当前位置:文档之家› 四轮独立驱动纯电动汽车驱动防滑控制_殷国栋

四轮独立驱动纯电动汽车驱动防滑控制_殷国栋

四轮独立驱动纯电动汽车驱动防滑控制_殷国栋
四轮独立驱动纯电动汽车驱动防滑控制_殷国栋

电动汽车驱动电机类型种类和结构原理图

电动汽车驱动电机类型种类和结构原理图 随着电动汽车行业的发展,各大汽车厂商纷纷开发了自家的电动车型。在雨后春笋般的的电动汽车市场,大家在看车的时候,厂商均推出了各自车型应用的电机。到底不同的电机有什么差别,下面本文就来讲讲新能源汽车电机的基础知识,介绍各种电机在电动汽车应用特点。 一、什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动汽车在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。

二、电动汽车应用驱动电机特点 基于电动汽车的特点,对所采用的电机也有较高的要求。为了提升最高时速,电机应有较高的瞬时功率和功率密度(W/kg);为了增加1次充电行驶距离,电机应有较高的效率;而且电动汽车是变速工作的,所以电机应有较高的高低速综合效率;此外有很强的过载能力、大的启动转矩、转矩响应要快。电动车起动和爬坡时速度较低,但要求力矩较大;正常运行时需要的力矩较小,而速度很高。低速时为恒转矩特性,高速时为恒功率特性,且电动机的运行速度范围应该较宽。另外,电机还应具备坚固、可靠,有一定的防尘防水能力,且成本不能过高。 目前,从现已成熟的电机技术来看,开关磁阻电机在各个技术特性方面似乎很符合电动车的使用需要,但尚未得到广泛应用;而现今永磁同步电机在电动汽车行业应用较广泛;现在较为知名的特斯拉Model系列均采用异步电机。此外,如果按电流类型划分还可分为直流电机和交流电机两种。下面根据转速、功率密度、体积等多方面特性参数对比来了解4种较为典型的驱动电机特点。

纯电动汽车的结构和驱动系统性能比较资料

纯电动汽车的结构分析和驱动系统性能比较 摘要 纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。 绪论 作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。如今,有多种驱动系统可以使用。根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。 整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。 为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。 结构分析 整体式驱动 整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。图1 b和直驱系统十分相似,除了扭矩由变速器调节。因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。

纯电动汽车驱动电机应用概述

纯电动汽车驱动电机应用概述 郑金凤 胡冰乐 张翔 (福建农林大学机电工程学院,福建 福州 350002) 摘 要:介绍了目前纯电动汽车的发展状况,叙述了纯电动汽车驱动电机不同类型的特点及相关的控制方法。还介绍了一些目前应用比较广泛的驱动电机控制方法的主要内容及其所解决的相关问题。 关键词:纯电动汽车 驱动电机 矢量控制 直接转矩控制 中图分类号:TP202 文献标识码:A Driving Motor for Electric Vehicles Application Overview Zheng Jinfeng Hu Bingle Zhang Xiang (College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: the current state of development of electric vehicles and features of the electric vehicles are described.Otherwise,driving motors and its control methods are narrated. Also major contents of some driving motor control methods applied extensively at present and its related issues are discussed. Key words:Electric vehicle,Drive motor,Vector control,Direct Torque Control 引言 由于环境保护越来越受消费者和政府的重视,以及能源价格的不断上涨,使得世界的汽车制造商都纷纷加大开新能源汽车开发力度。在去年金融危机的影响下,今年以来,由于全球大多主流的汽车市场纷纷出现衰退,尤其以美国和日本为代表的两大汽车市场出现了急剧下滑,使得美国和日本汽车厂家不得不加速原本保守的计划,从而重新刺激美国和日本等原有核心市场。而电动汽车以电能为能源,具有零排放无污染的突出优点,因此备受汽车界的推崇。在中国,政府今年也不断的推出各种政策来促进纯电动汽车的发展。回顾一下国际上电动汽车的发展史,连这次至少有四次,世界汽车工业界要启动纯电动汽车,但是前三次都失败了。前三次失败主要是因为电池。前三次基本上都是以铅酸电池为基础,由于他的比能量和比价格都比较差,所以没有得到推广。现在随着电池技术的不断发展,使得纯电动汽车的推广得以实现。现在纯电动汽车主要采用的是锂电池,锂电池的比能量是铅酸电池的八到十倍,且质量轻。今年比亚迪、丰田、奇瑞等汽车公司都将推出各自的纯电动汽车。并且电动汽车将可能慢慢成为汽车发展的一种趋势和必然[1,2,3]。 1各种电动汽车驱动电机的性能[4-11] 纯电动汽车关键的难点重点在于电池技术和驱动电机。电池技术已经在一定程度上得到了突破。下面主要讨论一下驱动电机的相关状况。 1.1电动汽车驱动电机控制的关键问题 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。下面主要阐述控制过程中的一些关键问题: (1)用在电动汽车的电动机应具有瞬时功率大、过载能力强(过载3~4倍)、加速性能好,使用寿命长的特点。 (2)电动汽车用电动机调速范围应该宽广,包括恒转矩区和恒功率区。要求在低速运行时可以输出大恒定转矩,来适应快速起动、加速、负荷爬坡等要求;高速时能够输出恒定功率,能有较大的调速范围,以适应平坦的路面、超车等高速行驶要求。

