机械能守恒定律知识点总结及本章试题
- 格式:doc
- 大小:216.91 KB
- 文档页数:8
机械能守恒定律知识点总结机械能守恒定律是高中物理中一个非常重要的定律,它描述了在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
下面我们来详细总结一下机械能守恒定律的相关知识点。
一、机械能的概念机械能包括动能、重力势能和弹性势能。
动能:物体由于运动而具有的能量,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
重力势能:物体由于被举高而具有的能量,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对于参考平面的高度。
弹性势能:物体由于发生弹性形变而具有的能量,与弹簧的劲度系数和形变程度有关。
二、机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
三、机械能守恒定律的表达式1、初状态的机械能等于末状态的机械能,即$E_{k1} + E_{p1} =E_{k2} + E_{p2}$。
2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\Delta E_{p}$。
四、机械能守恒定律的条件1、只有重力或弹力做功。
2、受其他力,但其他力不做功或做功的代数和为零。
需要注意的是,“只有重力或弹力做功”不能简单地理解为“只受重力或弹力”。
例如,物体在光滑水平面上做匀速圆周运动,虽然受到绳子的拉力,但拉力始终与速度方向垂直,不做功,所以物体的机械能守恒。
五、机械能守恒定律的应用1、单个物体的机械能守恒分析物体的受力情况,判断机械能是否守恒。
确定初末状态,选择合适的表达式列方程求解。
例如,一个物体从高处自由下落,我们可以根据机械能守恒定律$mgh_1 =\frac{1}{2}mv^2 + mgh_2$来求解物体下落某一高度时的速度。
2、多个物体组成的系统的机械能守恒分析系统内各个物体的受力情况,判断机械能是否守恒。
确定系统的初末状态,注意研究对象的选择和能量的转化关系。
机械能守恒定律知识点总结机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.表达式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面).(2)转化观点:ΔE k=-ΔE p(不用选零势能参考平面).(3)转移观点:ΔEA增=ΔEB减(不用选零势能参考平面).3.机械能守恒的条件只有重力(或弹力)做功或虽有其他外力做功但其他力做功的代数和为零考点一机械能守恒的判断方法1.利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.2.用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.4.(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力做功”不等于“只受重力作用”.(2)分析机械能是否守恒时,必须明确要研究的系统.(3)只要涉及滑动摩擦力做功,机械能一定不守恒.对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.考点二机械能守恒定律及应用1.三种表达式的选择如果系统(除地球外)只有一个物体,用守恒观点列方程较方便;对于由两个或两个以上物体组成的系统,用转化或转移的观点列方程较简便.2.应用机械能守恒定律解题的一般步骤(2)分析受力情况和各力做功情况,确定是否符合机械能守恒条件.(3)确定初末状态的机械能或运动过程中物体机械能的转化情况.(4)选择合适的表达式列出方程,进行求解.(5)对计算结果进行必要的讨论和说明.3.(1)应用机械能守恒定律解题时,要正确选择系统和过程.(2)对于通过绳或杆连接的多个物体组成的系统,注意找物体间的速度关系和高度变化关系(3)链条、液柱类不能看做质点的物体,要按重心位置确定高度.。
功和能、机械能守恒定律第1课时功功率考点1.功1.功的公式:W=Fscosθ0≤θ< 90°力F对物体做正功,θ= 90°力F对物体不做功,90°<θ≤180°力F对物体做负功。
特别注意:①公式只适用于恒力做功②F和S是对应同一个物体的;③某力做的功仅由F、S决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:W =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
G3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功,一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
、 1/2 kx(xx(2)弹簧的弹力的功——W = 1/2 kx –2211合力的功——有22为弹簧的形变量)两种方法:5. )先求出合力,然后求总功,表达式为(1 θS ×cosΣΣW=F×)合力的功等于各分力所做功的代数和,即(2 +WW+W+……ΣW=312变力做功: 基本原则——过程分割与代数累积6. E求之;合1)一般用动能定理W=Δ(K , 过程无限分小后,可认为每小段是恒力做功(2)也可用(微元法)无限分小法来求.图线下的“面积”计算F-S(3)还可用FSFW?SF对 , 的平均作用力4)(或先寻求做,做功意味着能量的转移与转化,7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点 ,相应就有多少能量发生转移或转化多少功图象如图所示。
