∞ B.(2,1)(1,)--⋃-+∞C. (3,1)(1,)--⋃-+∞D.(2,)-+∞4.设⎪⎪⎩⎪⎪⎨⎧>≤≤---<+=1,011,11,21)(2x x x x x x f ,则)2(-f = ( )A .23- B .3- C .0 D .25 5. 若0lim x x → f (x )存在, 则f (x )在点x 0是( ) A . 一定有定义 B .一定没有定义C .可以有定义, 也可以没有定义D .以上都不对6. 极限223712lim 43x x x x x →-+-+=( )。
A .1 B . 12- C .12D .1- 7. 极限2201lim 22x x x x x →-++-= ( )A. 21B. 1C.0D. 12- 8. 311lim 1x x x →-=-( ) A.1 B.2 C.3 D.49.极限=-++-→221lim 221x x x x x ( ) A. 21B. 1 C .0D .∞ 10.函数11)(2--=x x x f ,当1→x 时的极是( )A.2-B. 2C. ∞D.极限不存在 11.函数21()1x f x x -=+,当1x →-时的极限( )A .2B . 2-C . ∞D .012.下列各式中,运算正确的是( ) A.0lim 0sin x xx →= B.sin lim 1x xx →∞= C.lim 0sin x xx →∞= D.0lim 1sin x xx →=13. 下列各式中正确的是( )A .0sin lim 0=→x xx B .1sin lim =∞→x xxC .0sin lim 1=→x xx D .1sin lim 0=→x xx14. 设0sin lim 7x axx →= 时,则a 的值是( )A. 17 B.1 C.5 D.715.函数x xx x f sin )(+=,当∞→x 时的极限( )A .0B . ∞C . -1D .116.函数22x+1x<0f(x)=x +a x 0⎧⎨≥⎩在x=0处连续,则a 的值是( ) A .3 B .2 C .1 D .017.函数22x+3x<0f(x)=3x +a x 0⎧⎨≥⎩在x=0处连续,则a 的值是( ) A. 3 B. 2 C. 1 D. 018. 函数y=ln (2 - x - x 2)的连续区间为( )A .(-1,2)B .(-2,1)C .(- ∞,1)∪(- ∞,1)D .(- ∞,-2)∪(1,+∞)19.下列导数计算正确的是( )A.x x e e 22sin sin )(='B.()2112ln ln -='-x x C .22211(arcsin )()x x '=- D .x x 2sin )(sin 2='20.下列导数计算正确的是( )A.sin sin ()x x e e '=B.21(2log )2ln 2ln 2x x x x '+=+C.1()1x x x '+=+D.211)2ln (ln +='+x x 21.设ln y x x =+,则dy dx=( ) A.1x x + B.1x x + C.1x x +- D.1x x-+ 22. 设y =x -2,则='y ( )A .x -2ln2B . x 12--xC .-x 12--xD .-x -2ln223设()y f x =-,则y '=( )A.()f x 'B.()f x '-C.()f x '-D.()f x '--24.设2()43f x x =-,则()1f '等于( )A.0B.-6C.-3D.325. 设函数在点x 0可导, 且f '(x 0) >0, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .锐角C .900D .钝角26.设函数在点0x 可导,且0()f x '<0,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是( )A .0B .锐角C .钝角D .9027. 设函数在点0x 可导,且3)(0-='x f ,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .锐角D .钝角28.曲线32y x x =+-在点(1,0)处的切线方程为( )A.2(1)y x =-B.4(1)y x =-C.41y x =-D.3(1)y x =-29.曲线y = ln x 上某点的切线平行于直线y = 2x -3, 该点的坐标是 ( )A .(2, ln21) B .(2,-ln 21) C .(21,-ln2) D .(21,ln2) 30.下列说法错误的是( ) A .可导一定连续 B .不可导的点不一定没有切线C .不可导的点一定不连续D .不连续的点一定不可导31.函数f (x )在点 x 0连续是函数在该点可导的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不是充分条件, 也不是必要条件32.||x y =在0x =处( )A.连续不可导B.可导不连续C.可导且连续D.