常用医学统计学方法汇总
- 格式:docx
- 大小:105.30 KB
- 文档页数:11
1、已知治疗某病的新方法的疗效不会低于常规方法。
为确定新疗法可否取代常规方法,试验者将两疗法进行平行观察后,应选择() *• A.单侧检验• B.双侧检验• C.卡方检验• D.t检验2、两组资料,回归系数b大的一组() *• A.相关系数r也大• B.相关系数r较小• C.两变量关系密切• D.两组相关系数大小关系尚不能确定3、定性资料的统计推断常用() *• A.t检验• B.正态检验• C.F检验• D.卡方检验4、在简单线性回归分析中,得到回归系数为-0.30,经检验有统计学意义,说明() *• A.Y增加一个单位,X平均减少30%• B.X增加一个单位,Y平均减少30%• C..X增加一个单位,Y平均减少0.30个单位• D.Y增加一个单位,X平均减少0.30个单位5、为比较治疗某病的新疗法与常规方法,试验者将100名患者按性别、年龄等情况配成对子,分别接受两疗法治疗。
观察得到有28对患者同时有效,5对患者同时无效,11对患者新药有效常规治疗无效。
欲比较两种疗法的有效率是否相同,应选择的统计分析方法为() *• A.独立的两组二分类资料比较检验• B.独立的两组二分类资料比较校正检验• C.配对的两组二分类资料比较检验• D.配对的两组二分类资料比较校正检验6、在简单线性回归分析中,SXY(又称剩余标准差)反应() *• A.应变量Y的变异度• B.自变量X的变异度• C.扣除X影响后Y的变异度• D.扣除Y的影响后X的变异度7、四格表的自由度() *• A.不一定等于1• B.一定等于1• C.等于行×列数• D.样本含量减18、用两种方法检验已确诊的乳腺癌患者120名,甲法检出率为60%,乙法检出率为50%,甲乙两法一致检出率为35%,则整理成四格表后表中的d(两法均未检出者)为() *• A.30• B.18• C.24• D.489、四格表资料当时,应采用Fisher确切概率法直接计算概率() *• A.T≥5• B.n≥40• C.n<40或T<1• D.1≤T<510、当四格表的周边合计不变时,如果格子的实际频数有所变化,则其理论频数() *• A.增大• B.减小• C.不变• D.不确定11、对多个样本率的卡方检验,拒绝H0时,结论为() *• A.各个总体率都不相同• B.各个总体率不全相同• C.各个样本率都不相同• D.各个样本率不全相同12、R*C表的卡方检验的自由度为() *• A.R-1• B.C-1• C.R*C-1• D.(R-1)(C-1)13、两组二分类资料发生率比较,样本总例数100,则卡方检验自由度为() *• A.1• B.4• C.95• D.9914、最小二乘估计方法的本质要求是() *• A.各点到直线的垂直距离和最小• B.各点到x轴的纵向距离的平方和最小• C.各点到直线的垂直距离的平方和最小• D.各点到直线的纵向距离的平方和最小15、对于n=300的3个样本率做卡方检验时,其自由度为() *• A.299• B.297• C.1• D.216、四格表资料,且n>40,有一个理论频数小于5大于1.此数据宜作何种假设检验() *• A.可以作校正的卡方检验• B.不能作卡方检验• C.作卡方检验,不必校正• D.以上都不对。
计量资料:一、 描述性分析集中趋势:对称——算术均数偏态——中位数等比——几何均数离散趋势:对称——方差、标准差偏态——四分位数间距均数悬殊或单位不同的资料比较——变异系数二、 统计推断(根据样本推断总体)1.参数(均数)估计 总体方差未知——总体方差已知——参考值范围:单双侧 正态分布—— 偏态分布——百分位数法二者的含义、用途2.假设检验(1)均数的比较(正态)单个样本、配对(与两独立样本的区别)两样本(方差齐——t 检验方差不齐——校正t 检验或秩和检验或变量转换) 多样本:方差齐 完全随机设计方差分析随机区组设计方差分析),(2/2/n s u x n s u x αα+-),(2/2/n s v t x n s v t x αα+-Su X 2α±S u X α-Su X α+方差不齐——秩和检验或变量转换非正态:秩和检验或变量转换F—+—>t两两比较:SNK 任两个对比LSD 一对或几对比较Dunnet 实验与对照组比较t——>F F=t2(2)方差比较两个方差:F检验(正态)多个方差:Bartlett(正态)Levene检验假设检验注意事项计数资料一、描述性分析频率或严重程度——率比重或构成——构成比一指标为另一指标的若干倍或百分比——相对比应用注意:不能以比代率、可比性、样本率不能直接对比率或构成比比较:1.