下列表述正确的是物体在合外力作用下做直线运动的v一t1.例内,合外力做正功0—1s.在AB.在0—2s内,合外力总是做负功C.在1—2s内,合外力不做功内,合外力总是做正功3s —0.在D.考点2.功率W?P,所求出的功率是时间定义式:t内的平均功率。
机械能守恒定律一.知识聚焦1.定义:物体由于做机械运动而具有的能叫机械能,用符号E 表示,它是动能和势能(包括重力势能和弹性势能)的统称.2.表达式:E =Ek +Ep.机械能是标量,没有方向,只有大小,可有正负(因势能可有正负).3.机械能具有相对性:因为势能具有相对性(需确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是地面),所以机械能也具有相对性.只有在确定的参考系和零势能参考平面的情况下,机械能才有确定的物理意义二.经典例题例1 下列物体中,机械能守恒的是( )A .做平抛运动的物体B .被匀速吊起的集装箱C .光滑曲面上自由运动的物体D .物体以45g 的加速度竖直向上做匀减速运动 解析 物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒,所以A 、C 项正确;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不守恒;物体以45g 的加速度向上做匀减速运动时,由牛顿第二定律F -mg =m(-45g),有F =15mg ,则物体受到竖直向上的大小为15mg 的外力作用,该力对物体做了正功,机械能不守恒.答案 AC例2 如图所示,在水平台面上的A 点,一个质量为m 的物体以初速度v 0被抛出,不计空气阻力,求它到达B 点时速度的大小.解析 物体抛出后的运动过程中只受重力作用,机械能守恒,若选地面为参考面,则mgH +12mv 20=mg(H -h)+12mv 2B解得v B =v 20+2gh若选桌面为参考面,则12mv 20=-mgh +12mv 2B 解得它到达B 点时速度的大小为v B =v 20+2gh答案 v 20+2gh例3 如图所示,斜面的倾角θ=30°,另一边与地面垂直,高为H ,斜面顶点上有一定滑轮,物块A 和B 的质量分别为m 1和m 2,通过轻而柔软的细绳连结并跨过定滑轮.开始时两物块都位于与地面垂直距离为12H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面的竖直边下落.若物块A 恰好能达到斜面的顶点,试求m 1和m 2的比值.滑轮的质量、半径和摩擦均可忽略不计.解析 设B 刚下落到地面时速度为v ,由系统机械能守恒得m 2g H 2-m 1g H 2sin 30°=12(m 1+m 2)v 2① A 物体以v 上滑到顶点过程中机械能守恒12m 1v 2=m 1g H 2sin 30°② 由①②得m 1m 2=1∶2答案 1∶2例4 质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h 高度,下列说法中正确的是( )A .物体的重力势能减少2mghB .物体的机械能保持不变C .物体的动能增加2mghD .物体的机械能增加mgh解析 因重力做了mgh 的功,由重力做功与重力势能变化关系可知重力势能减少mgh ,合力做功为2mgh ,由动能定理可知动能增加2mgh ,除重力之外的力做功mgh ,所以机械能增加mgh ,A 、B 错,C 、D 对.答案 CD例5用弹簧枪将一质量为m 的小钢球以初速度v 0竖直向上弹出,不计空气阻力,当小钢球的速度减为v 04时,钢球的重力势能为(取弹出钢球点所在水平面为参考面)( )A.1532mv 20B.1732mv 20C.132mv 20D.49mv 20 答案 A 解析 由12mv 20=Ep +12m(v 04)2得 Ep =1532mv 20. 三、基础演练1.关于机械能守恒,下列说法正确的是( )A .物体匀速运动,其机械能一定守恒B .物体所受合外力不为零,其机械能一定不守恒C .物体所受合外力做功不为零,其机械能一定不守恒D .物体沿竖直方向向下做加速度为5 m/s 2的匀加速运动,其机械能减少答案 D2.如图所示,在抗洪救灾中,一架直升机通过绳索,用恒力F 竖直向上拉起一个漂在水面上的木箱,使其由水面开始加速上升到某一高度,若考虑空气阻力而不考虑空气浮力,则在此过程中,以下说法正确的有( )A .力F 所做功减去克服阻力所做的功等于重力势能的增量B .木箱克服重力所做的功等于重力势能的增量C .力F 、重力、阻力,三者合力所做的功等于木箱动能的增量D .力F 和阻力的合力所做的功等于木箱机械能的增量答案 BCD解析 对木箱受力分析如右图所示,则由动能定理:WF -mgh -WF f =ΔEk ,故C 对.由上式得:WF -WF f =ΔEk +mgh ,即WF -WF f =ΔEk +ΔEp =ΔE ,故A 错,D 对.3.