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

纯电动车驱动控制系统

纯电动车驱动操纵系统 1驱动系统硬件设计 1.1制动能量回馈操纵过程能量回馈操纵主电路如图3所示,三相逆变电路采纳IGBT功率模块,模块中包括6个IGBT以及各开关管相对 应的续流二极管D1~D6[7-9]。本文采纳SVPWM磁链跟踪操纵技术,操纵PWM的开关时间,使逆变器的输出电压波形尽量接近正弦波,在 电机空间形成逼近圆形的旋转磁场。为了获得多边形旋转磁场逼近圆 形旋转磁场,在每个电压空间矢量的60°区间内能够有多个工作妆态。图4所示为第Ⅰ扇形区域,该扇形区内的T区间包括T0,T1,T2和T7对称分布,相对应的电压空间矢量为u0,u1,u2和u7,其功率开关管开关状态为000,100,110和111共4个状态[10]。该T区间内按 照开关序列输出的三相相电压波形如图5所示。状态1,给定电压空间矢量为u0(000),功率开关管T2、续流二极管D4和D6导通,构成三 相回路,制动时的能量一部分由定子电阻消耗,另一部分存储于定子 电感中,此过程的电流流向如图6(a)所示。状态2,开关状态从u0切 换到u1,功率开关管T2关断,但因为T1承受反压仍处于关断状态, 其续流二极管D1导通,b,c相下桥臂的D4和D6导通,构成三相回路;制动过程中,将电机电感释放的能量回馈到直流侧电容和蓄电池中, 达到制动能量回收的目的,如图6(b)所示。状态3,开关状态从u1切 换到u2,功率开关管T3、二极管D1和D6导通,制动时,电机a和c 相电感释放的能量储存有直流侧电容和电池,而b相电感储存能量, 电流流向如图6(c)所示。状态4,开关状态从u2切换到u7,功率开关管T3,T5以及二极管D1导通,制动过程中,一部分能量消耗在定子 电阻上,另一部分制动能量存储于定子电感中,电流流向如图6(d)所示。由上述对区间Ⅰ操纵过程的分析可得,制动过程中,给定电压空 间矢量为零矢量时,电机定子的电感处于储能状态且定子电阻消耗一 部分能量,电流不经过直流侧电容和电池;当给定电压空间矢量为非零 矢量时,电机将机械能转换成电能,利用三相逆变器的二极管将电能 反馈到直流侧,为电容和蓄电池充电,实现制动能量反馈功能。