若某因素内部构成不同并且影响比较,进行标化二、统计推断1.参数估计二项分布率的估计:查表或正态法泊松分布均数估计:查表或正态法2.假设检验单个样本率:直接法或二项分布U检验泊松分布U检验(率很小)两样本率的比较:四格表2χ检验(校正)二项分布U检验(n大、np>5,n(1-p)>5)泊松分布U检验((率很小)精确概率法多个率或构成比比较:2χ检验(理论数不能小于1或小于的理论数不能多于5分1)两两比较:任两个对比、实验与对照组比较等级资料:-----效应比较秩和检验两变量关系:1.定量(计量资料)正态pearson相关回归非正态秩相关2.无序分类定性2 检验和列联相关系数3. 有序分类定性(1)单向有序分组有序、指标无序卡方检验分组无序、指标有序秩和检验(2)双向有序属性相同Kappa检验属性不同线性趋势秩相关。
医学统计学方法统计学图表在医学研究中,统计学方法和统计学图表被广泛应用于数据分析和结果呈现。
通过合理选择和运用各种统计学方法和图表,研究人员可以更好地理解和传达研究中的数据和结论。
本文将介绍一些常用的医学统计学方法和统计学图表,并探讨它们的应用和使用要点。
一、医学统计学方法1. 描述性统计学方法描述性统计学方法是对数据进行概括和总结的方法。
常用的描述性统计学方法包括平均数、中位数、众数、标准差、方差等。
这些方法可以通过对数据的集中趋势、离散程度等进行统计和计算,从而对数据进行更加准确和全面的描述。
2. 推断性统计学方法推断性统计学方法是通过对样本数据进行分析和推断,得出对总体的推断结论。
其中包括假设检验和置信区间两种方法。
假设检验用于检验研究设想是否成立,而置信区间则用于估计总体参数的范围。
3. 相关性分析相关性分析用于研究两个或多个变量之间的关系强度和方向。
常用的相关性分析方法包括皮尔逊相关系数和斯皮尔曼等级相关系数。
这些方法可以帮助研究人员了解不同变量之间的相关性,并提供对数据进行进一步分析和解释的线索。
4. 方差分析方差分析是用于比较两个或多个样本均值是否存在显著性差异的方法。
其中包括单因素方差分析和多因素方差分析。
方差分析可以帮助研究人员确定不同变量对于结果的影响程度,并进行差异比较和结果解释。
二、统计学图表1. 条形图条形图是一种常用的展示分类变量和数量变量之间关系的图表。
它通过绘制不同类别的长条来直观地显示各个类别的数量差异。
条形图可以帮助研究人员比较不同类别之间的差异,并进行数据分析和决策。
2. 折线图折线图是一种用于展示随时间或其他连续变量变化的趋势图表。
通过将数据点连接起来,研究人员可以清楚地观察到随时间变化的模式和趋势。
折线图常用于研究不同时间点或时间段下的数据变化。
3. 散点图散点图用于展示两个变量之间的关系。
通过在坐标轴上绘制散点,研究人员可以观察到变量之间的分布规律和趋势。
医学统计学中常用的分析方法医学统计学是现代医学研究中必不可少的一个领域。
医学统计学是通过数据量化来描述和分析人群的疾病发病率、死亡率等重要指标。
在医疗领域中,各种慢性病、癌症等疾病的诊断和治疗,都需要依托经验数据以及一系列科学的研究手段,从而获得越来越准确的分析结果。
下面我们就来介绍医学统计学中常用的分析方法。
一、描述统计学在医治领域中,描述统计学的作用就是通过对样本的描述来深入了解总体特征。
常见的该类统计学指标有平均数、标准差以及四分位数等。
一个样本和你常遇到的人群数据不同,但也表现出自己的普遍特征。
描述统计学可以利用样本中的数据特征,了解该群体的规律和变化趋势,有助于研究者对整个群体的认识。
例如,在研究一种癌症的发病率时,描述统计学可以看到该癌症发病人群的年龄分布、性别分布等特征。
二、参数检验参数检验是将样本得到的数据运用到总体上分别进行推断的方法,用来检验研究者的假定是否成立。
参数检验的结果常表示为 t 值或 F 值等统计指标,这些指标可以在制定检测的同时告诉我们这些检测是否显著。
其中,t 值的大小表示两个样本之间的差别是否显著;F 值的大小表示方差是否显著。
基于参数检验可以根据样本数据,对推论进行延伸并推断总体信息状态。
三、协方差分析协方差分析是用来研究自变量对因变量的影响是否显著,同时控制与自变量无关的某些变量的干扰。