如图所示,细绳跨过定滑轮悬挂两物体M 和m ,且M>m ,不计摩擦,系统由静止开始运动过程中( )A .M 、m 各自的机械能分别守恒B .M 减少的机械能等于m 增加的机械能C .M 减少的重力势能等于m 增加的重力势能D .M 和m 组成的系统机械能守恒解析:M 下落过程,绳的拉力对M 做负功,M 的机械能不守恒,减少;m 上升过程,绳的拉力对m 做正功,m 的机械能增加,A 错误.对M 、m 组成的系统,机械能守恒,易得B 、D 正确;M 减少的重力势能并没有全部用于m 重力势能的增加,还有一部分转变成M 、m 的动能,所以C 错误.答案:BD4.(2009年营口质检)如图13所示,在地面上以速度v0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面上.若以地面为零势能面而且不计空气阻力, 则①物体到海平面时的势能为mgh ②重力对物体做的功为mgh③物体在海平面上的动能为12mv20+mgh ④物体在海平面上的机械能为12mv20 其中正确的是( )A .①②③B .②③④C .①③④D .①②④解析:以地面为零势能面,物体到海平面时的势能为-mgh ,①错,重力对物体做功为mgh ,②对;由机械能守恒,12mv20=Ek -mgh ,Ek =12mv20+mgh ,③④对,故选B. 答案:B5.如图14所示,一轻质弹簧竖立于地面上,质量为m 的小球,自弹簧正上方h 高处由静止释放,则从小球接触弹簧到将弹簧压缩至最短(弹簧的形变始终在弹性限度内)的过程中,下列说法正确的是( )A .小球的机械能守恒B .重力对小球做正功,小球的重力势能减小C .由于弹簧的弹力对小球做负功,所以弹簧的弹性势能一直减小D .小球的加速度先减小后增大解析:小球与弹簧作用过程,弹簧弹力对小球做负功,小球的机械能减小,转化为弹簧的弹性势能,使弹性势能增加,因此A 错误,C 错误;小球下落过程中重力对小球做正功,小球的重力势能减小,B 正确;分析小球受力情况,由牛顿第二定律得:mg -kx =ma ,随弹簧压缩量的增大,小球的加速度a 先减小后增大,故D 正确.答案:BD6.利用传感器和计算机可以测量快速变化的力,如图16所示是用这种方法获得的弹性绳中拉力F 随时间的变化图象.实验时,把小球举高到绳子的悬点O 处,然后让小球自由下落.从图象所提供的信息,判断以下说法中正确的是( )A .t1时刻小球速度最大B .t2时刻小球动能最大C .t2时刻小球势能最大D .t2时刻绳子最长解析:小球自由下落的过程中,t1时刻绳子的拉力为零,此时速度不是最大,动能也不是最大,最大速度的时刻应是绳子拉力和重力相等时,即在t1、t2之间某一时刻,t2时刻绳子的拉力最大,此时速度为零,动能也为零,绳子的弹性势能最大,而小球的势能不是最大,而是最小,t2时刻绳子所受拉力最大,绳子最长.答案:D四.能力提升1.如图7-8-7所示,某人以拉力F 将物体沿斜面拉下,拉力大小等于摩擦力,则下列说法中正确的是( )A .物体做匀速运动B .合力对物体做功等于零C .物体的机械能守恒D .物体的机械能减小答案 C2.下列四个选项的图中,木块均在固定的斜面上运动,其中图A 、B 、C 中的斜面是光滑的,图D 中的斜面是粗糙的,图A 、B 中的F 为木块所受的外力,方向如图中箭头所示,图A 、B 、D 中的木块向下运动,图C 中的木块向上运动.在这四个图所示的运动过程中机械能守恒的是( )答案 C解析 依据机械能守恒条件:只有重力做功的情况下,物体的机械能才能保持守恒,由此可见,A 、B 均有外力F 参与做功,D 中有摩擦力做功,故A 、B 、D 均不符合机械能守恒的条件.3.(2010年山东名校联考)一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变 B .物体的动能减小13mgh C .物体的机械能增加23mgh D .物体的重力势能增加mgh 解析:设物体受到的向上的拉力为F.由牛顿第二定律可得:F 合=F -mg =-13mg ,所以F =23mg.动能的增加量等于合外力所做的功-13mgh ;机械能的增加量等于拉力所做的功23mgh ,重力势能增加了mgh ,故B 、C 、D 正确,A 错误. 答案:BCD4.(2010年成都模拟)如图10所示,质量相等的A 、B 两物体在同一水平线上,当A 物体被水平抛出的同时,B 物体开始自由下落(空气阻力忽略不计),曲线AC 为A 物体的运动轨迹,直线BD 为B 物体的运动轨迹,两轨迹相交于O 点,则两物体( )A .经O 点时速率相等B .在O 点相遇C .在O 点具有的机械能一定相等D .在O 点时重力的功率一定相等解析:由机械能守恒定律可知,A 、B 下落相同高度到达O 点时速率不相等,故A 错.由于平抛运动竖直方向的运动是自由落体运动,两物体从同一水平线上开始运动,将同时达到O 点,故B 正确.两物体运动过程中机械能守恒,但A 具有初动能,故它们从同一高度到达O 点时机械能不相等,C 错误.重力的功率P =mgvy ,由于两物体质量相等,到达O 点的竖直分速度vy 相等,故在O 点时,重力功率一定相等,D 项正确.答案:BD五、个性天地1.如图7-8-8所示,翻滚过山车轨道顶端A 点距地面的高度H =72 m ,圆形轨道最高处的B 点距地面的高度h =37 m .不计摩擦阻力,试计算翻滚过山车从A 点由静止开始下滑运动到B 点时的速度.(g 取10 m/s 2)答案 26.5 m/s解析 取水平地面为参考平面,在过山车从A 点运动到B 点的过程中,对过山车与地球组成的系统应用机械能守恒定律,有mgh +12mv 2=mgH 可得过山车运动到B 点时的速度为v =2g (H -h )=2×10×(72-37) m /s≈26.5 m/s2.