既不连续也不可导33.2(1)y x =-在1x =处( )A.连续B.不连续C.不可导D.既不连续也不可导34.已知函数f (x )=,0,10,12⎩⎨⎧>+≤-x x x x 则在x =0处( ) A .间断 B .连续 C .f '(0) =-1 D .f '(0) =135. 设f (x )可微,则d(e f (x ) ) =( )A .f '(x )d xB .e f (x )d xC .f '(x ) e f (x )d xD .f '(x ) d(e f (x ) )36.半径为R 的金属圆片,加热后半径伸长了dR ,则面积S 的微分dS 是( )A .RdR πB .RdR π2C .dR πD .dR π237. 函数)1ln()(x x x f +-=的单调减少区间是( )A.),0(+∞B.)0,(-∞C.(0,1)D.(-1,0)38. 函数x x x f -+=)1ln()(的单调减少区间是( )A .),0(+∞B .)0,(-∞C .(0,1)D .(-1,0)39.函数()y f x =在0x x =处连续,且取得极值,则有( )A.0()0f x '=B.0()0f x ''<C.00()0()f x f x ''=或者不存在D.0()f x '不存在40. 若()00f x '=,则0x 是函数()f x 的( )A.极值点B.最值点C.驻点D.非极值点41. 函数()y f x =在0x x =处取得极值,则有( )A .0()0f x '=B .00()0()f x f x ''=或者不存在C .0()0f x ''<D .0()f x '不存在42. 函数x e x x f -=)(的极值是( )A . 0B . 1C . -1D . 243.若曲线弧位于其上任一点切线的下方,则该曲线弧是( )A.单调增加B.单调减少C.凹弧D.凸弧44. 曲线3(1)y x =-的拐点是( )A.(1,8)-B.(1,0)C.(0,1)-D.(2,1)45. 点 x = 0是函数y = x 2 的( )A .驻点但非极值点B .拐点C .驻点且是拐点D .驻点且是极值点46. 点0x =是函数3y x =的( )A .极值点但不是驻点B .驻点但不是极值点C .驻点且是极值点D .极值点且是拐点47.下列说法正确的是( )A.驻点一定是极值点B. 极值点一定是驻点或导数不存在的点C.极值点一定是拐点D. 拐点一定是极值点48.若在(,)a b 内,函数()f x 的一阶导数()f x '<0,二阶导数()f x ''>0,则函数()f x 在此区间内( ) A.单调减少,曲线是凹的 B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的49.函数y = x 2e -x 及其图形在区间(1, 2)内是( )A .单调增加且是凸的B . 单调减少且是凸的C .单调增加且是凹的D .单调减少且是凹的50. 曲线()y f x =在区间[,]a b 上单调减少且为凸的,则( )A .()f x '>0或()0f x ''>B .()f x '>0或()0f x ''<C .()f x '<0且()0f x ''>D .()f x '<0且()0f x ''<51. 曲线()y f x =在区间[,]a b 上单调增加且为凹的,则( )A .()f x '>0,()0f x ''>B .()f x '<0,()0f x ''<C .()f x '>0,()0f x ''<D .()f x '<0,()0f x ''>52.若()(),F x f x '=则()f x dx ⎰=( )A.()f xB.()F xC.()F x C +D.()f x C + 53. 若()(),F x f x '=则()dF x ⎰=( )A.()f xB.()F xC.()F x C +D. ()f x C +54.导数等于21sin2x 的函数是( ) A .21sin 2x B .41cos2x C .21cos 2x D .1-21cos2x 55.⎰=dx x xf dxd )( ( ) A.)(21x f B.dx x f )(21 C .)(x xf D .dx x xf )( 56. 若c x x dx x f ++=⎰cos sin )(,则,=)(x f ( ) A.x x cos sin + B.x x cos sin - C.x x sin cos - D.x x cos sin -- 57.()23sin x e x dx -⎰=( )A. 23cos x e x c ++B. 23cos x e x +C. 23cos x e x -D. 158. 设⎰dx x f )(= 2cos2x + C ,则f (x ) =( ) A .sin2x B .-sin 2x C .sin 2x + C D .-2sin 2x 59.dxd 52x xe dx ⎰= ( ) A .42x x e B .52x x e dx C .42x x e dx D .52x x e60.dx xx f 211⎰⎪⎭⎫ ⎝⎛'= ( ) A .)1(x f -+ C B .