两亲性壳聚糖衍生物的合成及其作为紫杉醇聚胶束载体的研究
- 格式:doc
- 大小:1.77 MB
- 文档页数:2
壳聚糖纳米颗粒的制备及应用壳聚糖是一种天然产物,由负离子化的氨基葡萄糖和乙酰胺葡萄糖组成,具有生物相容性、生物可降解性、低毒性等优良特性,在生物医学应用领域有广泛的应用。
然而,壳聚糖本身具有高分子量和极度亲水性的特点,限制了其在水相环境中的应用。
这些不足之处可以通过将壳聚糖转化为纳米颗粒来弥补。
壳聚糖纳米颗粒的制备壳聚糖纳米颗粒的制备方法主要包括电吸积、化学沉淀、反应溶液混合等方法。
其中,化学沉淀法属于传统方法,依靠溶液中钙离子的存在,将壳聚糖逐渐转化为淀粉状沉淀,再利用离心等方法将细小的沉淀分离出来,干燥后得到纳米级壳聚糖颗粒。
反应溶液混合法是近年来常用的制备方法之一,其基本原理是将两种溶液混合,触及到一定的环境或反应条件时会发生化学反应,生成纳米级壳聚糖纳米颗粒。
这种方法的优点在于操作简单、价格低廉。
壳聚糖纳米颗粒的应用壳聚糖纳米颗粒在生物医学领域有广泛的应用,其中包括生物医学成像、药物输送、组织工程等。
壳聚糖纳米颗粒可以作为生物医学成像方面的载体。
由于其表面极易修饰,可以通过化学方法添加不同的功能单元,例如荧光标记,以达到自身发光的目的,或者添加金属等,用于磁共振核磁共振成像等等。
壳聚糖纳米颗粒还可以作为药物输送系统。
其纳米粒子在药物体内的分布优化,能够让药物更多地达到靶组织,减少药物的剂量和在体内的停留时间,同时还能够提高药物的生物利用度。
这种方法已经被证实在肿瘤治疗方面有良好的前景。
最后,壳聚糖纳米颗粒还可以应用于组织工程。
由于其天然且生物相容性好,能够以纳米颗粒形式制备,壳聚糖纳米颗粒可以作为组织修复材料的神经修复、骨修复等重要组成部分。
这种方法已经在实验室环境中得到了良好的应用和发展,具有广阔的前景。
总之,在生物医学应用领域,壳聚糖纳米颗粒具有广泛的应用价值。
随着科学发展的进一步,相信壳聚糖纳米颗粒在治疗和诊断方面的应用前景会越来越广泛。
两亲性纳米胶束载药系统的研究进展摘要本文综述了由两亲性共聚物制备纳米胶束用于载药系统的研究进展,并进一步介绍这些载药系统的优点及应用。
关键词两亲性共聚物纳米胶束前言两亲性共聚物是同时含有亲油性与亲水性高分子链段的大分子物质只有独特的溶液性质,聚集特性,表面活性,生物相容性,溶液选择性等。
两亲性高分子在选择性溶剂中发生微相分离,可以形成具有疏溶剂核与溶剂化壳的自组装结构——聚合物纳米胶束[1]是研究得较多的一种非常重要的药物载主要用于对疏水难溶药物的增溶作用。
在肿瘤的治疗上目前采用的主要是化疗,即利用化学药物杀、抑制肿瘤细胞的生长繁殖和促进肿瘤细胞的分化,但是化疗治疗肿瘤在杀伤肿瘤细胞的同时,也将正常细胞和免疫(抵抗)细胞一同杀灭,化疗依然无法根治肿瘤且药物利用度不高。
肿瘤耐药的机制错综复杂经典的产生耐药的原因是抗肿瘤药物在进入肿瘤组织后无法到达靶细胞内的分子靶点或者无法达到有效的胞内浓度。
而与传统剂型相比,纳米载药体系的优点是粒径10—100nm,能在血液中长时间循环并保持稳定;在靶位表现更好的生物膜穿透性能;可保护核苷酸,防止被核酸酶降解。
具有缓释、控释与靶向给药的特点,提高了生物利用度;降低了毒副作用;增加了药物稳定性;丰富了药物的剂型选择,减少了用药量等在纳米铁微粒表面包覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。
很多纳米颗粒在体内的吸收和分布具有一定的规律。
如肿瘤血管对纳米颗粒有较高的通透性,因此可用纳米载体携带药物靶向作用于肿瘤组织。
另外,还可以利用纳米载体的一些特异的物理性质向靶位点转运药物。
通过连接特异性抗体和配体介导载体由细胞内吞途径被摄取或通过干扰技术从基因水平减少外排蛋白表达纳米载体能够克服外排蛋白而使更高浓度的药物在胞内蓄积。