某人站在离地面h =10 m 高处的平台上以水平速度v 0=5 m/s 抛出一个质量m =1 kg 的小球,不计空气阻力,g 取10 m/s 2,问:(1)人对小球做了多少功?(2)小球落地时的速度为多大?答案 (1)12.5 J (2)15 m/s解析 (1)人对小球做的功等于小球获得的动能,所以W =12mv 20=12×1×52 J =12.5 J[来源:] (2)根据机械能守恒定律可知mgh +12mv 20=12mv 2 所以v =v 20+2gh =52+2×10×10 m/s =15 m/s3.如图7-8-9所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R =0.4 m .一个小球停放在水平轨道上,现给小球一个v 0=5 m/s 的初速度,求:(g 取10 m/s 2)(1)小球从C 点飞出时的速度.(2)小球到达C 点时,对轨道的作用力是小球重力的几倍?(3)小球从C 点抛出后,经多长时间落地?(4)落地时速度有多大?答案 (1)3 m/s (2)1.25倍 (3)0.4 s (4)v 0解析 (1)小球运动至最高点C 过程中机械能守恒,有12mv 20=2mgR +12mv 2Cv C =v 20-4gR =52-4×10×0.4 m/s =3 m/s(2)对C 点由向心力公式可知FN +mg =m v 2C RFN =m v 2C R-mg =1.25mg 由牛顿第三定律可知小球对轨道的压力为小球重力的1.25倍.(3)小球从C 点开始做平抛运动由2R =12gt 2知 t = 4R g = 4×0.410s =0.4 s (4)由于小球沿轨道运动及做平抛运动的整个过程机械能守恒,所以落地时速度大小等于v 0.4 如图6所示,作平抛运动的小球的初动能为6J ,不计一切阻力,它落在斜面上P 点时的动能为:( )A. 12JB. 10JC. 14JD. 8J解析:把小球的位移分解成水平位移s 和竖直方向的位移h 。
通用版带答案高中物理必修二第八章机械能守恒定律微公式版知识点归纳总结(精华版)单选题1、如图所示,“歼15”战机每次从“辽宁号”航母上起飞的过程中可视为匀加速直线运动,且滑行的距离和牵引力都相同,则()A.携带的弹药越多,加速度越大B.携带的弹药越多,牵引力做功越多C.携带的弹药越多,滑行的时间越长D.携带的弹药越多,获得的起飞速度越大答案:CA.由题知,携带的弹药越多,即质量越大,然牵引力一定,根据牛顿第二定律F=ma质量越大加速度a越小,A错误B.牵引力和滑行距离相同,根据W=Fl得,牵引力做功相同,B 错误C .滑行距离L 相同,加速度a 越小,滑行时间由运动学公式t =√2L a可知滑行时间越长,C 正确D .携带的弹药越多,获得的起飞速度由运动学公式v =√2aL可知获得的起飞速度越小,D 错误 故选C 。
2、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A .14mgR B .310mgR C .12mgR D .mgR 答案:C在最低点时,根据牛顿第二定律有7mg −mg =mv 12R则最低点速度为v 1=√6gR恰好通过最高点,则根据牛顿第二定律有mg=mv22 R则最高点速度为v2=√gR 由动能定理得−2mgR+W f=12mv22−12mv12解得W f=−12 mgR球克服空气阻力所做的功为0.5mgR故选C。
3、如图所示为某汽车启动时发动机功率P随时间t变化的图像,图中P0为发动机的额定功率,若已知汽车在t2时刻之前已达到最大速度v m,据此可知()A.t1~t2时间内汽车做匀速运动B.0~t1时间内发动机做的功为P0t1C.0~t2时间内发动机做的功为P0(t2-t12)D.汽车匀速运动时所受的阻力小于P0v mA.由题意得,在0~t1时间内功率随时间均匀增大,知汽车做匀加速直线运动,加速度恒定,由牛顿第二定律F−f=ma可知,牵引力恒定,合力也恒定。
一、选择题1.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为2(m)x t t =+,2s t =时,该物体所受合力的瞬时功率为( )A .10WB .16WC .20WD .24W2.以相同的动能从同一点水平抛出两个物体a 和b ,落地点的水平位移为s 1和s 2,自抛出到落地的过程中,重力做的功分别为W 1、W 2,落地瞬间重力的瞬时功率为P 1和P 2( )A .若s 1<s 2,则W 1>W 2,P 1>P 2B .若s 1<s 2,则W 1>W 2,P 1<P 2C .若s 1=s 2,则W 1>W 2,P 1>P 2D .若s 1=s 2,则W 1<W 2,P 1<P 23.如图所示,一个小球从高处自由下落到达A 点与一个轻质弹簧相撞,弹簧被压缩。
在球与弹簧接触,到弹簧被压缩到最短的过程中,关于球的动能、重力势能、弹簧的弹性势能的说法中正确的是( )A .球的机械能守恒B .球的重力势能逐渐减小,弹簧的弹性势能逐渐增加C .球的动能一直在减小D .球的重力势能和弹簧的弹性势能之和逐渐增加4.2020年11月28日,嫦娥五号在距月面约200公里的A 处成功实施变轨进入环月椭圆轨道Ⅰ。