纯电动汽车电机驱动系统分析word版

纯电动汽车电机驱动系统分析 当前推广的新能源汽车,包括燃料电池汽车、纯电动汽车和插电式混合动 力汽车。其中,纯电动汽车因为显著的环境效益和能源节约效益,尤其是在使 用过程中无大气污染物直接排放,所以受到国家层面的大力推动。纯电动汽车 主要由电机驱动系统、整车控制系统和电池系统3部分构成。其中,电机驱动系统的主要部件包括电机、功率转换器、控制器、减速器以及各种检测传感器等,功能是将电能直接转换为机械能。电机驱动系统作为纯电动车行使过程中的主 要执行结构,其驱动特性决定了主要驾驶性能指标[1]。因此,要改善纯电动汽 车的行驶性能,就需研究电机驱动系统的优化方案。 1电机驱动集成装置 纯电动汽车的电机驱动系统中,电机将电能转换为动能以产生驱动转矩, 而减速器与电机传动连接,在电机和执行机构之间起匹配转速和传递转矩的作用。目前,电机驱动系统的这3部分主要采用分体设计,然后由整车厂组装成为一个整体。这种组装形成的电机驱动装置,整体体积一般很大,因而对空间需 求也大。为使电机驱动装置能便利地在整车机舱布置,现有的一种解决方案是 集成关联的电机驱动部件。如图1所示,此新型装置由驱动电机、控制器、减速器和连接轴等主要部件集成。在电机驱动集成装置中,减速器位于驱动电机的 第一端,且与其延伸出的输出轴传动连接。连接轴与减速器传动连接,且沿驱 动电机的侧面向其第二端延伸。控制器位于连接轴的上方,与其连接的接线盒 用于容置驱动电机的电源线和控制线[2]。减速器的连接轴沿驱动电机的侧面延伸,使得整个电驱动装置的长宽尺寸相对较少。由于连接轴的尺寸远小于电机 的尺寸,且其所处位置的高度相对较低,将控制器直接设置在连接轴上方,就 实现整体高度的降低。相比于将控制器设置于电机的上方,此电机驱动集成装 置充分利用连接轴上方的空间,做到较小体积,因而对空间需求也小。b5E2RGbCAPklfHYJ6cEUqP AsthvQ VFNqwK3w9lbp Xh3ITF LbT LbiyTdmv cyAblH U2UOvE rzK0eX9MRyOv kWatvR DwH1XM AeBz8G。

北汽新能源纯电动汽车驱动电机控制系统故障维修

近年来,在我国作为技术的纯的研发与应用取得了突破性发展。这就客观要求行业提升维修水平,升级故障维修手段,利用有效的电子诊断技术提升效率。本文以北汽纯的具体故障作为切入点,通过故障分析及其排除过程,对关键技术进行相应的探究。 一、故障现象 一辆北汽生产的EV 160新能源纯,整车型号为:BJ7000B3D5-BEV,电机型号为:TZ20S02,电池型号为:29/135/220-80Ah,电池工作电压为320V。该车行驶里程为万km,出现无法行驶且仪表报警灯常亮、报警音鸣叫的故障;故障发生时电机有沉闷的“咔、咔”声。 二、系统重要作用及其结构原理 驱动电机系统由驱动电动机(DM)、驱动电机控制器(MCU)构成,通过高低压线束与整车其它系统作电气连接。驱动电机系统是纯三大核心部件之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。 1.驱动电机系统工作原理 在驱动电机系统中,驱动电机的输出动作主要是执行控制单元给出的命令,即控制器输出命令。如图1所示,控制器主要是将输入的直流电逆变成电压、频率可调的三相交流电,供给配套的三相交流永磁同步电机使用。 整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时调整驱动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机控制器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统和整车安全可靠运行。 电机控制器(MCU)由逆变器和控制器两部分组成。驱动电机控制器采用三相两电平电压源型逆变器。逆变器负责将动力电池输送的直流电电能逆变成三相交流电给汽车驱动电机提供电源;控制器接受驱动电机和其它部件的信号反馈到仪表,当发生制动或者加速行为时,它能控制频率的升降,从而达到加速或减速的目的。 电机控制器是依靠内置旋转变压器、温度传感器、电流传感器、电压传感器等来提供电机的工作状态信息,并将驱动电机运行状态信息实时发送给VCU。驱动电机系统的控制中心,又称智能功率模块,以绝缘栅双极型晶体管模块(IGBT)为核心,辅以驱动集成电路、主控集成电路,对所有的输入信号进行处理,并将驱动电机控制系统运行状态的信息通过网络发送给整车控制器,同时也会储存故障码和数据。 2.驱动电机关键部件结构及其工作原理