举个例子:人体中身高和体重间的关系是正相关的,但如果控制年龄变量的干扰之后,协方差分析可能会发现身高和体重间的关系并不如之前想象得那么紧密。
协方差分析可以对多个变量之间的关系进行分析和推断。
在医疗领域,随着研究越来越复杂,可能会引入多个干扰因素。
通过协方差分析,可以发现自变量对因变量的影响是否显著,并且还可以刻画各个因素对研究结果的影响程度。
四、生存分析生存分析主要是针对生命活动中发生的事件,例如人类、动物生存时间等等。
在医疗领域,生存分析主要用来研究生存时间和死亡原因的相关性,预测某疾病的患者数量,以及病人存活时间的评估等。
医学统计学百分位数计算方法
医学统计学中的百分位数(percentile)是一个重要的统计指标,用于描述数据分布的特征。
具体计算方法如下:
1. 将数据从小到大排列,并分为100等分。
2. 计算出每个百分位数所占的比例,例如第5百分位数表示有5%的数据小于该值。
3. 使用公式 Px = L + i/f(%-∑fL) 来计算百分位数,其中 L、i、fx 分别为 Px 所在组段的下限、组距和频数,∑fL 为小于 L 的各级段的累计频数。
4. 对于每一个百分位数,都可以用上述公式来计算出对应的数值。
以上信息仅供参考,建议查阅统计学书籍或咨询统计学专业人士获取更多帮助。
医学统计学中的研究方法引言:医学是一门需要基于科学研究进行决策的学科,而统计学作为一种强有力的工具,对于医学研究来说具有重要的意义。
本文将介绍医学统计学中常用的研究方法,包括横断面研究、纵向研究以及随机对照试验,并探讨它们的优缺点及适用场景。
横断面研究:横断面研究是医学统计学中最基础的一种研究方法。
它通过在某一时间点上对人群进行观察和数据收集,来描述一种疾病或现象的患病率、分布情况等。
这种研究方法的优点是成本低廉、研究时间较短,能够提供关于人群特征和患病情况的横截面信息。
但是,它的缺点也很明显,因为它无法获得时间与暴露因素之间的因果关系,只能提供相关性的信息。
纵向研究:与横断面研究相反,纵向研究是在一定时间内追踪观察同一组人群的研究方法。
这种研究方法能够更好地揭示时间与暴露因素之间的因果关系,对于观察疾病的自然进展、治疗效果的评估以及预防措施的制定具有重要的意义。
纵向研究的优点在于能够提供更具科学依据的因果关系,但是由于时间跨度长、样本流失率高等缺点,也增加了研究的复杂性和成本。
随机对照试验:随机对照试验是医学统计学中最可靠的一种研究方法,它通过将研究对象随机分组,对某一因素进行对照比较,以确保研究结果的有效性和可靠性。
随机对照试验通常包括实验组和对照组,实验组接受某种干预措施,对照组则接受常规治疗或安慰剂。
通过在两组之间对比结果的差异,可以评估干预措施的有效性。
这种研究方法的优点是能够控制混杂因素、确保研究结果的可比性,但是其实施过程相对复杂,需要大规模的样本和严格的随机分组。
总结:医学统计学中的研究方法多种多样,每种方法都有其特点和适用场景。
横断面研究适用于初步了解病情的分布情况和相关性;纵向研究能够揭示时间与暴露因素的因果关系;而随机对照试验则是评估治疗干预措施效果最可靠的方法。
在实际研究中,常常需要根据研究问题和资源限制来选择适合的研究方法。
医学统计学作为医学研究的重要工具,为医学决策提供了可靠的科学依据,对于改善医疗质量和推动医学进步具有重要的意义。
医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。
医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。
以下是医学统计学知识点的一些精华汇总。
1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。
2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。
3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。
4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。
5.参数估计:常用的参数估计方法有点估计和区间估计。
点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。
6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。
常用的假设检验方法有t检验、卡方检验、方差分析等。