另外随着新型刺激响应性材料的出现药物在肿瘤细胞内的释放时间和释放位置可通过采用不同种类和比例的聚合物进行调节也开发出了可同时包载多种药物的纳米载体使药物同时达到肿瘤部位可控制药物释放的纳米载体已成为现实。
壳聚糖纳米颗粒载药系统的制备及应用随着近年来纳米技术的迅速发展,纳米颗粒作为一种重要的载药系统,被广泛应用于药物传输和治疗领域。
壳聚糖作为一种天然产物,具有良好的生物相容性、生物降解性和可调控性,可作为纳米载药系统的理想材料。
本文将探讨壳聚糖纳米颗粒载药系统的制备方法及其在药物传输和药物治疗中的应用。
一、壳聚糖纳米颗粒的制备方法1. 化学法制备:化学法制备壳聚糖纳米颗粒是一种常用的方法。
通常从壳聚糖溶液中加入交联剂或控释剂,通过化学反应形成交联结构或孔隙结构,最终制备出具有纳米尺寸的壳聚糖载药颗粒。
2. 机械法制备:机械法制备壳聚糖纳米颗粒是一种简单且高效的方法。
常用的机械法制备壳聚糖纳米颗粒的方法有球磨法、超声法和乳化法。
这些方法通过物理力学作用使壳聚糖分子断裂或溶胀,使其形成纳米尺寸的颗粒。
3. 电化学法制备:电化学法制备壳聚糖纳米颗粒利用电化学反应在电极表面生成壳聚糖膜,然后将膜转化为纳米颗粒。
这种方法具有操作简单、制备快速等优点。
二、壳聚糖纳米颗粒载药系统的应用1. 药物传输系统:壳聚糖纳米颗粒可以作为一种有效的药物传输系统。
其具有优异的药物封装性能和控释性能,可以保护药物免受外界环境的影响,在体内稳定地释放药物。
此外,壳聚糖纳米颗粒还可以通过修饰表面功能基团,实现特定药物的靶向传递,提高药物的生物利用度和疗效。
2. 癌症治疗:壳聚糖纳米颗粒在癌症治疗领域具有广阔的应用前景。
研究表明,壳聚糖纳米颗粒可以有效地提高抗癌药物的溶解度、稳定性和生物利用度,并通过增加药物在肿瘤组织内的富集程度,减少对正常组织的毒副作用。
此外,壳聚糖纳米颗粒还可以携带多个药物,实现多药联合治疗。
3. 组织工程:壳聚糖纳米颗粒作为一种生物可降解的材料,可以作为组织工程的理想载体。
研究表明,壳聚糖纳米颗粒可以促进细胞黏附和增殖,具有良好的生物相容性和生物可降解性,可用于修复和再生组织。
4. 疫苗传递系统:壳聚糖纳米颗粒可以有效地传递疫苗,并提高疫苗的免疫效果。
壳聚糖纳米粒载体的应用研究进展马茜;范娟【摘要】Objective This article is a brief introduction of the applications of chitosan nanoparticles as drug and gene delivery carri‐er ,providing references for further study .Methods 27 Chinese and foreign articles were analyzed .Results Chitosan nanoparticles have many applications as drug and gene delivery carrier .Conclusion Chitosan nanoparticle carrier is a kind of promising non‐viral delivery carrier ,its characteristics and application need further exploration .%目的:介绍壳聚糖纳米粒载体在药物、基因递送等方面的研究应用进展,为其在新领域的应用提供依据。
方法广泛查阅中外文有关文献,整理分析归纳了其中27篇文献内容。
结果壳聚糖纳米粒载体在药物和基因递送方面已经有诸多研究应用。
结论壳聚糖纳米粒载体是一种有前途的非病毒递送载体,其特性和应用有待进一步探索。