电动汽车用电机可行性报告

1.我国电动汽车发展概况 1.1 产业背景 1.2 产业政策 1.3 发展状况 1.3.1 技术状况 1.3.2 产业化状况 1.3.3 产品状况 1.3.4 国内主要生产企业及其产品明细表 1.4 发展方向 1.4.1 未来趋势 1.4.2 专家评述 2.我国发展电动汽车的相关政策 2.1 国家发展电动汽车的相关政策(按出台时间、名称、主要内容列表) 2.2 各省市发展电动汽车的相关政策(对北京、山东、湖南、湖北、河南、安徽、天津等分述之) 2.3 电动汽车技术支持的相关单位与组织 3.电动汽车驱动系统与驱动电机 3.1 电动汽车对其驱动系统的主要技术要求 3.2 电动汽车驱动系统的分类及其说明 3.3 电动汽车驱动电机的分类及其技术指标汇总 3.4 国内电动汽车研发单位及其研发情况 3.5 电动汽车驱动电机发展方向 4.技术方案 4.1 永磁一磁阻同步电机先进性与可行性 4.2 永磁一磁阻同步电机的优越性 4.3 永磁一磁阻同步电机现有工作基础 5.技术路线 6.合作组织 7.投资估算 8.其他

国外电动汽车及其驱动系统(本网页可阅览) 1.电动汽车的技术特征 1.1 电动汽车的基本概念和基本分类 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3种类型. 纯电动汽车 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。 混合动力电动汽车 一般是指采用内燃机和电动机两种动力,将内燃机与储能器件(如高性能电池或超级电容器) 通过先进控制系统相结合, 提供车辆行驶所需要的动力, 混合动力电动汽车并未从根本上摆脱交通运输对石油资源的依赖。因此,混合动力电动汽车是电动汽车发展过程中的一种过渡车型。 燃料电池车 燃料电池车是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装臵, 具有完全无污染(排放物为水)的优点, 1.2电动车的基本特点 概括来讲, 电动汽车与内燃机汽车相比有以下优点 (1)效率高:对能源的利用,电动汽车的总效率至少在19%以上(采用燃料电池时效率远高于这一数值),而内燃机汽车效率低于12%,由此可见, 电动汽车更加节能。 (2)环境污染小: 电动汽车排出的废气非常少甚至不排出废气, 产生的废热也明显少于内燃机汽车. (3)可使用多种能源: 可直接利用电厂输出的电能,也可以通过太阳能、化学能、机械能转化而获得电能。 (4)噪音低: 即使靠近正在高速运转的电动机也不会感觉到让人不舒服的噪音, 而内燃机的噪音则非常大。 (5)结构简单,使用维修方便,操作控制易实现自动化。 三种类型电动汽车的比较如附表所示