7.数据分析:包括描述性统计分析和推断性统计分析。
描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。
8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。
9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。
10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。
11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。
12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。
以上是医学统计学的一些精华知识点的汇总。
医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。
常用医学统计学方法的选择1. 多组率的比较用卡方检验(χ2检验,chi-square test)直接用几个率的数值比较,与直接用原始数据录入比较,结果会有什么不同?卡方值会受样本量的影响,样本越多,卡方值越大。
2.多组计量资料比较采用方差分析(F检验) ,不能用t检验。
当方差分析结果为P<0.05时,只能说明k组总体均数之间不完全相同。
若想进一步了解哪两组的差别有统计学意义,需进行多个均数间的多重比较,即SNK-q检验(多个均数两两之间的全面比较)、LSD-t检验(适用于一对或几对在专业上有特殊意义的均数间差别的比较)和Dunnett检验(适用于k-1个实验组与一个对比组均数差别的多重比较)。
3.非正态分布多组数据之间比较选用非参数检验、单样本中位数检验(符号检验和Wilcoxon 检验)、双样本中位数检验(Mann-Whitney 检验)、方差分析(Kruskal-Wallis、Mood 中位数和Friedman 检验)4.按血糖水平从低到高分成多组,进行多组之间死亡率的比较,由于死亡率同样受年龄、性别、病史、您身边的论文好秘书:您的原始资料与构思,我按您的意思整理成优秀论文论著,并安排出版发表,扣1550116010 、766085044自信我会是您人生路上不可或缺的论文好秘书血脂等因素的影响,所以需选取合适统计方法实现“调整年龄、性别等危险因素后,按血糖分组进行死亡率的比较(由血糖从低到高分成的4组)”。
①年龄是定量变量(是数值),调整年龄的方法可在Logistic回归中运用,连续性变量年龄加入covariate中,当成协变量,就可以调整年龄,age-adjusted odds ratio就能得到了。
②性别性别是二分类变量,不是定量变量,不可在LOGISTIC回归里比较。
调整性别可在卡方检验中采取分层的方法比较。
如果为多分类LOGISTIC回归,在选择用multinomianl LOGISTIC回归中,可选入年龄等进入covariate,观察年龄的配比情况。
医学统计学统计方法
医学统计学是一门研究医学领域中的数据分析和统计方法的学科。
医学研究需要进行数据收集、数据分析和结果解释,统计方法则可以帮助研究者从大量数据中提取有用信息,评估结果的可靠性和有效性,并进行统计推断。
下面是一些常见的医学统计学统计方法:
1. 描述统计:用于描述和总结数据集的基本特征。
包括平均值、中位数、百分比、标准差、方差等。
2. 推断统计:用于从样本数据中推断总体特征的统计方法。
常见的推断统计方法包括假设检验和置信区间。
- 假设检验:用于测试一个或多个假设是否成立。
研究者根据样本数据进行假设检验,以得出关于总体的结论。
常见的假设检验方法包括t检验、方差分析、卡方检验等。
- 置信区间:用于估计总体参数的范围。
置信区间表示了对总体参数的估计范围,并给出了相应的置信水平。
常见的置信区间方法包括正态分布置信区间、二项分布置信区间等。
3. 回归分析:用于建立和验证变量之间关系的统计方法。
回归分析可以帮助研
究者确定自变量和因变量之间的关系,并预测因变量的未知值。
常见的回归分析方法包括线性回归、逻辑回归、生存分析等。
4. 生存分析:用于分析事件发生时间的统计方法。
生存分析适用于研究有时间相关性的事件(如存活时间、复发时间),可以评估幸存率、风险比等。
常见的生存分析方法包括Kaplan-Meier曲线、Cox比例风险模型等。