-)1(x f -+ C C .)1(x f + C D .-)1(xf + C 61. 若: 10(2)2x k dx +=⎰,则k =( ) A .0 B .1- C . 1 D .1262. 若: 12 0(3)2x k dx +=⎰,则k =( ) A . 1- B . 0C .12 D . 1 63. 若 10(2)1x k dx +=⎰,则k =( ) A.0 B.-1 C.1 D.12 64. 已知 10()1x a x dx -=⎰,则常数a =( ) A.83 B.13 C.34 D.23 65.下列积分正确的是( ) A. 1211 11||02x dx x --==⎰ B. 22 02sin 2sin 2xdx xdx πππ-==⎰⎰ C. 22sin 0x dx ππ-=⎰ D. 1 122 1 04(1)2(1)3x dx x dx --=-=⎰⎰ 66. 曲线2,2y x y x ==+所围成的区域面积表成定积分为( )A . 22 1(2)x x dx ---⎰B . 12 2(2)x x dx --+⎰ C . 22 1(2)x x dx -+-⎰ D . 12 2(2)x x dx -+-⎰ 67.曲线ln y x =与直线x e =及0y =所围成的区域面积A=( )A .1B .-e 1C .e1 D .e 68. 曲线y =e x , y =e -x 与直线x =1所围成的区域面积A=( )A .e +1-eB .e -1-e -2C .e -1-eD .e + 1-e -2二、填空题1. 函数x y arcsin =的定义域为 .2.函数2112++-=x x y 的定义域为 . 3. 函数y =22x -+ arcsin x 的定义域为____________.5. 函数y=lnx 定义域为 .6.函数2211x y x-=+的奇偶性为 . 7.函数)1)(1(-+=x x x y 的奇偶性为 .8.设u y arcsin =,2v u =,1+=x v ,则复合函数=y .9.设arcsin y u =,v u a =,v x =,则复合函数y =____________.10. 可以将复合函数分解arcsin 2x y =为 .11. 函数2(arcsin3)y x =的复合过程是 .12. 设复合函数)(2sin 2-=x y ,则它的复合过程是 .13. 设复合函数2arcsin 1y x =(+),则它的复合过程是 . 14. =++→4-32-lim 220x x x x x . 15. 2323lim 54x x x x →-=-+ . 16.极限sin limx x x→+∞的值为____________. 17.极限x x x 1sin lim 0→的值为____________. 18.=∞→x x x arctan lim . 19.0sin lim x x x→= , sin lim x x x →∞= .20. 函数y=2x x -连续区间为 ..21.设()2xf x -=,当x → 时为无穷小量.22.设y =x 1-1,则当x →_____时,y 是无穷大量;当x →_____时,y 是无穷小量.23.设x y xe =,则y '= .24.已知)34cos(x y -=,求y '= ,=''y .25. 已知函数f (x )=x sin x , 则f '(π)=__________________.26. 已知函数x xe y -=,则y '= .27. 已知函数y = x x e -,则y '' =____________________.28. 设y = arctan x , 则y '=____________, y ''=____________.29曲线x y e =在点(0,1)处的切线方程为 .30. 若曲线y = ax 3+2在点x =1 处的切线与直线y =2x +1垂直,则a =__________.31. 曲线y = x 2-x 上过M (1,0)点的切线方程是__________________.32. 曲线x x +cos 2y =在点(0,2)处的切线方程为 .33. 函数在点x 0处可微的充要条件是___________________.34. d ( )= xdx . 35. ()21d x -=________________.d ( )=x e dx -.36. d ( )=dx , x de-= . 37.d =xdx sin , d =211dx x -. 38. ( )sin d xdx =; =-x de .39. 函数f (x )=sin x -x 在定义域内单调___________.40.函数22ln y x x =-的单调递增区间是 .41.f (x )=x 3-3x 2+7的极大值为________,极小值为__________.42. 函数)1ln()(2x x f +=在[-1,2]上的最大值为 ,最小值为 .43. 