电动汽车驱动电机实训报告材料

驱动电机 实 训 报 告 汽工1302 黄祥吉

图给出三相BLDCM 控制系统的六开关逆变器拓扑图。根据无刷直流电机的特点,为了减小转矩脉动,提高电机控制性能,要求加在电机定子上的电流为方波,并与电机的梯形反电动势严格同步,每相电流导通120。表给出图所示的六开关逆变器的开关器件导通顺序。 由表可见,六开关逆变器中,根据开关器件的状态,可组成6个状态组合或电压矢量,即:(0,一1,1)、(1,一1,0)、(1,0,一1)、(0,1,一1)、(一1,1,0)、(一1,0,

1),其中,1表示上桥臂导通,一1表示下桥臂导通,0表示没有管子导通。如(0,一1,1)表示B相的下桥臂和C相的上桥臂导通,即VS5,Vs6导通,A相处于不导通状态。这样在任何时刻总是只有两相处于导通状态,即任何时刻总有一相的两个开关器件不参与工作。开关磁阻电机的控制系统。 开关磁阻电机作为一种新型调速电机,兼有直流和交流调速的优点,适用的领域很广。它是由磁阻电机与电子开关驱动控制电路组成一体的能量换转机构。 如图所示为四相的开关磁阻电机。图表示导通顺序A、B、C、D时定转子工作情况。图4a 表示V1导通,A相绕组通电,而其余的三相绕组断电,因此转子磁1.1′受到气隙中弯曲磁力线的切向磁拉力而产生转矩,使转子沿逆时针旋转,转子磁极1.1′向定子磁极AA′趋近,直到两者重合。此时,控制器据位置传感器的关断信号,去控制驱动器,关断V1,切断A 相绕组电流,紧接着控制器根据位置传感器的开、断信号,依次使V2、V3、V4通、断,使B、C、D相绕组顺序的通与断,使转子受同一方向转矩作用,沿逆时针的运行。若改变相电流大小,则可改变电机转矩和转速。 总之,国已经开发出了以上四种电机驱动系统,取得了很大的技术进步,已经在车辆上获得了应用。但是,还存在着需要改进之处。就交流感应电机电控系统而言,国的绝大多数电动效率在70%以上区域围占整个工作的区域还在80%以下;电机在低速运行过程中,输出转矩脉动性过大;在高速运转时可输出的转矩偏小,加载能力差,且转矩降落略大;甚至在一定转速围存在较大电磁振动(噪音),有待于进一步解决。四种电机电控系统的可靠性都有待进一步提高以适应产业化要求。

电动汽车电机控制器原理

电动汽车电机控制器 一、电机控制器的概述 根据GB/T 18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1 汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。

3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。 4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。 扩展阅读: WP4000变频功率分析仪应用于电动汽车电机试验 现行的电动汽车相关标准大全 如何选择电动汽车电池监测系统 hb

纯电动汽车的驱动电机系统

纯电动汽车的驱动电机系统 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。本文将以北汽新能源EV200车型所采用的驱动电机系统为例来介绍相关技术。 一、驱动电机系统介绍 驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。 图1 驱动电机系统结构 图2 永磁同步电机结构 图3 电机传感器 表1 驱动电机技术参数 表2 驱动电机控制器技术参数 整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。 电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。 驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。 类型永磁同步基速 2 812r/min 转速范围0~9000r/min 额定功率30kW 峰值功率53kW 额定扭矩102N.m 峰值扭矩180N.m(相当于2.0排量的汽油机)重量 45kg 技术指标 技术参数 直流输入电压 336V 工作电压范围265~410V 控制电源 12V 控制电源电压范围9~16V(所有控制器具有低压电路控制)标称容量85kVA 重量 9kg 1.驱动电机 永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。 旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱动电机旋转。 温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。 DOI:10.13825/https://www.doczj.com/doc/a519168779.html,ki.motorchina.2016.03.023

新能源电动汽车电驱动系统 (2)

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra 和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁

KH-CDD21纯电动汽车动力驱动与控制一体化教学实训系统教学文稿

KH-CDD21纯电动汽车动力驱动与控制一体化教学实训系统 可选用:吉利帝豪EV300、比亚迪E5、北汽EV160、荣威eRX5 一、产品简介 选用原装纯电动轿车高压电控总成和永磁同步电机;原装配套变速箱和传动轴;高压动力线和低压控制线与动力电池和管理系统实训台对接,实训台保留原车功能;真实展示纯电动轿车电驱动传动系统核心零部件之间的连接控制关系、安装位置和运行工况,以及高压系统安全注意事项,并培养学员对纯电动轿车电驱动传动系统故障分析和处理能力。适用于各类型院校新能源纯电动汽车驱动传动系统课程教学和维修维护实训。 二、功能特点 1.各主要部件安装在实训平台上,保留原车电气连接方式,断电后可方便拆装,训练拆装线束与电器,掌握高压系统零部件拆装和安全保护要点。 2.动力高压配电箱上盖采用透明5mm有机玻璃改装,清晰观察了解控制原理和内部控制元件。 3.驱动传动系统实训台高压电源由动力电池和管理系统实训台提供,与动力电池和管理系统实训台连体工作,配套连接电缆线,保留原车连接方式。 4.教学板完整显示电驱动系统工作原理图,安装检测端子,可直接在面板上检测系统电路元件的电信号,如电阻、电压、电流、频率、波形信号等。 面板采用耐创击、耐污染、防火、防潮的高级铝塑板,表面经特殊工艺喷涂底漆处理;面板打印有永不褪色的彩色电路图等; 5.传动轴输出端安装原车制动器,模拟车辆负载系统,通过调整两端负载大小,真实展示电驱动传动系统不同工况下(启动、加速、匀速、减速、停车、爬坡等)电流和电压等数据变化规律。

6.设备由平台和教学板组成,平台水平放置,安装原车零部件;底部安装4个带自锁脚轮装置。 7.面板部分采用1.5mm冷板冲压成形结构,外形美观;底架部分采用钢结构焊接,表面采用喷涂工艺处理,带自锁脚轮装置,教学板底座上配有30cm左右的台面,方便放置资料、轻型检测仪器等。 8.配备智能化故障设置和考核系统,故障点主要设置在低压控制线路,保证高压系统安全及训练实车故障处理能力。 9.为了教学安全,台架配套安装绝缘地板(绝缘与耐压国标产品地胶)。 10.配套实训指导书,包含系统工作原理,实训科目,故障设置及清除等要点。 三、基本配置(每台)

纯电动汽车驱动系统的参数设计及匹配

纯电动汽车驱动系统的参数设计及匹配 张珍 (长安大学) 摘要:本文系统的介绍了纯电动汽车驱动系统主要部件的选型及根据电动汽车主要性能的要求进行主要参数的设计及匹配,并通过对具体的车型的计算,进一步探讨了主要参数的确定。 关键词:纯电动汽车(EV) 驱动系统参数设计 1、前言 纯电动汽车(EV)即蓄电池电动汽车是“零污染”的绿色环保交通工具,它没有噪声和振动、操作性能好等远远优于内燃机汽车。EV是当前开发和研制取代内燃机汽车的首选车型,其前景广阔。 目前,我国的EV大都建立在改装车的基础上,其设计是一项机电一体化的综合工程。改装后的EV高性能的获得并不是简单地将内燃机汽车的发动机和然油箱换成电动机和蓄电池便可以实现的,它必须对储能装置、动力装置及变速器、减速器等参数进行合理的匹配。鉴于目前国内对EV研究的现状,故本论文的研究建立在传统汽车驱动系统的基础上。 2、电动汽车的驱动系统的基本结构 本文研究的EV的电力驱动结构形式如图1所示 图1 电驱动的形式 C——离合器;D——差速器;GB——变速器;M——电动机