此外,医学统计学还涉及因子分析、聚类分析、判别分析、非参数统计方法等其他统计方法。
医学研究者经常在实践中根据研究目的和数据特点选择适当的统计方法进行数据分析和解释结果。
常用医学统计学方法我折腾了好久常用医学统计学方法,总算找到点门道。
说实话,这事儿一开始我也是瞎摸索。
就像在黑暗里走路,不知道踩哪一脚就摔个跟头。
我最开始接触的就是平均数。
你想啊,一群数据就像是一群人站成一排,那平均数呢,就好比这排人的平均身高或者平均年龄啥的。
这是很基础也很常用的统计量。
我当时就想啊,这多简单,不就是把一堆数加起来除以个数嘛。
可是呢,问题就来了,当有极端值的时候,这个平均数就不行了,特别容易被那些特别大或者特别小的值给带偏。
就像一群人中突然加进来一个巨人或者一个小矮人,这平均身高就不准了。
这就是我吃过的亏,只看平均数就出问题了。
然后还有标准差。
我觉得这个标准差就像是这群人高度的离散程度,是大家距离平均身高的差距情况。
我当时理解这个就花了不少时间。
我是拿着一些具体的数字,比如一组病人的某个指标的数值,自己手动计算。
就像掰手指头数数一样,一点一点算出每个数和平均数的差距,再按照公式算。
过程那叫一个繁琐,中间还错了好几次。
计算出来之后才有点恍然大悟的感觉,体会到它在描述数据离散方面的意义。
再来说说t检验。
这个东西我一开始完全懵。
我试着把它想象成比较两组人是不是有明显差异。
就假设两组病人用了不同的药,看看疗效有没有本质区别。
我得先确定数据是不是符合t检验的那些要求,什么正态分布啦那些。
我也不确定自己弄得准不准,于是就各种查资料,找案例对比。
有时候自己算出来的结果和书上的案例不对,就从头一点点检查,经常发现是自己把数字抄错或者在计算的某一步没按照公式来。
还有方差分析。
这感觉比t检验更复杂一点。
我比喻它啊,就像是比较好多组人群之间的差异。
比如不同年龄段、不同性别、不同地域的人群在某个健康指标上有没有本质的不同。
我得把人群按这些分类,然后看组内的差异和组间的差异。
这个组间、组内关系我就纠缠了好久才彻底明白。
关于这些医学统计学方法,我觉得最好的建议就是多实践。
自己找数据,自己算。
虽然过程痛苦,但是收获很大。
循证医学中常用的统计方法和指标(1)循证医学是基于严格的科学方法和批判性思维的医学实践。
在循证医学实践中,统计方法和指标是评价医学证据质量的重要工具。
本文将介绍循证医学中常用的统计方法和指标。
一、描述性统计分析描述性统计分析是用来总结和呈现医学数据的常用方法。
常见的描述性统计分析指标包括平均数、中位数、众数、标准差、方差等。
在循证医学研究中,描述性统计分析可以用于总结研究样本的基本特征,如人口统计学特征、疾病特征、临床特征等。
二、推断性统计分析推断性统计分析是循证医学中常用的统计方法之一。
它的目的是从研究样本数据推断总体参数。
常见的推断性统计分析方法包括t检验、方差分析、回归分析等。
在循证医学研究中,推断性统计分析方法可以用于分析两组或多组数据之间的差异,如疾病治疗效果、药物副作用等。
三、风险度量指标风险度量指标是循证医学中常用的一类指标,它用于评估某个因素与某种结果发生风险的关系。
常见的风险度量指标包括相对风险、绝对风险、风险差等。
在循证医学研究中,风险度量指标可以用于评估慢性病预防、药物治疗效果等方面的风险。
四、信度分析信度分析是循证医学研究中用于评估测量工具信度的方法。
常见的信度分析指标包括重测信度、内部一致性信度等。
在循证医学研究中,信度分析可以用于评估临床测量工具的可靠性,如症状评估量表、生命质量评估等。
五、效度分析效度分析是循证医学研究中用于评估测量工具效度的方法。
常见的效度分析指标包括内容效度、预测效度、判别效度等。
在循证医学研究中,效度分析可以用于评估临床测量工具的有效性,如诊断工具、疾病分类标准等。
总之,统计方法和指标在循证医学研究中具有重要作用。
正确使用和解读统计方法和指标可以帮助医学研究者评估证据质量、提高研究的科学性和可靠性。
临床分析医学研究中的统计学方法统计学在临床分析医学研究中起着重要的作用。
它在整个研究过程中发挥了统计分析、结果呈现和结论推断的重要作用。
本文将探讨临床分析医学研究中常用的统计学方法以及其应用。
一、描述性统计学方法描述性统计学方法主要用于对研究对象的特征进行总结和描述。
它通过计算均值、中位数、标准差、百分比等指标来揭示数据的分布特征。
常用的描述性统计学方法包括:1. 频数统计:对变量进行分类统计,计算各类别的频数和频率。