绕月三圈后进行第二次近月变轨,进入环月圆轨道Ⅱ,如图所示,则嫦娥五号( )A .在轨道Ⅰ的运行周期小于在轨道Ⅱ的运行周期B .在轨道Ⅱ上的速度小于月球的第一宇宙速度C .在轨道Ⅰ上A 点的加速度小于轨道Ⅱ上B 点的加速度D .在轨道Ⅱ上B 点的机械能大于轨道Ⅰ上C 点的机械能5.在水平地面上竖直上抛一个小球,小球在运动过程中重力瞬时功率的绝对值为P ,离地高度h 。
不计空气阻力,从抛出到落回原地的过程中,P 与h 关系图像为( ) A . B .C .D .6.汽车在研发过程中都要进行性能测试,如图所示为某次测试中某型号汽车的速度v 与拉力F 大小倒数的1v F—图像。
已知汽车在平直路面上由静止启动,ab 平行于v 轴,bc 反向延长过原点O 。
一、选择题1.如图所示,轻质弹簧竖直放置,下端固定。
小球从弹簧的正上方某一高度处由静止下落,不计空气阻力,则从小球接触弹簧到弹簧被压缩至最短的过程中()A.小球的动能一直减小B.小球的机械能守恒C.弹簧的弹性势能先增加后减小D.小球的重力势能一直减小2.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地(不计空气阻力),以下说法正确的是()①运行的时间相等②重力的平均功率相等③落地时重力的瞬时功率相等④落地时的动能相等A.④B.②③C.③④D.②③④3.两个互相垂直的力F1与F2作用在同一物体上,使物体运动,物体通过一段位移时,力F1对物体做功为4J。
力F2对物体做功为3J,则力F1与F2的合力对物体做功为()A.0 B.5J C.7J D.25J4.关于功和能,下列说法不正确的是()A.滑动摩擦力对物体可以做正功B.当作用力对物体做正功时,反作用力可以不做功C.一对互为作用力和反作用力的滑动摩擦力,做功之和一定为零D.只有重力做功的物体,在运动过程中机械能一定守恒5.物体从某一高度做初速为0v的平抛运动,p E为物体重力势能,k E为物体动能,h为下落高度,t为飞行时间,v为物体的速度大小。
以水平地面为零势能面,不计空气阻力,下E与各物理量之间关系可能正确的是()列图象中反映pA.B.C.D.6.在水平地面上竖直上抛一个小球,小球在运动过程中重力瞬时功率的绝对值为P,离地高度h。
不计空气阻力,从抛出到落回原地的过程中,P与h关系图像为()A.B.C.D.7.如图,游乐场中,从高处P到水面Q处有三条不同的光滑轨道,图中甲和丙是两条长度相等的曲线轨道,乙是直线轨道。
甲、乙、丙三小孩沿不同轨道同时从P处自由滑向Q 处,下列说法正确的有()A.甲的切向加速度始终比丙的小B.因为乙沿直线下滑,所经过的路程最短,所以乙最先到达Q处C.虽然甲、乙、丙所经过的路径不同,但它们的位移相同,所以应该同时到达Q处D.甲、乙、丙到达Q处时的速度大小是相等的8.将一个小球从水平地面竖直向上抛出,它在运动过程中受到的空气阻力大小恒定,其上升的最大高度为20m,则运动过程中小球的动能和重力势能相等时,其高度为(规定水平地面为零势能面)()A.上升时高于10m,下降时低于10mB.上升时低于10m,下降时高于10mC.上升时高于10m,下降时高于10mD.上升时低于10m,下降时低于10m9.在倾角为30°的斜面上,某人用平行于斜面的力把原来静止于斜面上的质量为2kg的物体沿斜面向上推了2m的距离,并使物体获得1m/s的速度,已知物体与斜面间的动摩擦因数为33,g取10m/s2,则在这个过程中()A.物体机械能增加41J B.摩擦力对物体做功20JC.合外力对物体做功1J D.物体重力势能增加40J10.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
第七章 机械能守恒单元总结知识要点一:功和功率的计算1.功的计算方法(1)利用W =Fl cos α求功,此时F 是恒力. (2)利用动能定理或功能关系求功. (3)利用W =Pt 求功. 2.功率的计算方法(1)P =Wt :此式是功率的定义式,适用于任何情况下功率的计算,但常用于求解某段时间内的平均功率.(2)P =Fv cos α:此式一般计算瞬时功率,但当速度为平均速度v 时,功率P 为平均功率.质量为m =20 kg 的物体,在大小恒定的水平外力F 的作用下,沿水平面做直线运动.0~2 s 内F 与运动方向相反,2~4 s 内F 与运动方向相同,物体的v -t 图象如图1所示,g 取10 m/s 2,则( )思维导图知识要点A.拉力F 的大小为100 NB.物体在4 s 时拉力的瞬时功率为120 WC.4 s 内拉力所做的功为480 JD.4 s 内物体克服摩擦力做的功为320 J 【答案】 B【解析】 由图象可得:0~2 s 内物体做匀减速直线运动,加速度大小为:a 1=Δv Δt =102 m/s 2=5 m/s 2,匀减速过程有F +F f =ma 1.匀加速过程加速度大小为a 2=Δv ′Δt ′=22 m/s 2=1 m/s 2,有F -F f =ma 2,解得F f =40 N ,F =60 N ,故A 错误.物体在4 s 时拉力的瞬时功率为P =Fv =60×2 W =120 W ,故B 正确.4 s 内物体通过的位移为x =(12×2×10-12×2×2)m =8 m ,拉力做功为W =-Fx =-480 J ,故C 错误.4 s 内物体通过的路程为s =(12×2×10+12×2×2) m =12 m ,摩擦力做功为W f =-F f s =-40×12 J =-480 J ,故D 错误. (2019·广东佛山高一模拟)质量为2 kg 的小铁球从某一高度由静止释放,经3 s 到达地面,不计空气阻力,g 取10 m/s 2.