3、主要部件的选型及主要参数的确定 EV 驱动系统的关键部件为:电动机、蓄电池、变速器等,这些部件类型的选择及参数设置直接决定着EV 的动力性和续驶里程等主要性能。 3.1电动机的选型及其参数的设计 3.1.1电动机的选型 电动机的选择要满足EV 对电动机性能的要求:①高电压、高转速、质量轻;②电动机具有较大的起动转矩和较宽的调速性能;③高效率、低能耗、实现制动能量的收回;④安全性必须符合相关部门的标准和规定。另外,电动机还要求可靠性好、寿命长;结构简单,适合大批生产,使用维修方便,价格低等。 3.1.2电动机额定功率的选择 本课题采用某电动汽车的部分技术参数如表1 表1 电动汽车的部分技术参数 电动机额定功率可根据EV 的最高行驶车速、爬坡和加速性能来确定[1]。建立电动机额定功率的数学模型: t D a m V A C V f g m P η÷??? ???????+???≥7614036003max max 1 (1) t a D a a a a m V A C V g m V f g m P ηαα÷??????? ???+???+????≥761403600sin 3600cos 32 (2) t a a D a m V dt du m V A C V f g m P ηδ÷?????????+??+???≥360076140360033 (3) 式中: m ax V =100km/h ;a m =1600(kg);D C =0.2;a V =30km/h ;ηt =0.9;

电动汽车的四种驱动电机比较

电动汽车的四种驱动电机比较 电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。因此,对于驱动电机的选择就尤为重要。 新能源汽车具有环保、节约、简单三大优势。在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。相对于自动变速箱,电机结构简单、技术成熟、运行可靠,甚至被视为中国在新能源汽车行业实现汽车工业“弯道超车”的希望领域之一。新能源电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。因此,对于驱动电机的选择就尤为重要。 电动汽车的驱动电机要求有以下几个特点: ?宽广的恒功率范围,满足汽车的变速性能 ?启动扭矩大,调速能力强 ?效率高,高效区广 ?瞬时功率大,过载能力强 ?功率密度大,体积小,重量轻 ?环境适应性高,适应恶劣环境 ?能量回馈效率高 根据驱动原理,电动汽车的驱动电机可分为以下4种: 1、直流电动机 在电动汽车发展的早期,很多电动汽车都是采用直流电动机方案。主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。但由于直流电动机本身 的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬 时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结 构会产生损耗,提高了维护成本。此外,电动机运转时的电刷火花会使转子发热, 浪费能量,散热困难,还会造成高频电磁干扰,这些因素都会影响具体整车性能。 由于直流电动机的缺点非常突出,目前的电动汽车已经将直流电机淘汰。 2、交流异步电动机 交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简 单,运行可靠耐用,维修方便。交流异步电机与同功率的直流电动机相比效率更高,质量约轻了二分之一左右。如果采用矢量控制的控制方式,可以获得与直流电机相 媲美的可控性和更宽的调速范围。由于有着效率高、比功率较大、适合于高速运转