函数1)1()(32+-=x x f 在]1,2[-上的最大值是 ,最小值是 .44.函1)1()(32+-=x x f 数在]1,2[-上的最大值是 ,最小值是 .45.曲线f (x )=xe x 的拐点的坐标为____ ______.46.若2()x f x dx e C =+⎰,则()f x = . 47.dxd dx x xf ⎰)(2= ____ ______. 48. ⎰=xdx 2sin ;cos3x dx =⎰ . 49. xdx ⎰= ;⎰dx = . 50. 3x dx =⎰ .51.232 2sin x xdx -=⎰ . 52.b a dx =⎰ , 14 1sin x xdx -⎰= . 53. 13 1cos x xdx -=⎰ ; 132 1sin x xdx -=⎰ . 54. 曲线x y s i n =在[]0,π上和x 轴围成图形的面积用定积分表示为A= .55.178 1cos x xdx -⎰=___________________. 56.b a dx =⎰ . 57.=⎰xdx x sin 22-2 . 58.14 1sin x xdx -⎰= .三、计算题1. 求极限132123lim 22+---∞→x x x x x2. 求极限222372lim x x x x --+∞→3.求极限)1311(lim 31x x x ---→4.求极限x x x 5sin sin3lim 0→5. x x x x -→20sin lim6.求极限2cot 0lim(1tan )x x x →+ 7.求极限∞→x lim x x x ⎪⎭⎫ ⎝⎛+-31 8. 求极限x e x x 1lim 0-→ 9.已知arcsin y x =,求dy dx10.已知x x y 2sin 2=,求y ' 11.已知2ln 1y x =+ 求y ' 12.已知y =6sin 1322π+-⋅x x x ,求dx dy 13.已知y =(ln2x )cos3x ,求dx dy 14. 已知1010x y x +=,求y '' 15.已知x y arctan =,求dy 16.已知2ln(21)y x =- 求dy17. y=ln(5+3x ),求dy 18.已知22x y x e =,求dy 19. 求函数y =21ln x -的微分20.已知y =cos(3)x e x --,求dy 21. 求不定积分dx x x )2(-⎰22. 求不定积分dx x x x ⎰⎪⎭⎫ ⎝⎛+-3312 23.求不定积分⎰+dx x x cos 1sin 2 24.求定积分⎰+dx x x 1 25.求不定积分tan xdx ⎰ 26. 求不定积分211x dx x ++⎰27.求不定积分221x dx x +⎰ 28.求不定积分求tan xdx ⎰ 29.求定积分 20cos sin x xdx π⎰ 30. 求定积分 12 01x x dx -⎰ 31. 求定积分dx x x ⎰-1 021 32.求定积分dx x x ⎰+1 0 21arctan 33.求定积分 11||x dx -⎰ 34. 求定积分 21|1|x dx --⎰ 四、应用题1. 设有函数2sin y x x =+,求点(0,0)处的切线方程和法线方程.2.求函数x e x x f -+=)2()(在(0,2)点切线和法线方程.3.半径为15cm 的球,半径伸长2mm ,球的体积增加约多大?4.求函数y =x -ln(1+x )的极值.5. 求函数x e x x f -+=1)()(的极值.6.求曲线y =x 3-3x -2的单调区间,凹凸区间,拐点及极值.7.. 求曲线3231y x x =-+的单调区间,凹凸区间及极值.8.把一根半径为R 的圆木锯成矩形条木,问矩形的长和宽多大时,条木的截面积最大?9.某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?10.要制造一个圆柱形有盖的油桶,若油桶的容积V 是常数,问底面半径r 和高h 之比等于多少时,才能使用料最省?11.欲做一个无盖圆柱形容器,其容积为V ,问当容器的底面半径为多少时,用料最少?12.曲线上任一点),(y x 切线的斜率为23x ,并且曲线经过)0,0(点,求此曲线方程13.计算由抛物线24y x =-和x 轴所围成图形的面积.14.求由直线23y x =+与曲线2y x =所围成平面图形的面积.15. 求由曲线12-=x y 与y=x+1所围成的平面图形面积. 16.求抛物线2x y =和直线x y =围成的平面图形的面积及该平面绕x 轴旋转而成的旋转体的体积.17. 求平面曲线2x y =、3x y =围成的平面图形绕x 轴旋转所生成的旋转体的体积.18.求由y =x 2与直线x+ y = 2轴所围成的平面图形绕x 轴旋转所形成的旋转体的体积.19.求由曲线x y =,x y =所围成的平面图形绕x 轴旋转所得的旋转体的体积.20.求由抛物线y =x 2与y 2 = x 所围成的平面图形绕x 轴旋转所形成的旋转体的体积.。