【期刊名称】《西北药学杂志》【年(卷),期】2015(000)002【总页数】3页(P213-215)【关键词】壳聚糖;纳米粒;药物和基因递送系统【作者】马茜;范娟【作者单位】泸州医学院,泸州 646000;泸州医学院,泸州 646000【正文语种】中文【中图分类】R94有效的药物和基因传递面临许多问题,包括保护药物或基因免受胃肠道的破坏,并促进细胞吸收,组织和细胞靶向性,减少毒性和不良反应等。
壳聚糖纳米微球的制备及其在药物输送中的应用研究引言壳聚糖纳米微球是一种重要的纳米材料,具有广泛的应用潜力。
本文将讨论壳聚糖纳米微球的制备方法及其在药物输送领域的应用研究。
一、壳聚糖纳米微球的制备方法1. 电沉积法电沉积法是一种常用的壳聚糖纳米微球制备方法。
它通过电化学方法在电极表面沉积壳聚糖材料,形成纳米级的球状微粒。
此方法具有简单、可控性强、成本低等特点。
2. 水相反应法水相反应法是制备壳聚糖纳米微球的另一种常用方法。
该方法通过水相反应使含有壳聚糖和交联剂的溶液在适当的pH值和温度下发生交联反应,形成纳米级的壳聚糖微球。
3. 反相沉淀法反相沉淀法是一种制备单分散壳聚糖纳米微球的有效方法。
在此方法中,壳聚糖和乙酸乙酯等有机溶剂通过超声处理形成乳化液,然后将其引入水相中,壳聚糖微球通过反相沉淀形成。
二、壳聚糖纳米微球在药物输送中的应用研究1. 利用壳聚糖纳米微球的载药性能壳聚糖纳米微球可以通过静电相互作用或共价结合等方法将药物载入微球内部。
其稳定性和生物相容性使其成为一种理想的药物载体。
通过调节壳聚糖微球的大小和表面性质,可以改变药物的释放速度和释放方式,实现药物的缓释和靶向输送。
2. 利用壳聚糖纳米微球的靶向性壳聚糖纳米微球可以通过改变其表面性质来实现靶向输送。
例如,通过修饰壳聚糖微球表面的靶向分子,可以实现对特定细胞或组织的精确靶向输送。
这种靶向性可以提高药物的局部治疗效果,降低副作用。
3. 利用壳聚糖纳米微球的响应性壳聚糖纳米微球可以通过调整其结构和组成来实现对外界刺激的敏感性。
例如,通过改变壳聚糖微球的pH响应性,可以实现在特定pH环境下的药物释放。
这种响应性能使得壳聚糖纳米微球在肿瘤治疗等需要对外界刺激做出响应的场景中具有潜在应用价值。
结论壳聚糖纳米微球作为一种重要的纳米材料,在药物输送中具有广泛的应用潜力。
其制备方法包括电沉积法、水相反应法和反相沉淀法等。
壳聚糖纳米微球可通过载药性能、靶向性和响应性等特点,实现药物的缓释、靶向输送和对外界刺激的响应。
壳聚糖的应用研究进展叶光辉【摘要】壳聚糖具有无毒,无害,化学稳定性好,生物形容性强等特点,是天然多糖中少见的带正电荷的高分子化合物。
在食品、化妆品、医药、生物工程、化工、水处理、贵金属提取及回收、生化等诸多领域的应用研究取得了重大进展。
本文综述了壳聚糖应吸附剂、药物载体、药物缓释、催化剂等领域的应用情况。
简单介绍了壳聚糖的制备方法并展望了其发展方向和前景。
%Chitosan is non - toxic, harmless, good chemical stability, biological characteristics, is natural polysaccharide with a positive charge polymer. Significant progress has been made in the food, cosmetic, application and research of medicine, biological engineering, chemical engineering, water treatment, extraction and recovery of precious metals, biochemical and many other fields. The applications of chitosan adsorbent, drug delivery, drug release, catalyst, etc. were reviewed. The polyurethane preparation method and prospects the development trends and prospect were simply introduced.