纯电动汽车动力系统及驱动技术

纯电动汽车动力系统及驱动技术 一、电动汽车简介及现状 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动汽车可分为三种:蓄电池式纯电动车、燃料电池电动汽车和混合动力电动汽车。电动汽车历史悠久,世界上的第一辆电动汽车于1834年诞生,比1886年问世的世界上第一辆内燃机汽车还要早半个世纪。 大力发展新能源汽车从而实现世界交通及能源结构的转型已经成为当代汽车行业实现可持续发展的重要趋势。和传统燃油汽车相比,电动汽车尽管目前技术不太成熟,但凭借其能源效率高、环境污染小、能源多样化的优点已经成为汽车行业发展的必然选择,其发展也得到世界各国政府的重视与支持。 1.1 国内电动汽车发展现状 我国的电动汽车研究大约开始于上个世纪60年代,自“八五”以来,通过大量人力、物力和财力在纯电动汽车研究上的投入,正式把电动汽车的研究列入攻关计划,并在在北京、杭州等城市开展了不同形式的小规模示范运行。 2001年我国正式启动了“十五”国家高新技术研究发展计划(863),电动汽车被列入其中并投资数亿,确立了以燃料电池汽车、混合动力汽车和纯电动汽车为“三纵”,以多能源动力总成、驱动电机和动力蓄电池共性关键技术为“三横”的“三纵三横”研发布局川,具体分工如下:承担电动大客车项目的有北方车辆厂和北京理工大学,承担纯电动轿车研发的是上海汽车、上海交通大学、天津汽车集团等。 自2009年以来,国家陆续出台《汽车产业调整振兴规划》、电动汽车“十城千辆”项目,这表明在低碳经济的政策背景下,国家对于纯电动汽车的扶持力度正在不断加大。 1.2 国外电动汽车发展现状 在电动汽车的发展进程中,各国和各地区都依据自己的国情和特点择了不同的技术路线,而处在技术领先位置的仍然是日本、美国和欧洲,他们在电动汽车的车速、续驶里程、加速性能、动力蓄电池、基础设施等方面都有较大的优势。纯电动汽车已经在欧洲各国中拥有大量的用户,特别是在当地政府部门。但是由于没有成功地解决电动汽车续驶里程问题,商业化进程缓慢。各大汽车厂商发展电动汽车的热情明显不如日本和美国,所以其注意力更多地转向了其它清洁能源车的开发。下表是国外几种电动汽车的技术指标。

浅谈纯电动汽车驱动电机及控制系统

龙源期刊网 https://www.doczj.com/doc/a519168779.html, 浅谈纯电动汽车驱动电机及控制系统 作者:菅一凡 来源:《信息技术时代·上旬刊》2019年第01期 摘要:“纯电动汽车”对于今天的人来讲早已不再陌生,它有诸多优势,比如加速性能好、功率大、环保节能等,非常符合时代对于交通方式的变革需求。而驱动电机及控制系统,直接关系到纯电动汽车的性能和质量,纯电动汽车的设计和维护和保养非常重要,因此关于纯电动汽车驱动电机及控制系统是当代研究领域重点讨论的内容。 关键词:纯电动汽车;驱动电机;控制系统 伴随着纯电动汽车开始进入千家万户,其驱动电机及控制系统也日益成为一个热门的课题,我们迫切需要在该领域实现驱动电机及控制系统稳定可靠的运行目标,目前我们通过开展大量的研究,在这方面已经形成了一整套的理论体系,但仍然存在着一些需要进一步完善的地方。未来纯电动汽车的驱动电机及控制系统还会随着科技水平的不断提升,发展前景更加广阔。 一.电机驱动系统概述 驱动电机系统由驱动电机和电机控制器组成。驱动电机是动力系统的重要执行机构,是电能与机械能转化的部件,具备发电机和电动机的双重功能。驱动电机控制器采集电机旋转的位置,以及反馈的电流信号,对IGBT或者MOSFET进行开通与关断控制,形成旋转的交变磁场,从而控制电机按目标转矩和方向进行运转。 二.纯电动汽车驱动电机及控制系统现状分析 (一)纯电动汽车对驱动电机及控制系统的要求 不同于烧汽油或柴油的传统汽车,纯电动汽车是完全以电能为驱动力的。通过驱动电机来推动车辆前进,在控制系统方面也有着一些特殊之处。迄今为止,电动汽车驱动电机及控制系统有多种要素组成而成,它们分别为:电动机、控制器、功率电子装置、传感器等多项内容。其中,驱动电机的主要功能在于将蓄电池中的电能转换成机械能,以及通过对于蓄电池的制动,对于车辆的动能进行反馈。电动汽车对驱动电机及控制系统主要涉及以下几项内容: 第一、驱动电机要求调速范围较宽。电机能在四象限内工作。 第二、驱动电机及控制系统必须以转矩作为控制目标。转矩必须符合迅速且波动较小的要求。

相关主题
文本预览
相关文档 最新文档