(本小题5分)第一学期期末高等数学试卷、解答下列各题(本小题5分)x 3 12x 162x 3(本小题5分)求 x 2 2 dx. (1 x )(本小题5分)(本小题5分) 求-^dx. 1 x(本小题5分)求— 1 t 2 dt .dx 0(本小题5分)求 cot 6 x esc 4 xdx.(本小题5分)求-1 1 , 求 1 p cos dx. x x(本小题5分)设X e2t cost确定了函数y y e si nt(本小题5分)求'x 1 xdx .0 ■(本小题1、2、3、4、5、6、7、8、9、10、 11、 12、13、求函数 y 4 2xx 2的单调区间丫(本小题5分) sin x dx.求2 2 0 8 sin 2 x (本小题5分) 设 x(t) e kt(3cos t 4sin t),求 dx .设函数y y (x )由方程y 2 in y 2 x 6所确定,求史 dx (本大题共16小题, 总计80分)求极限 limx 2 9x 212x求极限 limarctan xx.1 arcsin xy(x),求乎dx14、 (本小题5分)求函数y 2e x e x 的极值15、 (本小题5分)2 2 2 2求极限 lim & “ (2x“ (3xD d°x Dx(10x 1)(11x 1)16、 (本小题5分)cos2x .求dx.1 sin xcosx二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.(本大题6分)设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根一学期期末高数考试(答案)、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)23x 212 26x 18x 122、(本小题3分)x 2\ 2x )1 d(1 x 2) 2(1 x 2)2c.3、(本小题3分) 因为 arctanx而 limarcsin — 02 x x2、(本小题7分)2求由曲线y -和y2三、解答下列各题所围成的平面图形绕 0X 轴旋转所得的旋转体的 体积.解:原式 limx 2lim 歿 x 212x18(19、 116 151故 limarcta n x arcs in o x x求—1 t2 dt .dx 0 '原式 2x 1 x 4cot 6 x(1 1 .7cot x 7(本小题4分) 2求1 工-x2cot x)d(cot x)1. 9cot x c.91cos^d(^) x x2(本小题4分)求 x 1 xdx.令 J 1 x ui u4、 5、(本小题3分)x .dx1 x1 x 1dx 1 x . dx dx1 xx ln 1 x(本小题3分)c.6、(本小题4分)cot 5 6 x csc 4 xd x8、1 (本小题4分) x e 2^st确定了函数y y e si nty(x),求 dy dx解:dy dxe 2t (2sin tt22e (cost 2tsin t ) e t (2 sint cost)22~(cost 2t sin t )cost)7、cos 1dx. x原式1 si n — x2u2)du 原式 2 (u41 \32(—)5 39、116 15解: dxx (t)dt13、(本小题6分)设函数y y (x )由方程y 2 ln y 2 x 6所确定,求鱼dx2yy 空 6x 5 y3yx 57厂14、(本小题6分)求函数y 2e x ex , 2x1、y 2e (e y1 1驻点:x -| n —2 2由于 y 2e x e x 0故函数有极小值,,1n "2)2 210、(本小题5分) 求函数 y 4 2x x 2的单调区间解: 函数定义域(11、 12、 设 y 当x当x 当xX)2 2x 2(1 1, y 01, y0函数单调增区间为,11, y 0函数的单调减区间为1,(本小题5分)sin x ,2— dx.8 sin x2d cosx 09 cos 2 x原式1, 3 cosx ln ---------- 6 3 cosx丄In 26(本小题x (t )6分)e kt (3cos t 4sin t),求dx .e kt (43k)cos t (4k 3 )sin t dtx的极值解.定义域),且连续V x264d(*si n2x 1) 1 丄 si n2x2 1In 1 -si n2x c2、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省•512设晒谷场宽为x,则长为 ----- 米,新砌石条围沿的总长为512xL 2x —— x (x 0)L c 51222x唯— •驻点 x 16 L1024 小3x即 x 16为极小值点 故晒谷场宽为16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)15、(本小题 求极限 原式 2 2 2(x 1)(2x 1) (3x 1)2(10x 1)(10x 1)(11x 1)1 2 1 2 1 2 (1 -)2 (2 -)2 (3 -)2(10 丄)2x x x x1 1(10 -)(11 -)x x 10 11 216 10 11lim x lim x 16、(本小题7 210分) cos2x dx 1 sin xcosx cos2x 1 l sin2xdx2求由曲线y -和y2,8x 22x 3 x 10, x 1 4-)2x 32 (rdx 4x 40(匚6x)dx4J 1 5 (——x 4 5 1 1 7. -------x ) 64 7 04 1 1 512 44(—— )—5 7 35二、解答下列各题(本大题10分)设f (x) x(x 1)( x2)(x 3),证明f (x) 0有且仅有三个实根证明:f (x)在(,)连续,可导,从而在[0,3];连续,可导.