【期刊名称】《广州化工》【年(卷),期】2015(000)002【总页数】3页(P21-22,39)【关键词】壳聚糖;应用;前景【作者】叶光辉【作者单位】川庆钻探公司长庆固井公司,陕西西安 710021【正文语种】中文【中图分类】O62壳聚糖是自然界存在的惟一碱性多糖,它的胺基形成四级胺正离子可以和有弱碱性的阴离子交换作用,对金属离子有良好的螯合作用,是一种很有发展前景的天然高分子。
海藻酸钠-壳聚糖固定化载体的制备及应用研究海藻酸钠-壳聚糖固定化载体是一种新型的生物材料,在生物医学、制药和工业生产等领域具有广泛的应用前景。
本文主要介绍了海藻酸钠-壳聚糖固定化载体的制备方法及其在生物材料领域中的应用研究进展。
一、海藻酸钠-壳聚糖固定化载体的制备。
海藻酸钠-壳聚糖固定化载体是通过将海藻酸钠和壳聚糖两种生物大分子进行交联反应得到的。
交联反应的方法有很多种,如化学交联、生物交联和自组装交联等。
1.化学交联法。
化学交联法是将含有活性基团的交联剂与海藻酸钠及壳聚糖反应形成交联结构。
典型的交联剂有双酚A、多巴胺、低分子量多酚等。
2.生物交联法。
生物交联法是利用一些天然的交联酶如过氧化氢酶、过氧化物酶等,在生物体系中催化分子间交联反应,完成固定化载体的制备。
3.自组装交联法。
自组装交联法是以静电交互作用为基础,利用多元酸和多胺之间的静电相互作用形成交联结构。
典型的多元酸有海藻酸等,多胺有聚丙烯胺等。
二、海藻酸钠-壳聚糖固定化载体在生物材料领域中的应用。
1.细胞培养支架。
海藻酸钠-壳聚糖固定化载体可以作为细胞培养支架,可支持细胞生长和增殖,同时增强细胞与载体之间的交互作用,提高细胞在载体上的生长和分化能力。
2.制药领域。
海藻酸钠-壳聚糖固定化载体可用作药物输送系统的载体,提高药物的稳定性和生物利用度,同时降低药物的毒副作用。
3.工业生产领域。
海藻酸钠-壳聚糖固定化载体在工业生产领域中作为酶的载体,在反应中发挥催化作用,并能保持酶的活性和稳定性,提高反应效率和产量。
总之,海藻酸钠-壳聚糖固定化载体是一种具有广泛应用前景的生物材料,在生物医学、制药和工业生产等领域有着重要的应用价值。
它的制备及应用研究将是未来的一个重要研究方向。
壳聚糖载药纳米颗粒的制备与表征近年来,纳米颗粒作为一种新型的药物载体,在药物传递和治疗方面展现出巨大的潜力。
壳聚糖作为天然多糖,具有生物相容性、生物可降解性、低毒性等优点,因此被广泛应用于纳米颗粒的制备中。
本文将详细介绍壳聚糖载药纳米颗粒的制备方法以及其表征方法。
壳聚糖载药纳米颗粒的制备方法常见的制备壳聚糖载药纳米颗粒的方法有两种:化学法和物理法。
化学法主要包括阳离子凝胶法、乳化法和脉冲喷雾法等。
阳离子凝胶法是将药物与壳聚糖在反应体系中通过静电吸引力和化学交联作用制备成纳米颗粒。
乳化法是通过机械剪切使药物和壳聚糖乳化,并在乳化体系中通过添加交联剂制备纳米颗粒。
脉冲喷雾法是将聚合物、药物和壳聚糖溶液通过脉冲喷雾技术迅速混合并形成纳米颗粒。
物理法主要包括超声法、激光热剥离法和旋转膜分离法等。
超声法是将壳聚糖溶液和药物溶液加入反应体系中,利用超声处理使两种溶液形成纳米颗粒。
激光热剥离法是将壳聚糖溶液和药物溶液通过激光加热最终形成纳米颗粒。
旋转膜分离法是利用选定的分子筛膜(PVD膜)把药物分离出来,再将药物与壳聚糖水溶液混合沉淀,最终获得壳聚糖载药纳米颗粒。
壳聚糖载药纳米颗粒的表征方法正确有效地表征壳聚糖载药纳米颗粒的性质对于进一步的研究和应用至关重要。
下面将介绍几种常用的表征方法:1. 粒径分析:粒径是表征纳米颗粒的重要参数之一。
常见的粒径分析方法包括动态光散射(DLS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