则( )A .2 s 末重力的瞬时功率为200 WB .2 s 末重力的瞬时功率为400 WC .2 s 内重力的平均功率为100 WD .2 s 内重力的平均功率为400 W 【答案】:B【解析】:小铁球只受重力,做自由落体运动,2 s 末速度为v 1=gt 1=20 m/s ,下落2 s 末重力做功的瞬时功率P =mgv 1=2×10×20 W =400 W ,故选项A 错误,B 正确;2 s 内的位移为h 2=12gt 22=20 m ,所以前2 s 内重力的平均功率为P =mgh 2t 2=2×10×202W =200 W ,故选项C 、D 错误. 知识要点二:机车启动问题1.模型一 以恒定功率启动(1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:2.模型二 以恒定加速度启动 (1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:3.三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =PF 阻.(2)机车以恒定加速度启动时,匀加速过程结束时功率最大,速度不是最大,即v =P F <v m =PF 阻.(3)机车以恒定功率运行时,牵引力做的功W =Pt ,由动能定理得Pt -F 阻x =ΔE k ,此式经常用于求解机车以恒定功率启动过程的位移或速度.一列火车总质量m =500 t ,发动机的额定功率P =6×105 W ,在轨道上行驶时,轨道对列车的阻力F f 是车重的0.01倍.(g 取10 m/s 2) (1)求列车在水平轨道上行驶的最大速度;(2)在水平轨道上,发动机以额定功率P 工作,求当行驶速度为v 1=1 m/s 和v 2=10 m/s 时,列车的瞬时加速度a 1、a 2的大小;(3)列车在水平轨道上以36 km/h 的速度匀速行驶时,求发动机的实际功率P ′;(4)若列车从静止开始,保持0.5 m/s 2的加速度做匀加速运动,求这一过程维持的最长时间. 【答案】:(1)12 m/s (2)1.1 m/s 2 0.02 m/s 2(3)5×105 W (4)4 s【解析】:(1)列车以额定功率行驶,当牵引力等于阻力,即F =F f =kmg 时,列车的加速度为零,速度达到最大值v m ,则v m =P F =P F f =P kmg=12 m/s.(2)当v <v m 时,列车做加速运动,若v 1=1 m/s ,则F 1=Pv 1=6×105 N ,根据牛顿第二定律得a 1=F 1-F fm =1.1 m/s 2若v 2=10 m/s ,则F 2=Pv 2=6×104 N根据牛顿第二定律得a 2=F 2-F fm=0.02 m/s 2.(3)当v =36 km/h =10 m/s 时,列车匀速运动,则发动机的实际功率P ′=F f v =5×105 W. (4)由牛顿第二定律得F ′=F f +ma =3×105 N在此过程中,速度增大,发动机功率增大,当功率为额定功率时速度为v ′,即v ′=PF ′=2 m/s ,由v ′=at 得t=v ′a=4 s. 分析机车启动问题常出现的三点错误(1)在机车功率公式P =Fv 中,F 是机车的牵引力而不是机车所受合力,当P =F f v m 时,牵引力与阻力平衡,机车达到最大运行速度.(2)恒定功率下的启动过程一定不是匀加速,匀变速直线运动的公式不适用,这种加速过程发动机做的功可用W =Pt 计算,不能用W =Fl 计算(因为F 是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W =Fl 计算,不能用W =Pt 计算(因为功率P 是变化的).知识要点三:动能定理的理解和应用1.对动能定理的理解(1)W总=W 1+W 2+W 3+…是包含重力在内的所有力做功的代数和,若合外力为恒力,也可这样计算:W总=F 合l cos α。
功和能、机械能守恒定律第1课时 功 功率考点1.功1.功的公式:W=Fscos θ0≤θ< 90°力F 对物体做正功, θ= 90°力F 对物体不做功,90°<θ≤180° 力F 对物体做负功。
特别注意:①公式只适用于恒力做功②F 和S 是对应同一个物体的;③某力做的功仅由F 、S 决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:W G =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功, 一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - f ΔS 4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
(2)弹簧的弹力的功——W = 1/2 kx 12 – 1/2 kx 22(x 1、x 2为弹簧的形变量) 5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为 ΣW =ΣF ×S ×cos θ(2)合力的功等于各分力所做功的代数和,即 ΣW =W 1 +W 2+W 3+……6.变力做功: 基本原则——过程分割与代数累积 (1)一般用动能定理W 合=ΔE K 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功 (3)还可用F-S 图线下的“面积”计算.(4)或先寻求F 对S 的平均作用力F , S F W7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化例1.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是 A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功考点2.功率 1. 定义式:tWP =,所求出的功率是时间t 内的平均功率。