2. 中心趋势测量:计算数据的平均值、中位数和众数,用于表示数据集中的趋势。
3. 变异测量:计算方差、标准差和范围,用于度量数据的离散程度。
4. 百分比:计算各类别在总体中的百分比,用于比较不同类别的频率。
5. 相关性分析:通过计算相关系数来评估两个变量之间的相关性。
以上方法可以帮助研究者对研究对象的特征进行准确地描述和总结,为后续的进一步分析提供依据。
二、推断性统计学方法推断性统计学方法主要用于从样本中推断总体的特征,通过对样本数据的分析,推断总体数据的分布、差异、相关性等。
常用的推断性统计学方法包括:1. 参数检验:通过对总体参数的估计和假设检验来推断总体的特征。
常见的参数检验方法有t检验、方差分析、卡方检验等。
2. 置信区间:通过计算样本统计量的范围来估计总体参数的区间。
置信区间可以评估估计值的可靠程度。
3. 回归分析:用于研究自变量对因变量的影响程度和方向。
回归分析可以帮助确定变量之间的关系。
4. 生存分析:用于分析事件发生的时间,并估计事件的概率。
生存分析通常应用于疾病预后和研究领域。
推断性统计学方法可以从样本数据中推断总体的特征,进而对整个研究对象做出准确的结论。
三、统计学方法的应用案例统计学方法在临床分析医学研究中有着广泛的应用。
以下是几个常见的应用案例:1. 药物疗效评价:通过随机对照试验设计,使用参数检验方法比较药物治疗组和对照组的疗效差异,从而评价新药物的疗效。
医学统计学常见资料类型一、病例报告病例报告是医学统计学中常见的资料类型之一。
病例报告是指医生或研究者对某个疾病或病例进行详细描述和分析的文献。
病例报告通常包括病人的个人信息、病史、临床表现、诊断方法、治疗过程和预后等内容。
通过病例报告,医生们可以分享疾病的病情特点、治疗经验和预后情况,为临床实践提供参考。
二、队列研究队列研究是医学统计学中常用的研究方法之一。
队列研究是指在一定的时间范围内,观察一组人群,并根据他们的暴露情况和发病情况进行统计分析。
队列研究可以分为前瞻性队列研究和回顾性队列研究。
前瞻性队列研究是在人群中选择一组暴露和非暴露两组人,然后进行长期的随访观察,以确定暴露对发病的影响。
回顾性队列研究是通过回顾性分析的方法,收集和分析已有的队列数据,以探究暴露和发病之间的关系。
三、交叉研究交叉研究是医学统计学中常见的研究方法之一。
交叉研究是指在一定的时间范围内,对一组人群进行观察和数据收集,然后根据暴露和发病情况进行分析。
交叉研究可以分为前瞻性交叉研究和回顾性交叉研究。
前瞻性交叉研究是在人群中选择一组暴露和非暴露两组人,然后进行一段时间的观察和随访,以确定暴露对发病的影响。
回顾性交叉研究是通过回顾性分析的方法,收集和分析已有的交叉研究数据,以探究暴露和发病之间的关系。
四、随机对照试验随机对照试验是医学统计学中常用的研究设计之一。
随机对照试验是指将研究对象随机分为实验组和对照组,实验组接受新的治疗方法或药物,对照组接受传统的治疗方法或安慰剂,然后观察和比较两组的疗效和安全性。
随机对照试验可以消除研究对象之间的差异,有效评估新的治疗方法或药物的效果和副作用。
五、系统评价和荟萃分析系统评价和荟萃分析是医学统计学中常见的研究方法之一。
系统评价是通过系统地收集、评估和整合已有的研究结果,以回答特定的研究问题。
荟萃分析是对多个独立研究的结果进行统计分析,以获得更准确和可靠的结论。
系统评价和荟萃分析可以提供更高水平的证据,指导临床决策和制定医学政策。
选择合适的统计学方法1连续性资料1.1 两组独立样本比较1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。
1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。
1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。
1.2 两组配对样本的比较1.2.1 两组差值服从正态分布,采用配对t检验。
1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。
1.3 多组完全随机样本比较1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。
如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe 法,SNK法等。