又 f(0)f(1)f(2)f(3)则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1), 2 (1,2), 3(2,3)使f ( !) f ( 2) f ( 3)即f (x) 0至少有三个实根,又f (x) 0,是三次方程,它至多有三个实根 由上述f (x)有且仅有三个实根高等数学(上)试题及答案D 、不存在2、下列变量中,是无穷小量的为(、填空题(每小题 3分,本题共 15分)1、2、时,f (x)x e 2x在x 0处连续.3、dx ln x ,则巴dyx/x+14、 曲线yx 在点(0, 1 )处的切线方程是y=x+15、 若 f (x)dxsin2x C ,C 为常数,则 f (x)2cos2x —。
高等数学期末考试卷课程高等数学(A 、B 类)(A 卷)参考答案2018~2019学年第 1 学期一.填空题(每小题3分,共15分) 1.3sin 0lim 12x x x → += 32e2.设()f x 可导,则极限0(1)(1)lim x f h f h h αβ→+−−=()(1)f αβ′+3.不定积分2ln 2x dx =∫22ln 2xC+4.若连续函数()f x 满足:20()sin x f t dt x x π=∫,则(4)f =2π5.反常积分20x x e dx +∞−=∫ 2 。
二. 选择题(每小题3分,共15分)1.设麦克劳林公式221(),x e x ax o x −−=+则常数a =( B )(A )1 (B )12 (C )13 (D )162.设曲线11x y e =−水平渐近线的条数为a ,铅直渐近线的条数为b ,则( D )(A)0,1a b ==; (B)1,0a b ==; (C)1,1a b ==; (D)2,1a b ==。
3.设()ln 2,y x =则它的微分dy =( D )(A) 12||dx x (B) 12dx x (C)1||dx x (D) 1dxx 4.设定积分32231211ln ,ln ,I xdx I xdx ==∫∫则( C )(A )12I I = (B ) 1223I I = (C ) 12I I > (D ) 12I I <5.从原点()0,0引曲线y =( B )(A )y x = (B )12y x =(C )2y x =(D )23y x=三.计算(每小题8分,共48分)1.求极限x →解:原式=0x →0x x →→012x →=012x →=201cos x x x →−=2. 已知(ln ,y x =求11,x x dy y ==′′。
解:因为 y ′=所以1x dy dx ==y ′′=1x y =′′3、设函数()y f x =由方程x y e e xy −=所确定,求导数0,x y y =′′′ 解:由方程x y e e xy −=的两边对x 求导,得x y e e y y xy ′′−=+,从而可解得x y e y y e x+′=+且当0x = 时得0y =,将0x =,0y =代入上式得(0)1y ′=再由方程x y e e y y xy ′′−=+的两边对x 求导数得 2x y y e e y e y y y xy ′′′′′′′−−=++,将0x =,0y =,(0)1y ′=代入上式得02x y =′′=−。
1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()xf x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
西安交通大学城市学院数学建模协会
- 1 -
安交通大学城市学院考试卷
高等数学(经济管理)
考试日期 年 月 日
学 号 期中 期末
(每小题2分,共20分)
2
2,21xgxx
,则复合函数fgx 。
3x
,则lim1xxfxx 。
22
sinxx
。
2
1
1sin00xxxxaxx
在,内连续,则a 。
22x
ex
在点0,1处的切线方程是 。
x
xe
,则其2阶导数y 。
为曲线2xyeax的拐点,则常数a 。
1
11x
的水平渐近线为 。
2sin2xdxC
,则fx 。
2
3dx
。
择题(每小题2分,共20分)
2
2
11
xxx
,则fx( )
成绩
西安交通大学城市学院数学建模协会
- 2 -