DLS技术基于光散射进行粒径分析,可以获得纳米颗粒的平均粒径、分布范围等信息。
SEM和TEM则可以观察到纳米颗粒的形貌和大小。
2. 药物载量和包封率:药物载量和包封率是评价壳聚糖载药纳米颗粒性能的重要指标。
药物载量指的是单位质量纳米颗粒中载药量的大小,包封率则是指药物被载入纳米颗粒内的百分比。
这两个参数可以通过紫外-可见吸收光谱(UV-Vis)测量来获得。
3. 形态结构分析:壳聚糖载药纳米颗粒的形态结构可以通过X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)等方法进行分析。
载紫杉醇聚合物胶束的制备工艺优化魏淑明;范清英;宋煜【摘要】目的优化载药胶束的制备工艺,并对其稳定性进行考察. 方法采用高效液相(HPLC)法测定紫杉醇(PTX)含量,以载药量、包封率、粒径为考察指标,通过单因素考察方法优化载药胶束的制备工艺. 结果优化工艺下制备的载PTX胶束载药量为(38.63 ± 0.42)%,包封率为(83.19 ± 1.23)%,粒径为(192.2 ± 0.5)nm,载PTX聚合物胶束一定条件下贮存10 d后,粒径与载药量无明显变化. 结论该载药工艺简单可行,可用于载PTX聚合物胶束的制备,所制备的聚合物胶束短期贮存稳定.%Objective To optimize the preparation process of PTX-loaded polymer micelles. Study on the stability of polymer micelles. Methods The HPLC activity was used to determine the con-tent of PTX. By using drug loading content,encapsulation efficiency and particle size as assessment inde-xes,the drug-loading process was optimized through the single factor investigation. Results The drug loading efficiency(DL),entrapment efficiency(EE)and average particle size of PTX-loaded polymer mi-celles were(38.63 ± 0.42)%,(83.19 ± 1.23)% and(192.2 ± 0.5)nm. There was no significant differ-ences in size and drug loading of the paclitaxel polymer micelles for 10 days. Conclusion T he drug-load-ing process was simple and feasible,and can be used to prepared the PTX-loaded polymer micelles. The prepared polymer micelles are stable for short-term storage.【期刊名称】《福建医科大学学报》【年(卷),期】2017(051)006【总页数】5页(P381-385)【关键词】紫杉酚;抗肿瘤药;聚合物;工艺学;凝胶类【作者】魏淑明;范清英;宋煜【作者单位】福建中医药大学药学院,福州 350122;福建中医药大学药学院,福州350122;福建中医药大学药学院,福州 350122【正文语种】中文【中图分类】R282.71;R283.3;R283.6;R318.08紫杉醇(paclitaxel,PTX)是首个从天然植物中分离出来的抗癌药,在临床上广泛应用于卵巢癌、乳腺癌、非小细胞肺癌等[1-3]。