机械能守恒一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正;当2πθ=时,即力与位移垂直,力不做功,功为零;当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tWP =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
1 机械能守恒定律知识点总结及本章试题 一、功 1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W——某力功,单位为焦耳(J) F——某力(要为恒力),单位为牛顿(N)
S——物体运动的位移,一般为对地位移,单位为米(m) ——力与位移的夹角
4功是标量,但它有正功、负功。某力对物体做负功,也可说成“物体克服某力做功”。 功的正负表示能量传递的方向,即功是能量转化的量度。 当)2,0[时,即力与位移成锐角,力做正功,功为正; 当2时,即力与位移垂直,力不做功,功为零;
当],2(时,即力与位移成钝角,力做负功,功为负; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W总=W1+W2+„+Wn 或W总= F合Scos θ 二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:tWP(平均功率) cosFP(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率 实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P实≤P额。 2
5应用: (1)机车以恒定功率启动时,由FP(P为机车输出功率,F为机车牵引力,为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力fF时,速度不再增大达到最大值max,则fP/max。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F恒定为fma,速度不断增加汽车输出功率FP随之增加,当额定PP时,F开始减小但仍大于f因此机车速度继续增大,直至fF时,汽车便达到最大速度max,则fP/max。 三、重力势能 1定义:物体由于被举高而具有的能,叫做重力势能。 2公式:mghEP h——物体具参考面的竖直高度 3参考面 a重力势能为零的平面称为参考面; b选取:原则是任意选取,但通常以地面为参考面 若参考面未定,重力势能无意义,不能说重力势能大小如何 选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。 4标量,但有正负。 重力势能为正,表示物体在参考面的上方; 重力势能为负,表示物体在参考面的下方; 重力势能为零,表示物体在参考面的上。 5单位:焦耳(J) 6重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。 7重力做功与重力势能的关系:21PPGEEW 重力做正功时,物体重力势能减少;重力做负功时,物体重力势能增加。 四、弹性势能 1概念:发生弹性形变的物体的各部分之间,由于弹力的相互作用具有势能,称之为弹性势能。 2弹簧的弹性势能:221kxEP 影响弹簧弹性势能的因素有:弹簧的劲度系数k和弹簧形变量x。 3弹力做功与弹性势能的关系:21PPFEEW 3
弹力做正功时,物体弹性势能减少;弹力做负功时,物体弹性势能增加。 4势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。 五、动能 1概念:物体由于运动而具有的能量,称为动能。 2动能表达式:221mEK 3动能定理(即合外力做功与动能关系):12KKEEW 4理解:①合F在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 ②合F做正功时,物体动能增加;合F做负功时,物体动能减少。 ③动能定理揭示了合外力的功与动能变化的关系。 4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5应用动能定理解题步骤: a确定研究对象及其运动过程 b分析研究对象在研究过程中受力情况,弄清各力做功 c确定研究对象在运动过程中初末状态,找出初、末动能 d列方程、求解。 六、动量守恒定律 一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。 公式:P= P’
22112211vmvmvmvm
七、机械能 1机械能包含动能和势能(重力势能和弹性势能)两部分,即PKEEE。 2机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,即 21EE
2211PKPKEEEE ΔΕK = —ΔΕP