1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。
如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。
1.4 多组随机区组样本比较1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。
如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe 法,SNK法等。
1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。
如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。
****需要注意的问题:(1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。
因为统计学上有中心极限定理,假定大样本是服从正态分布的。
(2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。
正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD 检验,Bonferroni法,tukey法,Scheffe法,SNK法等。
**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确**(3)关于常用的设计方法:多组资料尽管最终分析都是采用方差分析,但不同设计会有差别。
常用的设计如完全随即设计,随机区组设计,析因设计,裂区设计,嵌套设计等。
2.分类资料2.1 四格表资料2.1.1 例数大于40,且所有理论数大于5,则用普通的Pearson 检验。
2.1.2 例数大于40,所有理论数大于1,且至少一个理论数小于5,则用校正的检验或Fisher’s 确切概率法检验。
2.1.3 例数小于40,或有理论数小于2,则用Fi sher’s确切概率法检验。
2.2 2×C表或R×2表资料的统计分析2.2.1 列变量&行变量均为无序分类变量,则(1)例数大于40,且理论数小于5的格子数目<总格子数目的25%,则用普通的Pearson 检验。
(2)例数小于40,或理论数小于5的格子数目>总格子数目的25%,则用Fisher’s确切概率法检验。
2.2.2列变量为效应指标,且为有序多分类变量,行变量为分组变量,用普通的Pearson 检验只说明组间构成比不同,如要说明疗效,则可用行平均分差检验或成组的Wilcoxon秩和检验。
2.2.3 列变量为效应指标,且为二分类变量,行变量为有序多分类变量,则可采用普通的Pearson 检验比较各组之间有无差别,如果总的来说有差别,还可进一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。
2.3 R×C表资料的统计分析2.2.1 列变量&行变量均为无序分类变量,则(1)例数大于40,且理论数小于5的格子数目<总格子数目的25%,则用普通的Pearson 检验。
(2)例数小于40,或理论数小于5的格子数目>总格子数目的25%,则用Fisher’s确切概率法检验。
(3)如果要作相关性分析,可采用Pearson 相关系数。
2.2.2列变量为效应指标,且为有序多分类变量,行变量为分组变量,用普通的Pearson 检验只说明组间构成比不同,如要说明疗效或强弱程度的不同,则可用行平均分差检验或成组的Wilcoxon秩和检验或Ridit分析。
2.2.3 列变量为效应指标,且为无序多分类变量,行变量为有序多分类变量,则可采用普通的Pearson 检验比较各组之间有无差别,如果有差别,还可进一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。
2.2.4 列变量&行变量均为有序多分类变量,(1)如要做组间差别分析,则可用行平均分差检验或成组的Wilcoxon秩和检验或Ridit分析。
如果总的来说有差别,还可进一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。
(2)如果要做两变量之间的相关性,可采用Spearson 相关分析。
2.4 配对分类资料的统计分析2.4.1 四格表配对资料,(1)b+c>40,则用McNemar配对检验。
(2)b+c<40,则用校正的配对检验。
2.4.1 C×C资料,(1)配对比较:用McNemar配对检验。
(2)一致性检验,用Kappa检验。
在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述.Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。
对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。
Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。
对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格;计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。
计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料注:1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman或Kendall相关。
3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。
则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。
对一般情况默认数据服从正态分布的,故用Pearson分析方法。
在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:PearsonKendall's tau-bSpearman:Spearmanspearman(斯伯曼/斯皮尔曼)相关系数斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。
它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究Kendall's相关系数肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。
适用这种方法的数据资料一般是采用等级评定的方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。
等级评定法每个评价者对N件事物排出一个等级顺序,最小的等级序数为1 ,最大的为N,若并列等级时,则平分共同应该占据的等级,如,平时所说的两个并列第一名,他们应该占据1,2名,所以它们的等级应是1.5,又如一个第一名,两个并列第二名,三个并列第三名,则它们对应的等级应该是1,2.5,2.5,5,5,5,这里2.5是2,3的平均,5是4,5,6的平均。
肯德尔(Kendall)U系数又称一致性系数,是表示多列等级变量相关程度的一种方法。
该方法同样适用于让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物所得的数据资料,只不过评定时采用对偶评定的方法,即每一次评定都要将N个事物两两比较,评定结果如下表所示,表格中空白位(阴影部分可以不管)填入的数据为:若i比j好记1,若i比j 差记0,两者相同则记0.5。
一共将得到K张这样的表格,将这K张表格重叠起来,对应位置的数据累加起来作为最后进行计算的数据,这些数据记为γij。
正态分布的相关检验对来自正态总体的两个样本进行均值比较常使用T检验的方法。
T检验要求两个被比较的样本来自正态总体。
两个样本方差相等与不等时用的计算T值的公式不同。
进行方差齐次性检验使用F检验。
对应的零假设是:两组样本方差相等。
P值小于0.05说明在该水平上否定原假设,方差不齐;否则两组方差无显着性差异。
U检验时用服从正态分布的检验量去检验总体均值差异情况的方法。
在这种情况下总体方差通常是已知的。
虽然T检验法与U检验法所解决的问题大体相同,但在小样本(样本数n)=30作为大样本)且均方差未知的情况下就不能用U检验法了。
均值检验时不同的数据使用不同的统计量使用MEANS过程求若干组的描述统计量,目的在于比较。
因此必须分组求均值。
这是与Descriptives过程不同之处。
检验单个变量的均值是否与给定的常数之间存在差异,用One-Sample T Test 单样本T检验过程。