ΔΕ1 = —ΔΕ2。
3机械能守恒条件: 做功角度:只有重力或弹力做功,无其它力做功; 4
外力不做功或外力做功的代数和为零; 系统内如摩擦阻力对系统不做功。 能量角度:首先只有动能和势能之间能量转化,无其它形式能量转化;只有系统内能量的交换,没有与外界的能量交换。
4运用机械能守恒定律解题步骤: a确定研究对象及其运动过程 b分析研究对象在研究过程中受力情况,弄清各力做功,判断机械能是否守恒 c恰当选取参考面,确定研究对象在运动过程中初末状态的机械能 d列方程、求解。 八、能量守恒定律 1内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变, 即2211其它机械能其它机械能EEEE。 2能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。
机械能守恒定律测试题 一、选择题 1.从高处自由下落的物体,它的重力势能Ep和机械能E随下落高度h的变化图线如图所示,正确的是( ) 5
2.行驶中汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降.上述不同现象所包含的相同的物理过程是( ) ①物体克服阻力做功 ②物体的动能转化为其他形式的能量 ③物体的势能转化为其他形式的能量 ④物体的机械能转化为其他形式的能量 A.② B.①② C.①③ D.①④
3.在交通运输中,常用“客运效率” 来反映交通工具的某项效能,“客运效率”表示消耗单位能量对应的载客数和运送路程的乘积,即客运效率=消耗能量路程人数.一个人骑电动自行车,消耗1MJ(610J)的能量可行驶30Km;一辆载有4个人的普通轿车,消耗320MJ的能量可行驶100Km,则电动自行车与这辆轿车的客运效率之比是 A. 6∶1 B.12∶5 C.24∶1 D.48∶1
4.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A.重力势能和动能之和总保持不变 B.重力势能和弹性势能之和总保持不变 C.动能和弹性势能之和保持不变 D.重力势能、弹性势能和动能之和总保持不变
5.“神舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行 “轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是: A.动能、重力势能和机械能都逐渐减小 B.重力势能逐渐减小,动能逐渐增大,机械能不变 C.重力势能逐渐增大,动能逐渐减小,机械能不变 D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小 6.在奥运比赛项目中,高台跳水是我国运动员的强项。质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )
A.他的动能减少了Fh B.他的重力势能增加了mgh C.他的机械能减少了()Fmgh D.他的机械能减少了Fh 7.如图所示,某人以拉力F将物体沿斜面拉下,拉力大小等于摩擦力,则下列说法中正确的是( ) A.物体做匀速运动 B.合力对物体做功等于零 C.物体的机械能守恒 D.物体的机械能减小
8.下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜
h o pE A h o pE B h o D
E h o C
E 6 面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示,图A、B、D中的木块向下运动,图C中的木块向上运动.在这四个图所示的运动过程中机械能守恒的是( )
9.摆动的秋千,摆动的幅度愈来愈小,对此现象下列说法中正确的是( ) (A)机械能守恒 (B)机械能增加 (C)机械能减少 (D)机械能有时增加,有时减少
10.光滑的水平面上固定着一个螺旋形光滑水平轨道,俯视如图所示。一个小球以一定速度沿轨道切线方向进入轨道,以下关于小球运动的说法中正确的是 ( ) A.轨道对小球做正功,小球的线速度不断增大 B.轨道对小球做正功,小球的角速度不断增大 C.轨道对小球不做功,小球的角速度不断增大 D.轨道对小球不做功,小球的线速度不断增大
11.关于机械能守恒定律适用条件,下列说法中正确的是 ( ) A.只有重力和弹性力作用时,机械能守恒 B.除重力外,当有其他外力作用时,只要其他外力的合力为零,机械能守恒 C.当有其他外力作用时,只要其他外力的合力的功为零,机械能守恒 D.炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒
12.游乐场中的一种滑梯如图所示。小朋友从轨道顶端由静止开始下滑,沿水平轨道滑动了一段距离后停下来,则( ) A.下滑过程中支持力对小朋友做功 B.下滑过程中小朋友的重力势能减少 C.整个运动过程中小朋友的机械能守恒 D.在水平面滑动过程中没有摩擦力对小朋友做功
二、填空题 13.质量为0.7Kg的足球,以4m/s的速度水平飞来,运动员以5m/s的速度将球反方向顶出,则运动员在顶球的过程中对球做的功为 .
14.某地强风的风速约为sm/20,设空气密度为ρ=1.3Kg/m3,如果把通过横截面积为S=20m2的风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P= ,大约为 W(取一位有效数字)